
Symbolic Model Checking of Stutter-invariant
Properties Using Generalized Testing Automata

A.-E. Ben Salem1,2,3, A. Duret-Lutz1, F. Kordon2,3, and Y. Thierry-Mieg2,3

1 LRDE, EPITA, Le Kremlin-Bicêtre, France
ala@lrde.epita.fr, adl@lrde.epita.fr

2 Sorbonne Universités, UPMC Univ. Paris 06,
UMR 7606, LIP6, F-75005, Paris, France

Fabrice.Kordon@lip6.fr, Yann.Thierry-Mieg@lip6.fr
3 CNRS, UMR 7606, LIP6, F-75005, Paris, France

Abstract. In a previous work, we showed that a kind of ω-automata known
as Transition-based Generalized Testing Automata (TGTA) can outperform the
Büchi automata traditionally used for explicit model checking when verifying
stutter-invariant properties.
In this work, we investigate the use of these generalized testing automata to im-
prove symbolic model checking of stutter-invariant LTL properties. We propose
an efficient symbolic encoding of stuttering transitions in the product between a
model and a TGTA. Saturation techniques available for decision diagrams then
benefit from the presence of stuttering self-loops on all states of TGTA. Exper-
imentation of this approach confirms that it outperforms the symbolic approach
based on (transition-based) Generalized Büchi Automata.

1 Introduction

Model checking for Linear-time Temporal Logic (LTL) is usually based on converting
the negation of the property to check into an ω-automaton B , composing that automa-
ton with a model M given as a Kripke structure, and finally checking the language
emptiness of the resulting product B⊗M [21].

One way to implement this procedure is the explicit approach where B and M
are represented as explicit graphs. B is usually a Büchi automaton or a generalization
using multiple acceptance sets. We use Transition-based Generalized Büchi Automata
(TGBA) for their conciseness. When the property to verify is stutter-invariant [8], test-
ing automata [13] should be preferred to Büchi automata. Instead of observing the
values of state propositions in the system, testing automata observe the changes of
these values, making them suitable to represent stutter-invariant properties. In previ-
ous work [1], we showed how to generalize testing automata using several acceptance
sets, and allowing a more efficient emptiness check. Our comparison showed these
Transition-based Generalized Testing Automata (TGTA) to be superior to TGBA for
model-checking of stutter-invariant properties.

Another implementation of this procedure is the symbolic approach where the au-
tomata and their products are represented by means of decision diagrams (a concise way



to represent large sets or relations) [3]. Symbolic encodings for generalized Büchi au-
tomata are pretty common [17]. With such encodings, we can compute, in one step, the
sets of all direct successors (PostImage) or predecessors (PreImage) of any set of states.
Using this technique, there have been a lot of propositions for symbolic emptiness-
check algorithms [9, 19, 14]. These symbolic algorithms manipulate fixpoints on the
transition relation which can be optimized using saturation techniques [4, 20].

However these approaches do not offer any reduction when verifying stutter-invariant
properties. So far, and to the best of our knowledge, testing automata have never been
used in symbolic model checking. Our goal is therefore to propose a symbolic approach
for model checking using TGTA, and compare it to the symbolic approach using TGBA.
In particular, we show that the computation of fixpoints on the transition relation of the
product can be sped up with a dedicated evaluation of stuttering transitions. We exploit
a separation of the transition relation into two terms, one of which greatly benefits from
saturation techniques.

This paper is organized as follows. Section 2 presents the symbolic model-checking
approach for TGBA. For generality we define our symbolic structures using predicates
over state variables in order to remain independent of the decision diagrams used to
actually implement the approach. Section 3 focuses on the encoding of TGTA in the
same framework. We first show how a TGTA can be encoded, then we show how to im-
prove the encoding of the Kripke structure and the product to benefit from saturation in
the encoding of stuttering transitions in the TGTA. Finally, Section 4 compares the two
approaches experimentally with an implementation that uses hierarchical Set Decision
Diagrams (SDD) [20] (a particular type of Decision Diagrams on integer variables, on
which we can apply user-defined operations). On our large, BEEM-based benchmark,
our symbolic encoding of TGTA appears to to be superior to TGBA.

2 Symbolic LTL Model Checking using TGBA

We first recall how to perform the automata-theoretic approach to LTL model checking
using symbolic encodings of TGBA and Kripke structures. This setup will serve as a
baseline to measure our improvements from later sections.

Through the paper, let AP designate the finite set of atomic propositions of the
model. Any state of the model is labeled by a valuation of these atomic propositions.
Let Σ = 2AP denote the set of these valuations, which we interpret either as sets or as
Boolean conjunctions. For instance if AP = {a,b}, then Σ = 2AP = {{a,b},{a},{b}, /0}
or equivalently Σ = {ab,ab̄, āb, āb̄}. An execution of the model is an infinite sequence
of such valuations, i.e., an element of Σω.

2.1 Kripke Structures and their Symbolic Encoding

The executions of the model can be represented by a Kripke structure M .

Definition 1 (Kripke Structure) A Kripke structure over Σ is a tuple M = 〈S,S0,R,L〉,
where:

– S is a finite set of states,

2



– S0 ⊆ S is the set of initial states,
– R⊆ S×S is the transition relation,
– L : S→ Σ is a state-labeling function.

An execution w = `0`1`2 . . . ∈ Σω is accepted by M if there exists an infinite sequence
s0,s1, . . .∈ Sω such that s0 ∈ S0 and ∀i∈N, (L(si) = `i)∧((si,si+1)∈ R). The language
accepted by M is the set L (M )⊆ Σω of executions it accepts.

In symbolic model checking we encode such a structure with predicates that rep-
resent sets of states or transitions [18]. These predicates are then implemented using
decision diagrams [3].

Definition 2 (Symbolic Kripke Structure) A Kripke structure M = 〈S,S0,R,L〉 can
be encoded by the following predicates where s,s′ ∈ S and ` ∈ Σ:

– PS0(s) is true iff s ∈ S0,
– PR(s,s′) is true iff (s,s′) ∈ R,
– PL(s, `) is true iff L(s) = `.

In the sequel, we use the notations S0(s), R(s,s′) and L(s, `) instead of PS0(s), PR(s,s′)
and PL(s, `). A Symbolic Kripke structure is therefore a triplet of predicates K = 〈S0,R,L〉
on state variables.

Variables s and s′ used above are typically implemented using decision diagrams
to represent either a state or a set of states. In a typical encoding [3], states are rep-
resented by conjunctions of Boolean variables. For instance if S = {0,1}3, a state
s = (1,0,1) would be encoded as s1s̄2s3. Similarly, s1s3 would encode the set of states
{(1,0,1),(1,1,1)}. With this encoding, S0, R and L are propositional formulae which
can be implemented with BDDs or other kind of decision diagrams. In our implemen-
tation, we used SDDs on integer variables [20].

2.2 TGBA and their Symbolic Encoding

Transition-based Generalized Büchi Automata (TGBA) [11] are a generalization of the
Büchi Automata (BA) commonly used for model checking. In our context, the TGBA
represents the negation of the LTL property to verify. We chose to use TGBA rather
than BA since they allow a more compact representation of properties [7].

Definition 3 (TGBA) A TGBA over the alphabet Σ = 2AP is a tuple B = 〈Q,Q0,δ,F〉
where:

– Q is a finite set of states,
– Q0 ⊆ Q is a set of initial states,
– δ ⊆ Q×Σ×Q is a transition relation, where each element (q, `,q′) represents a

transition from state q to state q′ labeled by the valuation `,
– F ⊆ 2δ is a set of acceptance sets of transitions.

B accepts an execution `0`1 . . .∈ Σω if there exists an infinite path (q0, `0,q1)(q1, `1,q2)
. . . ∈ δω that visits each acceptance set infinitely often: q0 ∈ Q0 and ∀ f ∈ F, ∀i ∈
N, ∃ j ≥ i, (q j, ` j,q j+1) ∈ f .
The language accepted by B is the set L (B)⊆ Σω of the executions it accepts.

3



We target TGBA in this paper because their use of generalized and transition-based
acceptance make them more concise than traditional Büchi automata [11]. Generalized
acceptance is classically used in symbolic model checking [9] and using transition-
based acceptance is not a problem [17]. People working with (classical) Büchi automata
can adjust to our definitions by “pushing” the acceptance of states to their outgoing
transitions [7].

Any LTL formula ϕ can be converted into a TGBA whose language is the set of
executions that satisfy ϕ [7]. Figure 1(a) shows a TGBA derived from the LTL formula
FGa. The Boolean expression over AP = {a} that labels each transition represents
the valuation of atomic propositions that hold in this transition (in this example, Σ =
{a, ā}). Any infinite path in this example is accepted if it visits infinitely often the only
acceptance set containing transition (1,a,1).

Like Kripke structures, TGBAs can be encoded by predicates [18] on state variables.

Definition 4 (Symbolic TGBA) A TGBA 〈Q,Q0,δ,F〉 is symbolically encoded by a
triplet of predicates 〈Q0,∆,{∆ f } f∈F〉 where:

– Q0(q) is true iff q ∈ Q0,
– ∆(q, `,q′) is true iff (q, `,q′) ∈ δ,
– ∀ f ∈ F, ∆ f (q, `,q′) is true iff (q, `,q′) ∈ f .

2.3 Symbolic Product of a TGBA with a Kripke structure

We now show how to build a synchronous product by composing the symbolic repre-
sentations of a TGBA with that of a Kripke structure, inspired from Sebastian et al. [18].

Definition 5 (Symbolic Product for TGBA) Given a Symbolic Kripke structure K =
〈S0,R,L〉 and a Symbolic TGBA A = 〈Q0,∆,{∆ f } f∈F〉 sharing a set AP of atomic
propositions, the Symbolic Product K⊗A = 〈P0,T,{Tf } f∈F〉 is defined by the predi-
cates P0, T and Tf encoding respectively the set of initial states, the transition relation
and the acceptance transitions of the product:

– (s,q) denotes the state variables of the product (s for the Kripke structure and q for
TGBA),

– P0(s,q) = S0(s)∧Q0(q),
– T ((s,q),(s′,q′)) = ∃`

[
R(s,s′)∧L(s, `)∧∆(q, `,q′)

]
, where (s′,q′) encodes the next

state variables,

0 1

a

ā

a

a

(a) TGBA

0

a

1

ā

2

a

¬a

/0 /0 /0

{a}

{a}

{a}

(b) TGTA

Fig. 1. TGBA and TGTA for the LTL property ϕ = FGa. Acceptance transitions are
indicated by .

4



– ∀ f ∈ F, Tf ((s,q),(s′,q′)) = ∃`
[
R(s,s′)∧L(s, `)∧∆ f (q, `,q′)

]
.

The labels ` are used to ensure that a transition (q, `,q′) of A is synchronized with a
state s of K such that L(s, `). This way, we ensure that the product recognizes only the
executions of K that are also recognized by A. However we do not need to remember
how product transitions are labeled to check K⊗A for emptiness. A product can be seen
as a TGBA without labels on transitions.

In symbolic model checkers, the exploration of the product is based on the following
PostImage operation [18]. For any set of states encoded by a predicate P, PostImage(P)
(s′,q′) = ∃(s,q)

[
P(s,q)∧T ((s,q),(s′,q′))

]
returns a predicate representing the set of

states reachable in one step a state in P.
Because in TGBA the acceptance conditions are based on transitions, we also define

PostImage(P, f ) to computes the successors of P reached using only transitions from an
acceptance set f ∈ F : PostImage(P, f )(s′,q′) = ∃(s,q)

[
P(s,q)∧Tf ((s,q),(s′,q′))

]
.

These two operations are at the heart of the symbolic emptiness check presented in
the next section.

2.4 Symbolic Emptiness Check

One way to check if a product is not empty is to find a reachable Strongly Connected
Component that contains transitions from all acceptance sets (we call it an accepting
SCC). Figure 2 shows such an algorithm implemented using symbolic operations. It
mimics the algorithm FEASIBLE of Kesten et al. [14] and can be seen as a forward vari-
ant of OWCTY (One Way Catch Them Young [9]) that uses PostImage computations
instead of PreImage. Line 3 computes the set P of all reachable states of the product.
The main loop on lines 4–8 refines P at each iteration. Lines 5–6 keep only the states
of P that can be reached from a cycle in P. Lines 7–8 then remove all cycles that never
visit some acceptance set f ∈ F . Eventually the main loop will reach a fixpoint where
P contains all states that are reachable from an accepting SCC. The product is empty iff
that set is empty.

There are many variants of such symbolic emptiness checks. We selected this variant
mainly for its simplicity, as our contributions are mostly independent of the chosen
algorithm: essentially, we will improve the cost of computing Reach(P) (used lines 3
and 8).

1 Input: PostImage, P0 and F
2 begin
3 P← Reach(P0)
4 while P changes do
5 while P changes do
6 P← PostImage(P)
7 for f in F do
8 P← Reach(PostImage(P, f))
9 return P = /0

1 Reach(P)
2 while P changes do
3 P← P ∪ PostImage(P)
4 return P

Fig. 2. Forward-variant of OWCTY, a symbolic emptiness check.

5



3 Symbolic Approach Using TGTA

Testing automata [10] are a kind of automata that recognize only stutter-invariant prop-
erties. In previous work [1] we generalized them as Transition-based Generalized Test-
ing Automata (TGTA). In this section, we show how to encode a TGTA for symbolic
model checking.

Definition 6 A property, i.e., a set of infinite sequences P ⊆ Σω, is stutter-invariant iff
any sequence `0`1`2 . . . ∈ P remains in P after repeating any valuation `i or omitting
duplicate valuations. Formally, P is stutter-invariant iff `0`1`2 . . .∈P ⇐⇒ `

i0
0 `

i1
1 `

i2
2 . . .∈

P for any i0 > 0, i1 > 0 . . .

Theorem 1 An LTL property is stutter-invariant iff it can be expressed as an LTL for-
mula that does not use the X operator [16].

3.1 Transition-based Generalized Testing Automata

While a TGBA observes the value of the atomic propositions AP, a TGTA observes the
changes in these values. If a valuation of AP does not change between two consecutive
valuations of an execution, we say that a TGTA executes a stuttering transition.

If A and B are two valuations, A⊕B denotes the symmetric set difference, i.e., the
set of atomic propositions that differ (e.g., ab̄⊕ab = {a}⊕{a,b}= {b}). Technically,
this can be implemented with an XOR operation on bitsets (hence the symbol ⊕).

Definition 7 A TGTA over the alphabet Σ is a tuple T = 〈Q,Q0,U,δ,F〉 where:
– Q is a finite set of states,
– Q0 ⊆ Q is a set of initial states,
– U : Q0→ 2Σ is a function mapping each initial state to a set of symbols of Σ,
– δ ⊆ Q×Σ×Q is the transition relation, where each element (q,c,q′) represents a

transition from state q to state q′ labeled by a changeset c interpreted as a (possibly
empty) set of atomic propositions whose value must change between q and q′,

– F ⊆ 2δ is a set of acceptance sets of transitions,
and such that all stuttering transitions (i.e., transitions labeled by /0) are self-loops
and every state has a stuttering self-loop. More formally, we can define a partition of
δ = δ /0∪δ∗ where:

– δ /0 = {(q, /0,q) | q ∈ Q} is the stuttering transition relation,
– δ∗ = {(q, `,q′) ∈ δ | ` 6= /0} is the non-stuttering transition relation.

An execution `0`1`2 . . . ∈ Σω is accepted by T if there exists an infinite path (q0, `0⊕
`1,q1)(q1, `1⊕ `2,q2)(q2, `2⊕ `3,q3) . . . ∈ δω where:

– q0 ∈ Q0 with `0 ∈U(q0) (the execution is recognized by the path),
– ∀ f ∈ F, ∀i ∈N, ∃ j ≥ i, (q j, ` j⊕ ` j+1,q j+1) ∈ f (each acceptance set is visited in-

finitely often).
The language accepted by T is the set L (T )⊆ Σω of executions it accepts.

Figure 1(b) shows a TGTA recognizing the LTL formula FGa. Acceptance sets are
represented using dots as in TGBAs. Transitions are labeled by changesets: e.g., the

6



transition (0,{a},1) means that the value of a changes between states 0 and 1. Initial
valuations are shown above initial arrows: U(0) = {a}, U(1) = {ā} and U(2) = {a}. As

an illustration, the execution ā;a;a;a; . . . is accepted by the run 1 2 2 2 . . .{a} /0 /0

because the value a only changes between the first two steps.

Theorem 2 Any stuttering invariant property can be translated into an equivalent TGTA [1].

Note that Def. 7 differs from our previous work [1] because we now enforce a par-
tition of δ such that stuttering transitions can only be self-loops. However, the TGTA
resulting from the LTL translation we presented previously [1] already have this prop-
erty. We will use it to optimize symbolic computation in section 3.3.

Finally, a TGTA’s symbolic encoding is similar to that of a TGBA.

Definition 8 (Symbolic TGTA) A TGTA T = 〈Q,Q0,U,δ,F〉 is symbolically encoded
by a triplet of predicates 〈U0,∆

⊕,{∆⊕f } f∈F〉 where:
– U0(q, `) is true iff (q ∈ Q0)∧ (U(q) = `)
– ∆⊕(q,c,q′) is true iff (q,c,q′) ∈ δ

– ∀ f ∈ F, ∆
⊕
f (q,c,q

′) is true iff ((q,c,q′) ∈ f )

3.2 Symbolic Product of a TGTA with a Kripke structure

The product between a TGTA and a Kripke structure is similar to the TGBA case, except
that we have to deal with changesets. The transitions (s,s′) of a Kripke structure that
must be synchronized with a transition (q,c,q′) of a TGTA, are all the transitions such
that the label of s and s′ differs by the changeset c.

In order to reduce the number of symbolic operations when computing the Symbolic
product of a TGTA with a Kripke structure, we introduce a changeset-based encoding
of Kripke structure (only the transition relation changes).

Definition 9 (Changeset-based symbolic Kripke structure) A Kripke structure M =
〈S,S0,R,L〉, can be encoded by the changeset-based symbolic Kripke structure K⊕ =
〈S0,R⊕,L〉, where:

– the predicate R⊕(s,c,s′) is true iff ((s,s′) ∈ R∧ (L(s)⊕L(s′)) = c),
– the predicates S0 and L have the same definition as for a Symbolic Kripke structure

K (Def. 2).

In practice, the (changeset-based or not) symbolic transition relation of the Kripke
structure should be constructed directly from the model and atomic propositions of the
formula to check. In Section 4.2, we discuss how we build such changeset-based Kripke
structures in our setup.

The procedure requires reconstruction of the symbolic transition relation for each
formula (or at least for each set of atomic propositions used in the formulas). However
the cost of this construction is not significant with respect to the complexity of the
overall model checking procedure (overall on our benchmark, less than 0.16% percent
of total time was spent building these transition relations).

Adjusting the symbolic encoding of the Kripke structure to TGTA, allows us to
obtain the following natural definition of the symbolic product using TGTA:

7



Definition 10 (Symbolic Product for TGTA) Given a changeset-based Symbolic Kri-
pke structure K⊕ = 〈S0,R,L〉 and a Symbolic TGTA A⊕ = 〈U0,∆

⊕,{∆⊕f } f∈F〉 sharing
the same set of atomic propositions AP, the Symbolic Product K⊕⊗A⊕= 〈P0,T,{Tf } f∈F〉
is defined by the following predicates:

– The set of initial states is encoded by: P0(s,q) = ∃`
[
S0(s)∧L(s, `)∧U0(q, `)

]
– The transition relation of the product is:

T ((s,q),(s′,q′)) = ∃c
[
R⊕(s,c,s′)∧∆⊕ (q,c,q′)

]
– The definition of Tf is similar to T by replacing ∆⊕ with ∆

⊕
f .

The definitions of PostImage(P) and PostImage(P, f ) are the same as in the TGBA
approach, with the new expressions of T and Tf above.

As for the product in TGBA approach, the product in TGTA approach is a TGBA
(or a TGTA) without labels on transitions, and the same emptiness check algorithm
(Fig. 2) can be used for the two products.

3.3 Exploiting Stuttering Transitions to Improve Saturation in the TGTA
Approach

Among symbolic approaches for evaluating a fixpoint on a transition relation, the sat-
uration algorithm offers gains of one to three orders of magnitude [4] in both time and
memory, especially when applied to asynchronous systems [5].

The saturation algorithm does not use a breadth-first exploration of the product (i.e.,
each iteration in the function Reach (Fig. 2) is not a “global" PostImage() computation).
Saturation instead recursively repeats “local” fixed-points by recognizing and exploiting
transitions locality and identity transformations on state variables [5].

This algorithm considers that the system state consists of k discrete variables en-
coded by a Decision Diagram, and that the transition relation is expressed as a dis-
junction of terms called transition clusters. Each cluster typically only reads or writes
a limited subset consisting of k′ ≤ k variables, called the support of the cluster. Dur-
ing the least fixpoint computing the reachable states, saturation technique consists in
reordering [12] the evaluation of (“local” fixed-points on) clusters in order to avoid the
construction of (useless) intermediate Decision Diagram nodes.

The algorithm to determine an ordering for saturation is based on the support of
each cluster.

We now show how to decompose the transition relation of the product K⊕⊗A⊕ to
exhibit clusters having a smaller support, favoring the saturation technique.

We base our decomposition on the fact that in a TGTA, all stuttering transitions are
self-loops and every state has a stuttering self-loop (δ /0 in Def. 7). Therefore, stuttering
transitions in the Kripke structure can be mapped to stuttering transitions in the product
regardless of the TGTA state.

Let us separate stuttering and non-stuttering transitions in the transition relation T
of the product between a Kripke structure and a TGTA (K⊕⊗A⊕):

T ((s,q),(s′,q′)) =
(
R⊕(s, /0,s′)∧∆

⊕(q, /0,q′)
)
∨
(
∃c
[
R⊕∗ (s,c,s

′)∧∆
⊕
∗ (q,c,q

′)
])

where R⊕∗ and ∆⊕∗ encode respectively the non-stuttering transitions of the model and
of the TGTA:

8



– ∆⊕∗ (q,c,q
′) is true iff (q,c,q′) ∈ δ∗ (see Def. 7)

– R⊕∗ (s,c,s
′) is true iff R⊕(s,c,s′)∧ (c 6= /0)

According to the definition of δ /0 in Def. 7, the predicate ∆⊕(q, /0,q′) encodes the set
of TGTA’s self-loops and can be replaced by the predicate equal(q,q′), simplifying T :

T ((s,q),(s′,q′)) =
(
R⊕(s, /0,s′)∧ equal(q,q′)︸ ︷︷ ︸

T/0((s,q),(s′,q′))

)
∨
(
∃c
[
R⊕∗ (s,c,s

′)∧∆
⊕
∗ (q,c,q

′)
]︸ ︷︷ ︸

T∗((s,q),(s′,q′))

)
(1)

The transition relation (1) is a disjunction of T∗, synchronizing updates of both
TGTA and Kripke structure, and T/0, corresponding to the stuttering transitions of the
Kripke structure. Since all states in the TGTA have a stuttering self-loop, T/0 does not
depend on the TGTA state. In practice, the predicate equal(q,q′) is an identity relation
for variable q [5] and is simplified away (i.e., the term T/0 can be applied to a decision
diagram without consulting or updating the variable q [12]). Hence q is not part of the
clusters supports in T/0 (while q is part of the clusters supports in T∗). This gives more
freedom to the saturation technique for reordering the application of clusters in T/0.

Note that in the product of TGBA with Kripke structure (Def. 5) there is no T/0 that
could be extracted since there is no stuttering hypothesis in general. This severely limits
the possibilities of the saturation algorithm in the TGBA approach.

In the symbolic emptiness check presented in Fig. 2, the function Reach corre-
sponds to a least fixpoint performed using saturation. As we shall see experimentally in
the next section, the better encoding of T/0 (without q in its support) in the product of
TGTA with Kripke structure, greatly favors the saturation technique, leading to gains
of roughly one order of magnitude.

4 Experimentation

We now compare the approaches presented in this paper. The symbolic model-checking
approach using TGBA, presented in Section 2 serves as our baseline. We first describe
our implementation and selected benchmarks, prior to discussing the results.

4.1 Implementation

All approaches are implemented on top of three libraries4: Spot, SDD/ITS, and LTSmin.
Spot is a model-checking library providing several bricks that can be combined to

build model checkers [7]. In our implementation, we reused the modules providing a
translation form an LTL formula into a TGBA and into a TGTA [1].

SDD/ITS is a library for symbolic representation of state spaces in the form of
Instantiable Transition Systems (ITS): an abstract interface for symbolic Labeled Tran-
sition Systems (LTS). The symbolic encoding of ITS is based on Hierarchical Set De-
cision Diagrams (SDD) [20]. SDDs allow a compact symbolic representation of states
and transition relation.

4 Respectively http://spot.lip6.fr, http://ddd.lip6.fr, and http://fmt.cs.
utwente.nl/tools/ltsmin.

9



The algorithms presented in this paper can be implemented using any kind of de-
cision diagram (such as OBDD), but use of the SDD software library allows to easily
benefit from the automatic saturation mechanism described in [12].

LTSmin [2] can generate state spaces from various input formalisms (µCRL, DVE,
GNA, MAPLE, PROMELA, ...) and store the obtained LTS in a concise symbolic for-
mat, called Extended Table Format (ETF). We used LTSmin to convert DVE models
into ETF for our experiments. This approach offers good generality for our tool, since
it can process any formalism supported by LTSmin tool.

Our symbolic model checker inputs an ETF file and an LTL formula. The LTL
formula is converted into TGBA or TGTA which is then encoded using an ITS. The
ETF model is also symbolically encoded using an ITS (see Sec. 4.2). The two obtained
ITSs are then composed to build a symbolic product, which is also an ITS. Finally, the
OWCTY emptiness check is applied to this product.

4.2 Using ETF to build a changeset-based symbolic Kripke structure

An ETF file5 produced by LTSmin is a text-based serialization of the symbolic repre-
sentation of the transition relation of a model whose states consist in k integer variables.
Transitions are described in the following tabular form:

0/1 0/1 * *
1/2 * 0/1 *
...

where each column correspond to a variable, and each line describes the effect of a
symbolic transition on the corresponding variables. The notation “in/out” means that
the variable must have the value “in” for the transition to fire, and the value is then
updated to “out”. A “*” means that the variable is not consulted or updated by the tran-
sition. Each line may consequently encode a set of explicit transitions that differ only
by the values of the starred variables: the support of a transition is the set of unstarred
variables.

A changeset-based symbolic Kripke structure, as defined in Sec. 3.2, can be easily
obtained from such a description. To obtain a changeset associated to a line in the file,
it is enough to compute difference between values of atomic propositions associated
to the in variables and the values associated to the out variables. Because they do not
change, starred variables have no influence on the changeset.

Note that an empty changeset does not necessarily correspond to a line where all
variables are starred. Even when in and out values are different, they may have no
influence on the atomic propositions, and the resulting changeset may be empty. For
instance if the only atomic proposition considered is p = (v1 > 1) (where v1 denotes
the first-column variable), then the changeset associated to the first line is /0, and the
changeset for the second line is {p}.

4.3 Benchmark

We evaluated the TGBA and TGTA approaches on the following models and formulae:
5 http://fmt.cs.utwente.nl/tools/ltsmin/doc/etf.html

10



Table 1. Characteristics of our selected benchmark models. The stuttering-ratio rep-
resents the percentage of stuttering transitions in the model. Since the definition of
stuttering depends on the atomic propositions of the formula, we give an average over
the 200 properties checked against each model.

BEEM model states stut. BEEM model states stut.
103× ratio 103× ratio

at.5 31 999 95% lann.6 144 151 52%
bakery.4 157 83% lann.7 160 025 64%
bopdp.3 1 040 91% lifts.7 5 126 93%
elevator.4 888 74% peterson.5 131 064 83%
brp2.3 40 79% pgm_protocol.8 3 069 92%
fischer.5 101 028 89% phils.8 43 046 89%
lamport_nonatomic.5 95 118 92% production_cell.6 14 520 85%
lamport.7 38 717 93% reader_writer.3 604 88%

– Our models come from the BEEM benchmark [15], a suite of models for explicit
model checking, which contains some models that are considered difficult for sym-
bolic model checkers [2]. Table 1 summarizes the 16 models we selected as repre-
sentatives of the overall benchmark.

– BEEM provides a few LTL formulae, but they mostly represent safety properties
and can thus be checked without building a product. Therefore, for each model,
we randomly generated 200 stutter-invariant LTL formulae: 100 verified formulae
(empty product) and 100 violated formulae (non-empty product). We consequently
have a total 3200 pairs of (model, formula).

All tests were run on a 64bit Linux system running on an Intel Xeon E5645 at 2.40GHz.
Executions that exceeded 30 minutes or 4GB of RAM were aborted and are reported
with time and memory above these thresholds in our graphics.

In all approaches evaluated, symbolic products are encoded using the same vari-
able ordering: we used the symbolic encoding named “log-encode with top-order” by
Sebastiani et al. [18].

4.4 Results

The results of our experimental6 comparisons are presented by the two scatter plot ma-
trices of Fig. 3 and Fig. 4. The scatter plot highlighted at the bottom of Fig. 3 compares
the time-performance of the TGTA-approach against the reference TGBA approach.7

Each point of the scatter plot represents a measurement for a pair (model, formula). For
the highlighted plot, the x-axis represents the TGBA approach and the y-axis represent
the TGTA approach, so 3060 points below the diagonal correspond to cases where the
TGTA approach is better, and the 131 points above the diagonal corresponds to points
were the TGBA approach is better (In scatter plot matrices, each point below the di-
agonal is in favor of the approach displayed on the right, while each point above the

6 The results, models, formulae and tools used in these tests, can be downloaded from http:
//www.lrde.epita.fr/~ala/TACAS-2014/Benchmark.html

7 We recommend viewing these plots online.

11



diagonal is in favor of the approach displayed in the top). Axes use a logarithmic scale.
The colors distinguish violated formulae (non-empty product) from verified formulae
(empty products). In order to show the influence of the saturation technique, we also ran
the TGBA and TGTA approaches with saturation disabled. In our comparison matrix,
the labels “(sat)” and “(nosat)” indicate whether saturation was enabled or not. Fig. 4
gives the memory view of this experiment.

TGBA (nosat)

19 Timeouts
2 OutOfMem

0.1

10

1000

2064 cases

1036 cases

TGBA (sat)

25 Timeouts
1 OutOfMem

0.1

10

1000

853 cases

2306 cases

809 cases

2345 cases

TGTA (nosat)

127 Timeouts
6 OutOfMem

0.1 10 1000

0.1

10

1000

3073 cases

116 cases

0.1 10 1000

3060 cases

131 cases

0.1 10 1000

3173 cases

20 cases

TGTA (sat)

0 Timeouts
2 OutOfMem

Time (s)

empty products (verified formulae)
non-empty products (violated formulae)

Fig. 3. Time-comparison of the TGBA and TGTA approaches, with saturation enabled
“(sat)” or disabled “(nosat)”, on a set of 3199 pairs (model, formula). Timeouts and
Out-of-memory errors are plotted on separate lines on the top or right edges of the
scatter plots. Each plot also displays the number of cases that are above or below
the main diagonal (including timeouts and out-of-memory errors), i.e., the number of
(model, formula) for which one approach was better than the other. Additional diago-
nals show the location of ×10 and /10 ratios. Points are plotted with transparency to
better highlight dense areas, and lessen the importance of outliers.

12



As shown by the highlighted scatter plots in Fig. 3 and 4, the TGTA approach clearly
outperforms the traditional TGBA-based scenario by one order of magnitude. This is
due to the combination of two factors: saturation and exploration of stuttering.

The saturation technique does not significantly improve the model checking using
TGBA (compare “TGBA (sat)” against “TGBA (nosat)” at the top of Fig. 3 and 4). In
fact, the saturation technique is limited on the TGBA approach, because in the transition
relation of Def. 5 each conjunction must consult the variable q representing the state of
the TGBA, therefore q impacts the supports and the reordering of clusters evaluated by
the saturation. This situation is different in the case of TGTA approach, where the T/0

term of the transition-relation of the product (equation (1)) does not involve the state q
of the TGTA: here, saturation strongly improve performances (compare “TGTA (sat)”
against “TGTA (nosat)”).

TGBA (nosat)

19 Timeouts
2 OutOfMem

50
100
200

500
1000
2000

5000

1090 cases

2088 cases

TGBA (sat)

25 Timeouts
1 OutOfMem

50
100
200

500
1000
2000

5000

1081 cases

2099 cases

1125 cases

2052 cases

TGTA (nosat)

127 Timeouts
6 OutOfMem

50 200 1000 5000

50
100
200

500
1000
2000

5000

2837 cases

362 cases

50 200 1000 5000

2849 cases

350 cases

50 200 1000 5000

3020 cases

179 cases

TGTA (sat)

0 Timeouts
2 OutOfMem

Memory (MB)

empty products (verified formulae)
non-empty products (violated formulae)

Fig. 4. Comparison of the memory-consumption of the TGBA and TGTA approaches,
with or without saturation, on the same set of problems.

13



Overall the improvement to this symbolic technique was only made possible be-
cause the TGTA representation makes it easy to process the stuttering behaviors sep-
arately from the rest. These stuttering transitions represent a large part of the models
transitions, as shown by the stuttering-ratios of Table 1. Using these stuttering-ratios,
we can estimate in our Benchmark the importance of the term T/0 compared to T∗ in
equation (1).

5 Conclusion

Testing automata [10] are a way to improve the explicit model checking approach when
verifying stutter-invariant properties, but they had not been used for symbolic model
checking. In this paper, we gave the first symbolic approach using testing automata, with
generalized acceptance (TGTA), and compare it to a more classical symbolic approach
(using TGBA).

On our benchmark, using TGTA, we were able to gain one order of magnitude over
the TGBA-based approach.

We have shown that fixpoints over the transition relation of a product between a
Kripke structure and a TGTA can benefit from the saturation technique, especially be-
cause part of their expression is only dependent on the model, and can be evaluated
without consulting the transition relation of the property automaton. The improvement
was possible only because TGTA makes it possible to process stuttering behaviors
specifically, in a way that helps the saturation technique.

In future work, we plan to evaluate the use of TGTA in the context of hybrid ap-
proaches, mixing both explicit and symbolic approaches [18, 6].

References

1. A. E. Ben Salem, A. Duret-Lutz, and F. Kordon. Model checking using generalized test-
ing automata. Transactions on Petri Nets and Other Models of Concurrency (ToPNoC VI),
7400:94–112, 2012.

2. S. C. C. Blom, J. C. van de Pol, and M. Weber. LTSmin: Distributed and symbolic reachabil-
ity. In Computer Aided Verification, Edinburgh, vol. 6174 of LNCS, pp. 354–359. Springer,
July 2010.

3. J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. Hwang. Symbolic model
checking: 1020 states and beyond. In Proc. of the Fifth Annual IEEE Symposium on Logic in
Computer Science, pp. 1–33. IEEE Computer Society Press, 1990.

4. G. Ciardo, R. M. Marmorstein, and R. Siminiceanu. Saturation unbound. In Proc. of
TACAS’03, vol. 2619 of LNCS, pp. 379–393. Springer.

5. G. Ciardo and A. J. Yu. Saturation-based symbolic reachability analysis using conjunc-
tive and disjunctive partitioning. In Proc. of the 13 IFIP WG 10.5 international conference
on Correct Hardware Design and Verification Methods, vol. 3725 of LNCS, pp. 146–161.
Springer, 2005.

6. A. Duret-Lutz, K. Klai, D. Poitrenaud, and Y. Thierry-Mieg. Self-loop aggregation product
— a new hybrid approach to on-the-fly LTL model checking. In Proc. of ATVA’11, vol. 6996
of LNCS, pp. 336–350. Springer.

14



7. A. Duret-Lutz and D. Poitrenaud. SPOT: an extensible model checking library using
transition-based generalized Büchi automata. In Proc. of MASCOTS’04, pp. 76–83. IEEE
Computer Society Press.

8. K. Etessami. Stutter-invariant languages, ω-automata, and temporal logic. In Proc. of
CAV’99, vol. 1633 of LNCS, pp. 236–248. Springer.

9. K. Fisler, R. Fraer, G. Kamhi, M. Y. Vardi, and Z. Yang. Is there a best symbolic cycle-
detection algorithm? In Proc. of the 7th International Conference on Tools and Algorithms
for the Construction and Analysis of Systems, TACAS 2001, pp. 420–434. Springer, 2001.

10. J. Geldenhuys and H. Hansen. Larger automata and less work for LTL model checking. In
Proc. of SPIN’06, vol. 3925 of LNCS, pp. 53–70. Springer.

11. D. Giannakopoulou and F. Lerda. From states to transitions: Improving translation of LTL
formulæ to Büchi automata. In Proc. of FORTE’02, vol. 2529 of LNCS, pp. 308–326.

12. A. Hamez, Y. Thierry-Mieg, and F. Kordon. Hierarchical set decision diagrams and auto-
matic saturation. In Proc. of the 29th international conference on Applications and Theory
of Petri Nets, PETRI NETS ’08, pp. 211–230. Springer, 2008.

13. H. Hansen, W. Penczek, and A. Valmari. Stuttering-insensitive automata for on-the-fly de-
tection of livelock properties. In Proc. of FMICS’02, vol. 66(2) of ENTCS. Elsevier.

14. Y. Kesten, A. Pnueli, and L. on Raviv. Algorithmic verification of linear temporal logic
specifications. In Proc. of ICALP’98, vol. 1443 of LNCS, pp. 1–16. Springer.

15. R. Pelánek. BEEM: benchmarks for explicit model checkers. In Proc. of the 14th interna-
tional SPIN conference on Model checking software, Lecture Notes in Computer Science,
pp. 263–267. Springer, 2007.

16. D. Peled and T. Wilke. Stutter-invariant temporal properties are expressible without the
next-time operator. Information Processing Letters, 63(5):243–246, Sept. 1995.

17. K. Y. Rozier and M. Y. Vardi. A multi-encoding approach for LTL symbolic satisfiability
checking. In Proc. of FM’11, pp. 417–431. Springer.

18. R. Sebastiani, S. Tonetta, and M. Y. Vardi. Symbolic systems, explicit properties: on hybrid
approches for LTL symbolic model checking. In Proc. of CAV’05, vol. 3576 of LNCS, pp.
350–363. Springer.

19. F. Somenzi, K. Ravi, and R. Bloem. Analysis of symbolic SCC hull algorithms. In Proc. of
FMCAD’02, vol. 2517 of LNCS, pp. 88–105. Springer.

20. Y. Thierry-Mieg, D. Poitrenaud, A. Hamez, and F. Kordon. Hierarchical set decision dia-
grams and regular models. In Proc. of TACAS’09, vol. 5505 of LNCS, pp. 1–15. Springer.

21. M. Y. Vardi. An automata-theoretic approach to linear temporal logic. In Proc. of Banff’94,
vol. 1043 of LNCS, pp. 238–266. Springer.

15


