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Abstract

Anomalies represent rare observations that vary significantly from oth-
ers. Anomaly detection intended to discover these rare observations has
the power to prevent detrimental events, such as financial fraud, network
intrusion, and social spam. However, conventional anomaly detection
methods cannot handle this problem well because of the complexity of
graph data (e.g., irregular structures, relational dependencies, node/edge
types/attributes/directions/multiplicities/weights, large scale, etc.) [1].
Thanks to the rise of deep learning in solving these limitations, graph
anomaly detection with deep learning has obtained an increasing atten-
tion from many scientists recently. However, while deep learning can cap-
ture unseen patterns of multi-dimensional Euclidean data, there is a huge
number of applications where data are represented in the form of graphs.
Graphs have been used to represent the structural relational information,
which raises the graph anomaly detection problem - identifying anoma-
lous graph objects (i.e., vertex, edges, sub-graphs, and change detection).
These graphs can be constructed as a static graph, or a dynamic graph
based on the availability of timestamp. Recent years have observed a
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huge efforts on static graphs, among which Graph Convolutional Net-
work (GCN) has appeared as a useful class of models. A challenge
today is to detect anomalies with dynamic structures. In this chapter,
we aim at providing methods used for detecting anomalies in static and
dynamic graphs using graph analysis, graph embedding, and graph con-
volutional neural networks. For static graphs we categorize these methods
according to plain and attribute static graphs. For dynamic graphs we
categorize existing methods according to the type of anomalies that
they can detect. Moreover, we focus on the challenges in this research
area and discuss the strengths and weaknesses of various methods in
each category. Finally, we provide open challenges for graph anomaly
detection using graph convolutional neural networks on dynamic graphs.

Keywords: Anomaly Detection, Graph anomaly detection, Graph analysis,
Graph embedding, Graph Neural Network, Dynamic graphs, Static graphs

1 Introduction

Anomaly detection is a critical task that deals with the problem of discovering
“different from normal” signals or patterns by evaluating a large amount of
data, thereby major flaws can be identified and avoided [2]. The objective
of anomaly detection is to identify the data that are significantly different
from most observations. Research on anomaly detection dates all the way
back to the 1980s and detecting anomalies on graphs using machine learning
has become an important research problem [2]. Graph anomaly detection has
evolved from depending heavily on human experts’ domain information into
machine learning methods to eliminate human intervention. Recently, different
deep learning approaches have been taken on to distinguish potential anomalies
in graphs. These approaches are graph analysis [3], graph embedding [3], and
graph neural networks [4]. By leveraging the graph structure, several of novel
algorithms for anomaly detection have been proposed for each approach.

In recent years, graph neural networks (GNNs), as a powerful deep-
learning-based graph representation method, have exhibited superiority in
leveraging the graph structure and has been utilized in anomaly detection.
Some researchers have successfully applied GNNs in several important anomaly
detection tasks. Based on the availability of the timestamp, the graph can be
constructed as a static graph or a dynamic graph, where a static graph refers
to the graph that has fixed nodes and edges, and a dynamic graph refers to
the graph that has nodes and/or edges change over time [2]. Dynamic graphs
are more complex and difficult in discovering anomalies than static graphs.
This can be shown from two perspectives: (1) The anomalous edges cannot
be determined by the graph from a single timestamp. The detection proce-
dure must take graph history into consideration; (2) Both the vertex and edge
sets are changing over time [5]. As graph-based anomaly detection is becom-
ing ever more important and the achievements of graph neural networks are
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increasing, both academia and industry are interested in applying GNNs to
handle the issue of anomaly detection on static and dynamic graphs. In this
chapter, we summarize different GNN-based anomaly detection methods and
provide taxonomies for them according to static and dynamic graphs. We will
also see how GNN methods solved the limitations of graph analysis and graph
embedding on both static and dynamic graphs.

The rest of this chapter is organized as follows. Section 2 identifies the
approaches for analyzing graphs. Section 3 identifies the key challenges of
Graph Neural Networks, and for Anomaly Detection on dynamic graphs.
Section 4 presents methods for anomaly detection on static graphs and section
5 presents methods for anomaly detection on dynamic graphs. Section 6 iden-
tifies the requirements needed for better anomaly detection. In the last section,
we provide the conclusion of this work.

2 Analyzing graphs

In this section we define the three core methods for analyzing graphs: graph
analysis, graph embedding, and graph neural networks.

2.1 Graph Analysis

There is an increasing number of applications where data are represented as a
graph with complex relationships and inter-dependency between objects. This
means going from Euclidean (e.g., images, audio, and text) to non-Euclidean
space representing interactions between nodes instead of the characteristics
of individual points. Graph analysis [3] is a process for analyzing data in
graph structures, in a Non-Euclidean Space using data points as nodes and
relationships as edges. In order to perform the analysis on a non-Euclidean
space, graph analysis methods have come into to improve the quantitative
understanding and the control of complex networks.

2.2 Graph Embedding

Graph Embedding [3] methods have shown an important role for the capacity
of transforming high-dimensional sparse graphs into low-dimensional rep-
resentations, dense and continuous vector spaces. The main aim of graph
embedding techniques is to encode nodes into a latent vector space and to
group every node’s property into a vector with a lower dimension.

2.3 Graph Neural Networks

Graph neural networks (GNNs) are classified into 4 categories: recurrent
graph neural networks (RecGNNs), convolutional graph neural networks (Con-
vGNNs), graph autoencoders (GAEs), and spatial-temporal graph neural
networks (STGNNs) [4]. In this chapter we will focus on Graph Convolutional
Neural Networks (ConvGNNs) that acquire the movement of convolution from
grid data (Euclidean structure) to graph data (non-Euclidean structure) [4].
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ConvGNNs play an important role in building up many other complex GNN
models [4]. They fall into two categories, spectral-based and spatial-based
GNNs. Spectral based methods determine graph convolutions by proposing
filters from graph signal processing [6]. Spatial-based methods achieve graph
convolutions locally on each node where weights can be easily shared across
different locations and structures [7].

Most of the current graph neural network methods have been modeled for
static graphs, while many real-world graphs are being dynamic. Concurrently,
designing graph neural networks for dynamic graphs is facing challenges. From
the global perspective, structures of dynamic graphs remain evolving since new
nodes and edges are always introduced. It is necessary to track the changing of
graph neural network’s structure. From the local perspective, a node can carry
new edges, and the order of these edges is critical for learning the node [8]. In
the next section we will identify the challenges for graph neural networks.

3 Key challenges

In this section we will first present the key challenges for graph neural networks
and then identify the challenges for anomaly detection on dynamic graphs.

3.1 Challenges for Graph Neural Networks

While Graph Neural Networks have proved to be a very powerful approach
for learning graph data, there are still several open challenges due to the
complexity of graphs. Some of the challenges are listed below:

• Model Depth: [4] Deep learning model achievements depend on the build-
ing of neural networks. However, when using graphs, experimental studies
have shown that with the increase in the number of layers, the model per-
formance we be dropped dramatically [9]. This is caused by the effect of
graph convolutions in pushing representations of adjacent nodes closer to
each other. So it is noticed that with infinite number of convolutions, all
nodes’ representations will move to a single point. So, the challenge here is
to evaluate whether going deep in the neural network layers can still improve
graph data learning.

• Scalability:[4] At any time we try to scale or cluster our graph, it is an irrel-
evant problem that the completeness of the graph is sacrificed. The model
will lose some part of graph information whether we are scaling or cluster-
ing. For scaling, a node can drop its significant neighbors. For clustering, a
graph can drop a different structural pattern. Here comes the challenge of
how it is possible to handle the scalability without sacrificing the integrity.

• Heterogeneity: [10] It is widely seen that most of GNN methods are
applied on homogeneous graphs. The current GNN methods cannot handle
the heterogeneous graph data, as it may have various types of nodes and
edges or it may have different features. This calls for new approaches that
can handle such heterogeneous data.
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• Dynamicity: [10] Graphs have dynamic nature in a way that the nodes
and edges keep changing. They can appear at some time and disappear
at some other. Dynamic graphs are more complex due to the change of
the graph structure. That is, the vertices and edges are unstable along the
time dimension. Sometimes the nodes variate according to the time and the
environment.

A challenge today is to deal with graphs with dynamic structures. It is
important to study the anomaly detection on dynamic graphs using GNNs.
The real-world networks can be modeled as dynamic graphs to represent the
evolving objects and relationships among them. Apart from the structural
information and node attributes, dynamic graphs also contain affluent tem-
poral signals. On the one hand, this information inherently makes anomalous
node detection on dynamic graphs more challenging. This is because dynamic
graphs normally introduce massive volume of data and temporal signals must
also be captured. On the other hand, they could provide more details about
anomalies [8, 11, 12]. For instance, some anomalous nodes can appear to be
normal in the graph snapshot at each time stamp, only when the graph struc-
ture variations are considered, they can be detected. In the next section we
will provide the challenges for anomaly detection on dynamic graphs [1].

3.2 Challenges for Anomaly Detection on Dynamic
graphs

Although anomaly detection has been an important research area for several
years, there are still some unique and complex nature of anomalies which leads
to unsolved challenges. Anomaly detection is not trivial due to its flexible and
dynamic nature. Some anomalous operations display few explicit patterns but
try to hide them in a large graph, while other operations are with constant
patterns [13]. The core challenges for anomaly detection in dynamic graphs
are the following ones:

• Some graphs are evolving over time which leads to new types of anomalies,
for example, splitting, disappearing, or flickering communities [8].

• Graphs from many domains can exhibit entirely different behaviors over
time. This divergence in evolution leads to application and approaches for
specific anomalies [8].

• Some anomalies are slow to develop and span multiple time steps, thus it
can be difficult to differentiate from organic graph evolution [8].

• The relationships between real objects and their inter-dependencies can no
longer be treated individually for anomaly detection. The detection meth-
ods need to digest the deviating patterns of anomalies by considering the
pairwise, triadic, and higher relationships among objects restored in conven-
tional graphs [14, 15]. Moreover, the dynamic nature of real networks makes
the detection problem much more challenging when the graph structure and
attributes of nodes or edges change overtime [1].
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4 Anomaly Detection on Static Graphs

In this section we define two types of static graphs: plain static, and attribute
static graphs. We also define the methods used and the limitations of the three
approaches: graph analysis, graph embedding, and graph convolutional neural
networks in plain and attribute static graphs. Figure 1 shows how the methods
are categorized.

Fig. 1: Anomaly Detection methods applied on Static Graphs

4.1 Definitions

Plain Static Graph

A static plain graph G = {V,E} contains a node set V and an edge set E. In
a static plain graph, the graph structure consists of nodes V = {vi} and edges
E = {ei,j} where n expresses the number of nodes and ei,j = (vi, vj) denotes
an edge between nodes vi and vj . The n × n adjacency matrix A = [ai,j ]
restores the graph structure, where ai,j = 1 if there exists an edge between
nodes vi and vj , else ai,j = 0 [1].

Attribute Static Graph

A static attributed graph G = {V,E,X} contains a node set V , an edge set
E and an attribute set X. In an attributed graph, the graph structure follows
the previous definition. The n× k attribute matrix X = [xi] consists of nodes’
attribute vectors, where xi is the attribute vector associated with node vi and
k is the vector’s dimension [1].
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4.2 Anomaly detection on static graphs using Graph
Analysis

Existing graph analysis methods for anomaly detection are established from
machine learning models. The supervised learning methods learn the patterns
of abnormal events and fit the non-linear models. These methods are reason-
able for labeling the data as anomalies. The semi-supervised learning methods
apply less labeled data to meet the models and detect the abnormal events
on the unlabeled data. In general, these methods are constructed through an
auto-encoder. If the loss induced by a data point is greater than the threshold,
the data point is detected as an anomaly [16]. Normally these methods are
not capable of detecting the anomaly without untrained patterns [16]. In this
section we will divide the methods for anomaly detection using graph analysis
into plain graphs and attribute graphs as follows:

4.2.1 Methods for plain static graphs

Plain graphs are dedicated to represent the structural information in real-
world networks. For anomaly detection in plain graphs, the graph structure
has been broadly exploited from different angles. A main idea behind that is
to change the graph anomaly detection into a traditional anomaly detection
issue, because the graph data with strong structure information cannot be
handled by traditional detection methods. To bridge the gap, lots of works
[17–19] manage to leverage the statistical features associated with each node
such as in/out degree to detect anomalous nodes. For instance, OddBall [17]
employs the statistical features (e.g., the number of 1-hop neighbors and edges,
the total weight of edges) extracted from each node and its 1-hop neighbors
to detect special structural anomalies that: 1) form local structures in shape
of near-cliques or stars, 2) have heavy links with neighbors such that the total
weight is extremely large, or 3) have a single dominant heavy link with one of
the neighbors [1].

4.2.2 Limitations

When dealing with real word scenarios, it is very hard to choose the most
suitable features from many candidates, and domain experts can always design
new statistics, e.g., the maximum/minimum weight of edges. As a result, these
methods lead to excessive costs for assessing the most significant features and
cannot capture the structural information completely [1].

4.2.3 Methods for attribute static graphs

Apart from the structural information, real-world networks also contain afflu-
ent attribute information affiliated with nodes [20, 21]. These attributes
supply complementary information over real objects and together with graph
structure, more unseen anomalies that are non-trivial can now be discov-
ered. Traditional techniques (e.g., statistical models, matrix factorization,
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KNN) have been widely-applied to extract the structural/attribute patterns of
anomalous nodes, after which the detection is performed. Among them, matrix
factorization (MF) based techniques have shown power on capturing both the
topological structure and node attributes. They achieve promising detection
performance. For example, ALAD [22] measures the normality of each node
according to attribute similarity with the community it belongs to. By ranking
the nodes’ normality scores in ascending order, the top-k nodes are identified
as community anomalies. Linear regression models are also adopted to train
anomaly classifiers given the labeled training data [1]. A representative work
in [23] which is a supervised model, SGASD, that has yield encouraging results
on identifying social spammers utilizing the social network structure, content
information in social media and user labels [1].

4.2.4 Limitations

These graph analysis methods capture valuable information from the graph
topology and node attributes, but their applications and generalizability’s to
real networks in large-scale are strictly limited due to the high computational
cost of the matrix decomposition operation and regression models [1].

4.3 Anomaly detection on static graphs using graph
embedding

In this section we present an overview of graph embedding methods that are
used for anomaly detection on plain graphs.

4.3.1 Methods for plain static graphs

Graph embedding methods have been widely used to capture more valuable
information from the graph structure for anomaly detection. Typically, these
methods encode the graph structure into an embedded vector space and iden-
tify anomalous nodes through further analysis [1]. The first method of graph
embedding is DeepWalk [11]. DeepWalk transforms graph structure infor-
mation into sequences by random walk, and then Skip-Gram [24] is applied
on it for each node embedding. After the success of DeepWalk, more graph
embedding methods were designed. Node2vec [25] improves the random walk
strategies of DeepWalk by a controllable deep or wide walking possibility.
SDNE [26] introduces the Deep Auto-encoder model into graph embedding,
modeling the 1st-order and 2ND-order neighbors of nodes. Using the graph
embedding methods Skip gram, Node2vec, Deepwalk, both anomalous node
and edge detection tasks can be applied with standard anomaly detection
methods.

4.3.2 Limitations

Researchers easily use static graph embedding methods in every snapshot dur-
ing different time steps, with constraint to align the same nodes in discrete time
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steps. In this way, researchers claim that dynamic graph embedding methods
could obtain better representations than traditional static graph embedding,
since different snapshots share more characteristics for representation.

4.4 Anomaly detection on static graphs using graph
convolutional neural network

In this section we present an overview of graph convolutional neural network
methods that are used for anomaly detection on attribute graphs.

4.4.1 Methods for attribute static graphs

Graph convolutional neural networks (ConvGNNs) [27] have accomplished
decent success in many graph data mining tasks (e.g., link prediction, node
classification, and recommendation) owing to its capability of capturing com-
prehensive information in the graph structure and node attributes. Therefore,
many anomalous node detection techniques start to investigate ConvGNNs.
The proposed method, DOMINANT [28], comprises three parts, namely,
graph convolutional encoder, structure reconstruction decoder, and attribute
reconstruction decoder. The graph convolutional encoder generates node
embeddings through multiple graph convolutional layers. For the purpose of
capturing these signals, the proposed method, ALARM [29], applies multiple
ConvGNNs to encode information in different views and adopts a weighted
aggregation of them to generate node representations. The training strategy
of this model is similar to DOMINANT [28] and aims at minimizing network
reconstruction loss and attribute reconstruction loss. Lastly, ALARM adopts
the same scoring function as [29], and nodes with top-k highest scores are
anomalous. Instead of spotting unexpected nodes using their reconstruction
errors, SpecAE [30] is used to detect global anomalies and community anoma-
lies via a density estimation approach, Gaussian Mixture Model (GMM). The
global anomalies can be identified by only considering the node attributes.
For community anomalies, because of their distinctive attributes to the neigh-
bors, the structure and attributes need to be jointly considered. Accordingly,
SpecAE investigates a graph convolutional encoder to learn node representa-
tions and reconstruct the nodal attributes through a deconvolution decoder. In
Fdgars[31] they developed a novel detection model that can identify fraudsters
using their relations and features. This method firstly models online users’
reviews and visited items as their features, and then identifies a small portion
of significant fraudsters based on these features. In the last step, a ConvGNNs
is trained in a semi-supervised manner by using the user network, user features,
and labeled users. After training, the model can label unseen users directly.
A more recent work, GraphRfi [32], also explores the potential of combining
anomaly detection with other downstream graph analysis tasks. It targets on
leveraging anomaly detection to identify malicious users and to provide more
accurate recommendations to service benign users by alleviating the impact of
these untrustworthy users.
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4.4.2 Limitations

ConvGNNs has a simple convolution operation that aggregates neighbour
information equally to the target node. This helps ConvGNNs to provide an
effective solution to incorporate the graph structure with node attribute. How-
ever, ConvGNNs capability in capturing the most relevant information from
neighbors is unsatisfactory.

5 Anomaly Detection on Dynamic Graphs

The real-world networks can be modeled as dynamic graphs to represent
the evolving objects and relationships among them. In this section we define
dynamic graph and present the type of anomalies in dynamic graph. We also
present the methods used and the limitations of the three approaches: graph
analysis, graph embedding, and graph convolutional neural network according
to the different types of anomalies in dynamic graph.

5.1 Definitions

Dynamic Graphs

In dynamic graphs, vertices and edges can be inserted or removed at every
time step. For simplicity, we assume that the vertex correspondence and the
edge correspondence across different time steps are resolved because of unique
labeling of vertices and edges, respectively. We define a graph series G as an
ordered set of graphs with a fixed number of time steps. Formally, {Gt}Tt=1

where T is the total number of time steps, Gt = (Vt, Et ⊆ (Vt × Vt)), and
the vertex set Vt and edge set Et may be plain or attributed (labeled). Graph
series where T → ∞ are called graph streams [1].

Types of anomalies on dynamic graphs

In this section, we identify and formalize four types of anomalies that arise in
dynamic graphs.

1. Anomalous Vertices Anomalous vertex detection intends to find a sub-
set of the vertices such that every vertex in the subset has an ‘irregular’
evolution compared to the other vertices in the graph [8]. Alternatively,
the time points where the vertices are supposed to be anomalous can be
detected. Dynamic graphs allow the temporal dynamics of the vertex to
be involved, offering new types of anomalies that are not showed in static
graphs. Anomalous vertices is formally defined as follows:
Definition 1: Anomalous vertices (from [8]) Given G, the total vertex

set V =
⋃T

t=1 Vt, and a specified scoring function f : V → R, the set of

anomalous vertices V ′ ⊆ V is a vertex set such that ∀ v′ ∈ V ′, |f(v′)− f̂ | >
c0 , where f̂ is a summary statistic of the scores f(v),∀ v ∈ V .

2. Anomalous Edges Similar to vertex detection, edge detection aims to find
a subset of the edges such that every edge in the subset has an ‘irregular’
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evolution, optionally identifying the time points where they are abnor-
mal [8]. Again, this concept can be generalized by assuming each method
employs a function that maps each edge in the graph to a real number, low
values indicating unusual behaviour. A high-level definition of anomalous
edge detection can be defined as follows:
Definition 2: Anomalous edges (from [8]) Given G, the total edge set

E =
⋃T

t=1 Et, and a specified scoring function f : E → R, the set of anoma-

lous edges E′ ⊆ E is an edge set such that ∀ e′ ∈ E′, |f(e′)− f̂ | > c0, where

f̂ is a summary statistic of the scores f(e),∀ e ∈ E.
3. Anomalous Subgraphs Finding subgraphs with irregular behaviour

requires an approach different from the ones for anomalous vertices or
edges, as enumerating every possible subgraph in even a single graph is an
intractable problem [8]. We define the anomalous subgraphs as follows:
Definition 3: Anomalous subgraphs (from [8]) Given G, a subgraph
set H = UT

t=1Ht where Ht ⊆ Gt and a specified scoring function f :
H → R, the set of anomalous subgraphs H ⊆ H is a subgraph set such that
∀ h′ ∈ H ′, |f(h′) − f̂ | > c0, where f̂ is a summary statistic of the scores
f(h),∀ h ∈ H.

4. Event and Change Detection Event detection has attracted much inter-
est in the data mining community, and it has a much broader scope
compared to the previous three types of anomalies, aiming at identifying
time points that are significantly different from the rest [8]. Isolated points
in time where the graph is unlike the graphs at the previous and following
time points represent events.
Definition 4: Event detection (from [8]) Given G and a scoring func-
tion f : Gt → R, an event is defined as a time point t, such that
|f(Gt)−f(Gt−1)| > c0 and |f(Gt)−f(Gt+1)| > c0 . Now, we move on to the
problem of change detection, which is complementary to event detection.
It is important to note the distinction between event and change detection.
While events represent isolated incidents, change points mark a point in
time where the entire behaviour of the graph changes and the difference is
maintained until the next change point [8].
Definition 5: Change detection (from [8]) Given G and a scoring
function f : Gt → R, a change is defined as a time point t, such that
|f(Gt)− f(Gt−1)| > c0 and |f(Gt)− f(Gt+1)| ⩽ c0.

5.2 Anomaly detection on dynamic graphs using Graph
Analysis

In this section we present an overview of graph analysis methods that are
used for anomaly detection on dynamic graphs. These methods are divided
according to three types of approaches: Vertex detection, subgraph detection,
and change detection. Figure 2 shows how the methods are categorized. In
addition, we present the limitations of these methods.
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Fig. 2: Anomaly Detection methods applied on Dynamic Graphs

5.2.1 Methods for Vertex Detection

In [33] they proposed Incremental Local Evolutionary Outlier Detection
(IcLEOD) method which illustrate that” group of vertices that belong to the
same community are expected to exhibit similar behaviour. Probably this
means that if at consecutive time steps one vertex in the community has a
huge number of new edges added, the other vertices in the community would
also have a huge number of new edges” [8]. If the remaining vertices in the
community did not have new edges inserted, the vertex that did is detected
as anomalous [34–37]. More regularly,” a vertex’s corenet consists of itself and
all the vertices within two hops that have a weighted path above a threshold
value” [8].” If the edge weight between two vertices is considered the strength
of their connection, then intuitively the vertices connected with higher weight
edges should be considered as a part of the same community” [8].” Conse-
quently, if a vertex has two neighbors removed, one connected with a high edge
weight and the other connected with a low edge weight, then the removal of the
vertex connected by the higher edge weight should have more impact” [8].” At
each time step, every vertex is first given an outlier score based on the change
in its corenet, and the top-k outlier scores are then declared anomalous” [8].

5.2.2 Methods for Subgraph Detection

” Conversely, instead of finding changes, communities that are conserved, or
stable, can be identified. Constructing multiple graphs at each time step based
on different information sources, communities can be conserved across time
and graphs” [8]. Graphs that act closely can be combined using clustering
or prior knowledge. In [38]” the extreme events-related communities (EERC)
method proposes that if a community is conserved across time steps and the
graphs within its group, but has no corresponding community in any other
group of graphs, then the community is defined as anomalous; two communities



Springer Nature 2021 LATEX template

AD on static and dynamic graphs using ConvGNN 13

are considered corresponding communities if they have a certain percentage of
their vertices in common”. Unlike [38–40] that consider only the structure of
the graph, in social network there is often more knowledge available. A cluster
that has an evolution event is considered as an anomalous subgraph once the
evolution event occurs [8].

5.2.3 Methods for Change Detection

Changes are detected by partitioning the streaming graphs into coherent seg-
ments based on the similarity of their partitioning (communities) [8]. The
start of each segment shows a detected change. The segments are found online
by comparing the vertex partitioning of the newest graph to the partitioning
found for the graphs in the current growing segment [8]. Vertex partitioning
can be achieved with many methods, but in [36] they propose” the community
mining including community discovery and change-point detection on dynamic
weighted directed graphs (DWDG) that is achieved using the relevance matrix
computed by random walks with restarts and modularity maximization”.
When the partitioning of the new graph is much different from the current seg-
ment’s, a new segment begins, and the time point for the new graph is marked
as a detected change [8]. The similarity of two partitions is computed as their
Jaccard coefficient, and the similarity of two partitioning is the normalized
sum of their partition similarities [8].

5.2.4 Limitations

The main problem here is that vertices and edges are changing along the time
dimension, and we need to capture the dependency between different graphs
along the time dimension [5].

5.3 Anomaly detection on dynamic graphs using graph
embedding

In this section we present an overview of graph embedding methods that are
used for anomaly detection on dynamic graphs. These methods are divided
according to two types of anomalies vertex detection, and edge detection. In
addition, we present the limitations of these methods.

5.3.1 Methods for Vertex Detection

Following the analysis of encoding graph into an embedding space, after which
anomaly detection is applied, dynamic graph representation methods have
been studied in the more recent works. TIMERS [41] proposes an incremental
Singular Value Decomposition (SVD) model for dynamic embedding, which
only needs SVD at beginning, and incrementally updates them according to
graph change. DNE [42] proposes a dynamic version of LINE, with only a
few gradient descent process to update the representation of current graph.
DANE [43] proposes a graph embedding method in dynamic environment
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which updates the node embedding based on the change in the adjacency
matrix as well as in the attribute matrix via matrix perturbation. DyRep [44]
ingests dynamic graph information in the form of association and communica-
tion events over time and updates the node representations as they appear in
these events. DynWalks [45] incorporates the temporal information with tra-
ditional DeepWalk to capture the evolving properties in dynamic graphs. It
updates nodes embeddings by sampling new walks which is highly related to
the changes of graph [46]. Specifically, [47] introduces a flexible deep repre-
sentation technique, NetWalk, to detect anomalous nodes in dynamic graphs
using only the structure information [47]. It adopts an auto-encoder to learn
node representations on the initial graph and incrementally updates them
when new edges are added, or existing edges are deleted. For anomaly detec-
tion, NetWalk first adopts the streaming k-means clustering algorithm [48] to
group existing nodes in the current time stamp into different clusters. Then,
the anomaly score of each node is measured as its closest distance to the k
clusters [48]. When node representations are updated, the cluster centers and
anomaly scores are re-calculated accordingly.

5.3.2 Methods for Edge Detection

The intuition of graph representation-based techniques is to encode the
dynamic graph structure information into edge representations and apply
the traditional anomaly detection techniques to spot irregular edges. This is
quite straightforward, but there remain vital challenges in generating/updat-
ing informative edge representations when the graph structure evolves. To
mitigate this challenge, NetWalk [47] is also capable of detecting anomalous
edges in dynamic graphs. Following the line of distance based anomaly detec-
tion, NetWalk encodes edges into a shared latent space using node embeddings
and then detect anomalies based on their distances to the nearest edge-cluster
centers in the latent space. When new edges arrive or existing edges disappear,
the node and edge representations will be updated based on random walks in
the temporary graphs at each time stamp, after which the edge-cluster cen-
ters and edge anomaly scores are re-calculated [47]. Finally, the top-k farthest
edges to edge-clusters are reported as anomalies.

5.3.3 Limitations

Although NetWalk can detect anomalies in dynamic graphs, it simply updates
edge representations without considering the long/short-term node and graph
structure evolving patterns. NetWalk [47] approach the anomalous node detec-
tion problem promisingly, but they respectively only study the structure or
attributes. Considering the graph embedding problem in a dynamic manner
is more corresponding to the real-world applications. More information could
be collected when we study the dynamic features of graph. Although some
research on dynamic graph embedding have been proposed they mainly focus
on mining the pattern of graph involvement, they still ignore the efficiency
issue. Most of these works perform traditional static graph embedding in each
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snapshot of a dynamic graph, and then consider adding constraint or interac-
tions between different snapshots [46]. Their methods consequently get better
performance than previous static methods. However, generating new repre-
sentation at each time is costly, since most traditional node representation
methods are supposed to learn the embedding parameters by optimization pro-
cess (e.g., gradient descent or matrix factorization). Repeating this progress
at each time step brings about high complexity [46].

5.4 Anomaly detection on dynamic graphs using graph
convolutional neural network

In this section we present an overview of graph convolutional neural graph
methods that are used for anomaly detection on dynamic graphs. Graph neu-
ral graphs have been applied to perform reasoning on the dynamics of physical
systems. Graph convolutional neural networks, which extend the convolutional
neural networks to graph structure data, have been shown to improve the
performance of graph classification and vertex level semi-supervised classifica-
tion. A general framework for graph neural networks is proposed in [8]. The
dynamic information has been proven to boost a variety of graph analyti-
cal tasks such as community detection, link prediction and graph embedding.
Therefore, it has strong potential to advance graph neural networks by consid-
ering the dynamic nature of graphs, which calls for dedicated efforts [8]. These
methods are divided according to two types of anomalies: vertex detection and
edge detection. In addition, we present the limitations of these methods.

5.4.1 Methods for Vertex Detection

Generative adversarial networks (GAN) [49] have received extensive attention
because of their impressive performance in capturing real data distribution
and generating simulated data. In [50], they circumvented the fraudster detec-
tion problem using only the observed benign users’ attributes. The basic idea
is to seize the normal activity patterns and detect anomalies which behave
in a significant different manner. The proposed method, OCAN [50], starts
with the extraction of benign users’ content features using their historical
social behaviors (e.g., historical posts, posts’ URL), for which this method is
classified into the dynamic category. Dynamic Graph Convolutional Network
(DyGCN) [46], which is an extension of ConvGNNs-based methods. They nat-
urally generalize the embedding propagation scheme of ConvGNNs to dynamic
setting in an efficient manner, which is to propagate the change along the
graph to update node embeddings. The most affected nodes are first updated,
and then their changes are propagated to the next nodes and lead to their
update. Extensive experiments conducted on various dynamic graphs demon-
strate that their model can update the node embeddings in a time-saving and
performance-preserving way [46]. The dynamic graph prediction task is differ-
ent from dynamic graph embedding, but there are still some similarities. Graph
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convolutional recurrent network (GCRN) [51] uses a Graph Convolutional Net-
works (ConvGNNs) to learn node embedding and feed it into the LSTM to
learn dynamism. WD-ConvGNNs/CD-ConvGNNs [52] modifies the LSTM by
incorporating it with ConvGNNs. Spatio-temporal Graph Convolutional Net-
work (STGCN) [53] proposes a so-called ST-Conv blocks, which requires that
the node features must be evolving over time. EvolveGCN [54] utilizes recur-
rent neural network (RNN) to evolve the ConvGNNs parameters, instead of
the node embedding [46]. Spectral DyGCN [46] further upgrade the high-order
mechanism above with acceptable time consumption. The high-order update
mechanism ignores the global propagation of changing nodes. The changing
information of 1-order nodes could not be propagated to all the nodes, which
inevitably brings about the loss of accuracy.

5.4.2 Methods for Edge Detection

ConvGNNs can capture the structural information in edge detection. In AANE
method [55] the authors demonstrate that the existence of anomalous edges in
the training data prevents traditional ConvGNNs based models from captur-
ing the real edge distribution, leading to sub-optimal detection performance.
AANE solved the problem of detecting performance, by alleviating the nega-
tive impact of anomalous edges using the learned embeddings. AANE method
iteratively updates the embeddings and detection results during training. In
each training iteration, AANE generates node embeddings Z through Con-
vGNNs layers and learns an indicator matrix I to spot potential anomalous
edges. AANE spots the top-k edges with lowest probabilities as anomalies [55].
Thus, an edge uv is identified as anomalous when its predicted probability
is less than the average of all links associated with the node u by a prede-
fined threshold. An alternative semi-supervised model, AddGraph, comprises
a ConvGNNs and Gated Recurrent Units (GRU) with attention to capture
more representative structural information from the temporal graph in each
time stamp and the dependencies between them, respectively [13]. The hid-
den state of the nodes at each timestamp are used to calculate the anomalous
probabilities of an existing edge and a negative sampled edge, and then feed
them to a margin loss.

5.4.3 Methods for Subgraph Detection

In this section, we introduce a method for subgraph detection. Previous graph
embedding based techniques have been frequently interesting on learning good
node representations, whereas highly ignoring the sub-graph structural mod-
ifications related to the spot nodes in dynamic graphs. StrGNN [56] is an
end-to-end structural temporal Graph Neural Network model for detecting
anomalous edges in dynamic graphs. In precise, they first extract the hop
enclosing subgraph centered on the spot edge and introduce the node labeling
function to describe the role of each node in the [56]. Afterward, they drag
graph convolution operation and sort pooling layer to extract the fixed-size
feature from every snapshot/timestamp.
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6 Open Challenges

Detecting anomalies using graph convolutional neural network is an important
research direction, which leverages multi-source, multi-view features extracted
from both content and structure for anomaly sample analysis and detection. It
plays an important role in cyber security, but it still needs a lot of effort in the
field due to the multiple issues from data, model and task. The future works
are mainly lying in three perspectives: dynamic graphs, anomaly detection and
graph machine learning.

Firstly, from dynamic graph learning perspective, there are two chal-
lenges [1]: Challenge 1 is the lack of raw attribute information on most
dynamic graphs. Due to the explosive demand for data volume of time-
evolving attributes or the inaccessible attribute evolved by privacy problem, it
is difficult to construct attribute information to describe each node from the
mainstream raw dynamic graph datasets. This leads to the need for an effec-
tive encoding method to represent evolving nodes. Challenge 2 is the difficulty
of learning discriminative information from dynamic graphs where structural
knowledge and temporal knowledge are coupled [1]. The idea is that both struc-
tural and temporal factors should be considered simultaneously when making
the agreement, which raises a challenge in learning such coupled information.

Secondly, from an anomaly analysis perspective, there are still a lot of
research questions [2]. How to define and identify the anomalies in the graph in
the different tasks? How to effectively convert the large-scale raw data to the
graph? How to effectively leverage the attributes? How to model the dynamic
during the graph construction? How to keep the heterogeneity during the graph
construction? Recently, due to data-specific and task-specific issues, the appli-
cations of GNN-based anomaly detection are still limited. There is still a lot
of potential scenarios that can be applied.

Finally, from a graph machine learning perspective, lots of issues need to be
addressed [2]. How to model the graph? How to represent the graph? How to
leverage the context? How to fuse the content and structure features? Which
part of the structure to capture, local or global? How to provide the model
explainability? How to protect the model from adversarial attacks? How to
overcome the time-space scalability bottleneck. Recently, lots of contributions
have been made from the machine learning perspective. However, due to the
unique characteristics of the anomaly detection problem, which GNNs to use
and how to apply GNNs are still critical questions. Further work will also
benefit from the new findings and new models in the graph machine learning
community.

7 Conclusion

Due to the complex relationships between real-world objects and recent
approaches for analyzing graph (especially graph convolutional neural net-
works), graph anomaly detection with deep learning is currently at the
forefront of anomaly detection. In this chapter we review the methods for
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graph anomaly detection with modern deep learning approaches. We divided
these approaches between graph analysis, graph embedding and graph con-
volutional neural network. These approaches can be applied on static and
dynamic graphs. For detecting anomalies on static graphs, we present graph
analysis, graph embedding and graph convolutional neural network on plain
static graphs and attribute static graphs. For detecting anomalies on dynamic
graphs, we present graph analysis, graph embedding and graph convolutional
neural network according to the types of graph anomalies they can detect as:
(1) anomalous vertex detection; (2) anomalous edge detection; (3) anomalous
subgraph detection and finally, (4) anomalous event and change detection.
Clear summarizations and comparisons between different works are given, pro-
viding a complete and thorough picture of current work and the progress of
graph anomaly detection as a field. Moreover, to push forward future research
in this area, we provide open challenges for anomaly detection on dynamic
graphs using graph neural networks.
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