
Linear Object Detection in Document Images

using Multiple Object Tracking

Philippe Bernet, Joseph Chazalon , Edwin Carlinet ,
Alexandre Bourquelot, and Elodie Puybareau

EPITA Research Lab (LRE), Le Kremlin-Bicêtre, France
{firstname.lastname}@epita.fr

Abstract. Linear objects convey substantial information about doc-
ument structure, but are challenging to detect accurately because of
degradation (curved, erased) or decoration (doubled, dashed). Many ap-
proaches can recover some vector representation, but only one closed-
source technique introduced in 1994, based on Kalman filters (a partic-
ular case of Multiple Object Tracking algorithm), can perform a pixel-
accurate instance segmentation of linear objects and enable to selectively
remove them from the original image. We aim at re-popularizing this
approach and propose: 1. a framework for accurate instance segmenta-
tion of linear objects in document images using Multiple Object Track-
ing (MOT); 2. document image datasets and metrics which enable both
vector- and pixel-based evaluation of linear object detection; 3. perfor-
mance measures of MOT approaches against modern segment detectors;
4. performance measures of various tracking strategies, exhibiting alter-
natives to the original Kalman filters approach; and 5. an open-source
implementation of a detector which can discriminate instances of curved,
erased, dashed, intersecting and/or overlapping linear objects.

Keywords: Line segment detection · Benchmark · Open source

1 Introduction

The detection of linear structures is often cast as a boundary detection problem
in Computer Vision (CV), focusing on local gradient maxima separating homo-
geneous regions to reveal edges in natural images. Document images, however,
often exhibit very contrasted and thin strokes which carry main information, con-
taining printings and writings, overlaid on some homogeneous “background”. It
is therefore common to observe a local maximum and a local minimum in a short
range along the direction normal to such stroke. As a result, methods based on
region contrast tend to fail on document images, rejecting text and strokes as
noise or produce double-detections around linear structures.

In this work, we are interested in enabling a fast and accurate pre-processing
which can detect and eventually remove decorated, degraded or overlapping lin-
ear objects in document images. Figure 2 illustrates the two major outputs such

https://orcid.org/0000-0002-3757-074X
https://orcid.org/0000-0001-5737-5266
https://orcid.org/0000-0002-2748-6624

4 P. Bernet et al.

any approach designed around some U-Net variant [31,24] like the HED [36]
and BDCN [15] edge detectors. Such approaches can make pixel-accurate pre-
dictions but cannot discriminate object instances. To enable their use for vector-
ization, Xue et al. [38] proposed to predict an Attraction Field Map which eases
the extraction of 1-pixel-thin edges after a post-processing stage. EDTER [29]
pushes the semantic segmentation approach as far as possible with a trans-
former encoder, enabling to capture a larger context. While all these techniques
can produce visually convincing results, they cannot assign a pixel to more than
one object label and require a post-processing to produce some vector output.
Furthermore, their training requirements and computational costs forces us to
remove them from our comparison, but they could be integrated as an image
pre-processing in the global framework we propose.

Hough Transform-based detectors. The Hough transform [17] is a traditional
technique to detect lines in images. It can be viewed as a kind of meta-template
matching technique: line evidence L with (ρ, θ) polar parameters is supported by
pixel observations (xi, yi) according to the constraint that (L) : ρ = xi cos θ +
yi sin θ. In practice, such technique relies on a binarization pre-processing to
identify “foreground” pixels which can support a set of (ρ, θ) values in polar
space. Line detection is performed by identifying maximal clusters in this space,
which limits the accuracy the detection to a very coarse vectorization, while re-
lying on a high algorithmic complexity. Several variants [26] were proposed to
overcome those limitations: the Randomized Hough Transform [21] and Proba-
bilistic Hough Transform [20] lowered the computational cost thanks to some ran-
dom sampling of pixels, and the Progressive Probabilistic Hough Transform [13]
added the ability to predict start and end line segment coordinates, turning the
approach into an effective linear object detector. This method can tolerate gaps
and overlaps to some extents, and is highly popular thanks to its implementa-
tion in the OpenCV library [3]. However, it is very sensitive to noise, to object
length, rather inaccurate with slightly curved objects, and cannot assign pixels
to linear object instances.

Region growing tracers. The Canny edge detector [5] is the most famous example
of this category. It is based on the following steps: a gradient computation on
a smoothed image, the detection of local gradient maximums, the elimination
of non-maximal edge pixels in the gradient’s direction, and the filtering of edge
pixels (based on gradient’s magnitude) in the edge direction. All region grow-
ing approaches improve this early algorithm, probably introduced by Burns et
al. [4], which effectively consists in finding salient edge stubs and tracing from
there initial position. LSD [14] was the first approach which took linear object
detection to the next level in natural images. Fast and accurate, it is based on
a sampling of gradient maximums which are connected only if the gradient flow
between these candidates is significantly strong compared to a background noise
model, according to the Helmholtz principle proposed by [12]. EDLine [2] and
AG3line [39] improved the routing scheme to connect distant gradient maximums
using Least Square fitting and a better sampling, accelerating and enhancing

Linear Object Detection using MOT 5

the whole process. CannyLines [25] proposed a parameter-free detection of local
gradient maximums, and reintegrated the Helmholtz principle in the routing.
Ultimately, ELSED [33] further improved this pipeline to propose the fastest de-
tector to date, with a leading performance among learning-less methods. These
recent approaches are very fast and accurate, require no training stage, and can
handle intersections. However, they do not detect all pixels which belong to a
stroke, and have limited tolerance to gaps and overlaps. Finally, these methods
require a careful tuning to be used on document images as the integrated gradi-
ent computation step tends to be problematic for thin linear objects, and leads
to double detections or filters objects (confusing them with noise).

Deep linear object detectors. Region Proposal Networks, and their ability to be
trained end-to-end using RoI pooling, where introduced in the Faster R-CNN
architecture [30]. This 2-stage architecture was adapted to linear object detection
by the L-CNN approach [40]. L-CNN uses a junction heatmap to generate line
segment proposals, which are fed to classifier using a Line of Interest pooling,
eventually producing vector information containing start and end coordinates.
HAWP [38] accelerated the proposal stage by replacing the joint detection stage
with the previously-introduced Attraction Field Map [38]. F-Clip [10] proposed
a similar, faster approach using a single-stage network which directly predicts
center, length and orientation for each detected line segment. These approaches
produce very solid vector results, but they are still not capable to assign pixels
to a particular object instance. Furthermore, their important computation and
training data requirements forces us to remove them from our current study.

Vertex sequence generators. Recently, the progress of decoders enabled the direct
generation of vector data from an image input, using a sequence generator on top
of some feature extractor. Polygon-RNN [7,1] uses a CNN as feature extractor,
and an RNN decoder which generates sequences of vertex point coordinates.
LETR [37] uses a full encoder/decoder transformer architecture and reaches the
best wireframe parsing accuracy to date. However, once again, such architectures
are currently limited to vector predictions, and their computation and training
data requirements make them unsuitable for our current comparison.

Linear object trackers. A neglected direction, with several key advantages and
which opens interesting perspectives, was introduced in 1994 in a short series
of papers [27,28,23]. This approach leverages the power of Kalman filters [18],
which were very successful for sensors denoising, to stabilize the detection of
linear objects over the course of two image scans (horizontal and vertical). By
tracking individual object candidates, eventually connecting or dropping them,
this approach proposed a lightweight solution, with few tunable parameters,
which can segment instances of linear objects by assigning pixels to all the ob-
jects they belong to, but also deal with noise, curved objects, gaps and noise.
However, no comparison against other approaches, nor public implementation,
were disclosed. This called for a revival and a comparison against the fastest
methods to date.

6 P. Bernet et al.

3 MOT Framework for Linear Object Detection

As previously mentioned, we extend the original approach of [27,28,23], which
performs 2 scans over an image, plus a post-processing, to detect linear objects.
We will describe the horizontal scan only: the vertical one consists in the same
process applied on the transposed image. During the horizontal scan, the im-
age is read column by column in a single left-to-right pass; each column being
considered as a 1-dimensional scene containing linear object spans, i.e. slices
of dark pixels in the direction normal to linear object (Figure 1). Those spans
are tracked scene by scene, and linked together to retrieve objects with pixel
accuracy. To ensure accurate linking, and also to tolerate gaps, overlaps and
intersections, each coherent sequence of spans is modeled as a Kalman filter

which stores information about past spans, and can predict the attributes (po-
sition, thickness, luminance. . .) of the next most probable one. By matching
such observations with predictions, and then correcting the internal parameters
of the filter, observations are aggregated in a self-correcting model instance for
each linear object. Once the horizontal and vertical scans are complete, object
deduplication is required to merge double detections close to 45 degrees. Finally,
using pixel-accurate information about each object instance, several outputs can
be generated, and in particular: a mapping which stores for each pixel the asso-
ciated object(s), and a simplified vector representation containing first and last
span coordinates only.

Framework overview. We propose to abstract this original approach into a more
general Multiple Objects Tracking (MOT) framework. This enables us to explicit
each stage of such process, and introduce variants. Linear object detection using
2-pass MOT can be detailed as follows.

Pre-processing. In Section 4, we will report results with grayscale images only,
as this is the simplest possible input for this framework. However, some
preprocessing may be used to enhance linear object detection. In the case of
uneven background contrast, we obtained good results using a black top hat,
and to be able to process very noisy images, or images with rich textures,
it may be possible to train a semantic segmentation network which would
produce some edge probability map.

Processing. The horizontal and vertical scans, which can be performed in par-
allel, aim at initializing, updating and returning a set of trackers, a gen-
eralization of the “filters” specific to Kalman’s model. Like in the original
approach, each detected instance is tracked by a unique tracker instance.
Trackers are structures which possess an internal State S containing a vari-
able amount of information, according to the variant considered; two key
methods “predict” and “integrate” which will be described hereafter; and
an internal list of spans which compose the linear object. The State and the
two methods can be customized to derive alternate tracker implementations
(we provide some examples later in this section). For each scene t (column
or line) read during the scan, the following steps are performed. Steps 1 and
2 can be performed in parallel, as well as steps 4, 5 and 6.

Linear Object Detection using MOT 7

1. Extract the set of observations Oj
t , j ∈ [0, nobst[. Observations represent

linear object spans, and contain information about their position in the scene,
luminance and thickness. At this step, some observations may be rejected
because there size is over a certain threshold. This threshold is a parameter
of the method. The algorithm and the associated illustration in fig. 3 detail
our implementation this step based on our interpretation of the original
approach [27,28,23].
2. Predict the most probable next observation Xi

t for each tracker i, using
its current internal State St−1. Predictions have the same structure and
attributes as observations.
3. Match extracted observations Oj

t with predicted ones Xi
t . Matching is a

two-step process performed for each tracker i. First, candidate observations
Oi,j

t are selected based on a distance threshold, and slope, thickness and
luminance compatibility (they must be inferior to 3 times the standard de-
viation of each parameter, computed over a window of past observations).
Second, the closest observation is matched: Ôi

t = argmin |Oi,j
t (position) −

Xi
t(position)|. The same observation can be matched by multiple trackers

when lines are crossing. Unmatched observations Ōt are kept until step 5.
4. Integrate new observations Ôi

t into trackers’ States Si
t, considering (in the

more general case) current State Si
t−1, scene t, matched observation Ôi

t and
prediction Xi

t . This enables each tracker to adapt its internal model to the
particular object being detected.
5. Initialize new trackers from unmatched observations Ōt. New trackers are
added to the active pool of trackers to consider at each scene t.
6. Stop trackers of lost objects. When a tracker does not match any obser-
vation for too many t, it is removed from the pool of active trackers. The
exact threshold depends on the current size of the object plus an absolute
thresholds for acceptable gap size. Those two thresholds are parameters of
our method.

Post-processing. Deduplication is required because 45°-oriented segments may
be detected twice. Duplications are removed by comparing and discarding
object instances with high overlap. An optional attribute filtering may then
be performed, that consists in filtering objects according to their length,
thickness or angle. This filtering must be performed after the main processing
stage to avoid missing intersection and overlaps with other objects, would
these be linear or not: this makes possible to handle interactions between
handwritten strokes and line segments, for instance. Finally, outputs can be
generated by decoding the values stored in each tracker object.

Tracker variants. Each tracker variant features a different internal State struc-
tures (which needs to be initialized), and specific prediction and integration func-
tions. However, in the context of Linear Object Detection, we keep the original
model of the IRISA team [27,28,23]: all observations have luminance, position
and thickness attributes, and States have a similar structure, generally adding a
slope attribute to capture position change. In this work, we consider the follow-

8 P. Bernet et al.

Observation extraction algorithm

1: for n = 0 to max n do

2: if Imaget[n] < lmm then

3: s← 0; do { s ← s + 1 } while (Imaget[n + s] < lmm);
4: lmin ← min of Imaget[n . . . n + s]
5: lmax ← max of Imaget[n . . . n + s]
6: contrast ← lmax − lmin

7: lstab ← lmin + r ∗ contrast
8: ni ← n; while (Imaget[ni] > lstab) { ni ← ni + 1 }
9: nf ← n; while (Imaget[nf] < lstab) { nf ← nf − 1 }

10: obspos ← (ni + nf) / 2
11: obsthick ← nf - ni + 1
12: obslum ← mean of Imaget[ni . . . nf]

0

255
grayscale

n

lmm

= lmax

lstab

lmin

n n + s

obsthick

obsposni nf

|

contrast

r × contrast

Fig. 3: Algorithm and illustration of the observation extraction process. The red curve
represents the luminosity profile of a line (or a column) of pixels. The algorithm looks
for a range of pixels [n . . . n + s] whose value do not exceed lmm (L.3) and computes
its contrast (L.4-6). Then, this range is refined to extract the largest sub-range whose
contrast does not exceed r (a parameter of the method set to 1 in all our application
but kept from the original method) times contrast (L.8-9) and gives the observation

with features computed on lines 10-12.

ing variants. To simplify the following equations, we refer to t = 0 as the time
of the first observation of a tracker, and consider only one tracker at a time.

Last Observation. A naive baseline approach which uses as prediction the
last matched observation (Xt = Ôt−1). Updating its States simply consists
in storing the last matched observation in place of the previous one.

Simple Moving Average (SMA). Another baseline approach which stores
the k last matched observations and extrapolates the prediction based on
them. This tracker uses a slope attribute. Prediction for the attribute a is
the average of the previous observations Xt(a) = (

∑t−1
j=t−k Ôj)/k, except

for the position, which is computed using the last observed position and
the Exponential Moving Average (EMA) of the slope. Integration of new

Linear Object Detection using MOT 9

observations consists in adding them to the buffer. We used a buffer of size
k = min(t, 30) in our experiments.

Exponential Moving Average (EMA). A last baseline approach very simi-
lar to the previous one, which requires only to store the last matched obser-
vation Ôt−1 and the last prediction Xt−1. The prediction of some attribute
a is computed by: Xt(a) = α ∗ Ôt−1(a) + (1 − α) ∗ Xt−1(a) where α tunes
importance of the new observation. The prediction of the position is com-
puted using the last observed position and the EMA of the slope. We used
a value of α = 2/(min(t, 16) + 1) in our experiments.

Double Exponential [22]. This tracker uses a double exponential smoothing
algorithm which is faster than Kalman filters and simpler to implement.
Xt = (2+ α

1−α
)·SXt−1

−(1+ α
1−α

)·SX[2]t−1
where SXt

= α·Ot+(1−α)·SXt−1
,

SX[2]t = α·SXt
+(1−α)·SX[2]t−1

and α ∈ [0, 1] (set to 0.6 in our experiments)
a smoothing parameter.

1e Filter [6]. This tracker features a more sophisticated approach, also based
on an exponential filter, which can deal with uneven signal sampling. It
adjusts its low-pass filtering stage according to signal’s derivative, and has
only two parameters to configure: a minimum cut-off frequency that we set
to 1 in our experiments, and a β parameter that we set to 0.007. We refer
the reader to the original publication for the details of this approach.

Kalman Filter [18,35], IRISA variant [27,28,23]. This tracker is based on
our implementation of the approach proposed by the IRISA team. The hid-

den State is composed of n = 4 attributes S ∈ Rn :
[

pos. slope tick. lum.
]T

,
and the process is governed by the following equation: St = ASt−1 + wk−1

where A ∈ Rn,n is the transition model and wk−1 some process noise. Process

States S can be projected to observation space O ∈ Rm :
[

pos. tick. lum.
]T

according to the measurement equation Ot = HSt + vk where H is a simple
projection matrix discarding the slope and vk the measurement noise. By
progressively refining the estimate of the covariance matrix Q (resp. R) of w
(resp. v), the Kalman filter recursively converges toward a reliable estimate
of the hidden State S and its internal error covariance matrix P .
The prediction step consists in (1) projecting the State ahead according to a
noise-free model: S−

t+1 = ASt; and (2) projecting the error covariance ahead:

P−
t = APt−1A

T +Q where Q is the process noise covariance matrix.
The integration step consists in (1) computing the Kalman gain: Kt =
P−
t HT(HP−

t HT+R)−1 where R is the measurement noise covariance matrix;
(2) updating estimate with measurement Ôt: St = AS−

t + Kt(Ôt − HS−
t)

where H relates the State to the measurement; and (3) updating the error
covariance: Pt = (I −KtH)P−

t .
The following initialization choices are made, according to our experiments
and the original publications [27,28,23]. We initialize each State with the
values of the first observation, with a slope of 0. We use P0 = I4 as initial
value for the error covariance matrix, In being the identity matrix in Rn. Q,

10 P. Bernet et al.

R, H and A assumed to be constant with the following values:

A =









1 1 0 0
0 1 0 0
0 0 1 0
0 0 0 1









, H =









1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1









, Q = I4 · 10
−5, and R =

[

1 1 4
]T

.

4 Experiments

We report here the results obtained by comparing the performance of training-
less approaches on two tasks: a pure vectorization task, where only two endpoint
coordinates are required for each line segment, and an instance segmentation

task, where pixel-accurate labeling of each line segment instance is required.
This separation is due to the limitations of some approaches which can only
generate vector output, as well as the limitations of existing datasets.
While the methods studied are training-less, they are not parameter-free, and
such parameters require to be tuned to achieve the best performance. In order
to ensure an unbiased evaluation, we manually tuned (because grid-search and
other optimization techniques were not usable here) each approach on the train

set of each dataset, then evaluate their performance on the test set.

4.1 Vectorization Task

Dataset. To our knowledge, no dataset for line segment detection in vector for-
mat exists for document images. We introduce here a small new, public dataset
which contains endpoints annotations for line segments in 195 images of 19th

trade directories. In these documents, line segment detection can be used for
image deskewing. The train (resp. test) set is composed of 5 (resp. 190) im-
ages, containing on average 4.3 line segments to detect each. Images samples are
available in the extra material.

Metric. Our evaluation protocol is a slightly modified version of the one proposed
by Cho et al. [9], and is defined as follows. Let P = {P1, · · · , Pn} and T =
{T1, · · · , Tm} be respectively the set of predicted and targets line segment (LS).
Let Lij be the projection of Pi over Tj . We note |X|, the length of the LS X.
A predicted LS Pi matches the target Tj if: 1. the prediction overlaps the target
over more than 80% (|Lij |/|Pi| ≥ 0.8), 2. the perpendicular distance dij between
Tj ’ center and Pi is less than 20 pixels, and 3. the orientations of Pi and Pj

differ at most by 5°. For each Pi, we associate the closest LS (in terms of dij)
among the set of matching LSs from the targets. We note A = {Aij} ∈ (P × T)
the mapping that contains Aij = (Pi, Tj) whenever Pi matches Tj . Our protocol
allows a prediction to match a single target, but a target may be matched by
many predictions. This allows for target fragmentation (1-to-many relation). We
then compute the precision and recall scores as follows:

precision =

∑

(i,j)∈A |Li,j |
∑

i |Pi|
recall =

|
⋃

(i,j)∈A Li,j |
∑

j |Tj |

Linear Object Detection using MOT 11

T1

P1

P2

d11

d21

L11

L12

Fig. 4: Matching and scoring process. P1 and P2 are associated to T1 because
angles are compatible and overlaps L11 and L22 are large enough. In this ex-

ample, precision is |L11|+|L21|
|P1|+|P2|

and is < 1 because P1 does not fully match the

ground-truth. Recall is |L11∪L21|
|T1|

and also is < 1 because T1 is not fully matched.

Roughly said, precision stands for the quality of the predictions to match and
cover the ground-truth, while recall assess the coverage of the targets that were
matched, as illustrated in fig. 4.
Our protocol differs from the original one [9] which allows prediction to match
many targets (many-to-many relation). This case can happen when segments
are close to each other, and results in a precision score that can exceed 1.0. Our
variant ensure precision remains in the [0, 1] range. Even with this modification,
these metrics still have limitations: duplication of detections and fragmentation
of targets are not penalized. We thus propose an updated precision as:

precision2 =
1

∑

i |Pi|
×

∑

(i,j)∈A

|Li,j |

|A(∗,j)|

with |A(∗,j)| = |{Akj ∈ A}| being the number of matches with target Tj (number
of fragments). From precision (resp. precision2) and recall, the F-score (resp. F-
score2) is then computed and used as the final evaluation metric.

Results. We chose to only compare Hough based and Region growing algorithms
featuring a rapid, public implementation and requiring no training. In table 1,
we show that the original Kalman strategy performs the best on this dataset.
Nevertheless, the other tracking strategies reach almost the same level of perfor-
mance (the first five are within a 2% range). The differences between the F-score
and F-score2 columns are explained by many very short detections that match
a ground truth line and are more penalized with F-score2. In table 2, state-of-
the-art detectors are compared: MOT-based (using Kalman tracker), Edlines [2],
Hough (from OpenCV) [20], CannyLines [25], LSD [14], LSD II with a filtering on

12 P. Bernet et al.

Table 1: Vectorization performance and compute time of various MOT strategies
on the trade directories dataset. F-score and F-score2 are computed per-page and
averaged on the dataset (standard deviation is shown between brackets).

Time F-Score F-score2
(ms) Train Test Train Test

Last observation 616 95.2 (±7.5) 90.0 (±24.1) 92.7 (±13.0) 87.2 (±24.7)
SMA 652 95.2 (±7.5) 90.0 (±24.0) 92.7 (±13.0) 87.4 (±24.7)
EMA 617 92.6 (±8.6) 89.7 (±24.3) 88.3 (±16.9) 86.5 (±24.8)
Double exp. [22] 623 94.6 (±7.2) 87.3 (±25.6) 85.6 (±15.9) 81.7 (±26.4)
One euro [6] 627 95.2 (±7.5) 90.1 (±24.0) 90.8 (±17.2) 87.2 (±24.7)
Kalman [27] 633 95.2 (±7.5) 90.1 (±24.0) 92.7 (±13.0) 87.6 (±24.6)

Table 2: Vectorization performance and compute time of various line segment
detection approaches on the trade directories dataset. Even on this rather simple
dataset, these results show the superiority of MOT-based approaches for line
segment detection in document images.

Time F-Score F-score2
(ms) Train Test Train Test

MOT (Kalman) 633 95.2 (±7.5) 90.1 (±24.0) 92.7 (±13.0) 87.6 (±24.6)

AG3Line [39] 434 66.2 (±23.8) 72.5 (±35.4) 25.9 (±9.9) 24.2 (±13.7)
CannyLines [25] 551 81.2 (±22.7) 84.4 (±24.2) 39.0 (±13.5) 34.2 (±14.0)
EDLines [2] 314 83.2 (±23.6) 87.4 (±24.0) 35.5 (±8.3) 30.5 (±12.3)
ELSED [33] 264 91.1 (±11.3) 87.0 (±26.6) 45.3 (±9.6) 35.2 (±13.7)
Hough [13] 419 80.5 (±14.5) 64.8 (±30.0) 23.5 (±9.2) 18.2 (±10.1)
LSD [14] 2338 18.7 (±10.3) 12.5 (±8.5) 1.6 (±1.5) 0.5 (±0.6)
LSD II 2206 76.7 (±28.6) 53.3 (±43.7) 47.6 (±24.7) 20.7 (±17.9)

segment lengths, ELSED [33], and AG3Line [39]. All these techniques performs
much lower than the MOT-based approach because of thick lines being detected
twice (especially with the F-score2 metric where splits are penalized). The two
previous tables exhibit a large standard deviation of the performance because of
some bad quality pages (noise, page distortions. . .) where most methods fail to
detect lines. This behavior is shown on fig. 5 where the F-score2 distributions
of the dataset samples are compared. It shows some outliers at the beginning
where detectors get a null score for some documents.

4.2 Instance Segmentation Task

Dataset. To demonstrate the feasibility of line segment instance segmentation,
we adapted the dataset of the ICDAR 2013 music score competition for staff re-
moval [34] to add information about staff line instances. This was, to our knowl-
edge, the only dataset for document images which features some form of line
segmentation annotation we could leverage easily. As the original competition

14 P. Bernet et al.

Fig. 6: Excerpt of the original image of staff lines (700 x 400) and its instance
segmentation performed by the Kalman Filter predictor in 60ms.

Table 3: Instance segmentation performance and compute time of MOT-based
approaches on the music sheets dataset adapted from ICDAR 2013 music score
competition [34]. For completeness, we also report the winner of the binary seg-
mentation contest, though such method only performs a semantic segmentation.

Time Panoptic Quality F-Score (ICDAR’13)
(ms) Train Test Train Test

Last observation 323 86.3 (± 5.2) 83.7 (± 11.1) 95.9 (± 2.1) 95.4 (± 2.7)
SMA 323 67.6 (± 17.0) 66.0 (± 17.6) 90.7 (± 6.5) 89.9 (± 7.4)
EMA 322 74.0 (± 14.9) 65.5 (± 18.4) 92.5 (± 4.7) 89.6 (± 7.7)
Double exp. [22] 320 55.4 (± 16.2) 51.7 (± 15.8) 87.3 (± 5.0) 83.8 (± 8.6)
One euro [6] 327 87.2 (± 5.9) 85.1 (± 9.6) 95.9 (± 2.1) 95.7 (± 2.2)
Kalman [27] 328 85.0 (± 7.1) 80.7 (± 15.6) 95.3 (± 2.5) 94.1 (± 5.6)

LRDE-bin [34] 97.1

images from the dataset of the ICDAR 2021 competition on historical map seg-
mentation [8]. The challenges of this competition relied on an accurate detection
of boundaries of building blocks, of map content on the sheet, and of georef-
erencing lines; all of them being mostly linear objects in the map images. We
retained 15 images of average size 5454x3878 (21 Mpix) for our experiment: 3
for the training set, and 12 for the test set. Because no pixel-level ground truth
exists for these images, we report qualitative results. The computation times of
the trackers are similar: about 5-6s per 21 Mpix maps image. Time variations
are due to the number of trackers to update during the process that depends
on the observations integrated with the tracking strategy. From a quality stand-
point (outputs available in extra material), the Kalman strategy outperforms
all the other tracking strategies as shown in fig. 7. Indeed, these documents
contain many overlaps and noise that create discontinuities when extracting ob-
servations. Kalman filters enable recovering the lines even if there are hidden
behind some object. On the other hand, the other trackers with simpler pre-
diction models (such as the one-euro or the last observation trackers) integrate
wrong observations and lead to line segment fragmentation.

Linear Object Detection using MOT 15

Fig. 7: Instance segmentation on map images. Left: original image, center:
Kalman tracker, right: EMA tracker. With the same filtering parameters, the
EMA tracker is more sensitive to gaps and overlaps and fragments objects.

5 Conclusion

Our goal was to implement a line segment detection method that was first pro-
posed in the 1990s [27,28,23]. However, we generalized it within the Multiple
Object Tracking framework that we proposed. We demonstrated the efficiency
of the original proposal, which was based on Kalman filters, and also suggested
some competitive alternatives. These approaches are highly robust to noise, over-
lapping contents, and gaps. They can produce an accurate instance segmenta-
tion of linear objects in document images at the pixel level. Results can be
reproduced using open code and data available at https://doi.org/10.5281/
zenodo.7871318.

Acknowledgements. This work is supported by the French National Research
Agency under Grant ANR-18-CE38-0013 (SoDUCo project).

https://doi.org/10.5281/zenodo.7871318
https://doi.org/10.5281/zenodo.7871318

16 P. Bernet et al.

References

1. Acuna, D., Ling, H., Kar, A., Fidler, S.: Efficient interactive annotation of
segmentation datasets with polygon-rnn++. In: Proceedings of the IEEE con-
ference on Computer Vision and Pattern Recognition. pp. 859–868 (2018).
https://doi.org/10.1109/cvpr.2018.00096, code available at https://github.com/
fidler-lab/polyrnn-pp

2. Akinlar, C., Topal, C.: EDLines: A real-time line segment detector with a
false detection control. Pattern Recognition Letters 32(13), 1633–1642 (2011).
https://doi.org/10.1016/j.patrec.2011.06.001, code available at https://github.

com/CihanTopal/ED_Lib

3. Bradski, G.: The OpenCV Library. Dr. Dobb’s Journal of Software Tools (2000),
https://opencv.org/

4. Burns, J.B., Hanson, A.R., Riseman, E.M.: Extracting straight lines. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence 8(4), 425–455 (1986).
https://doi.org/10.1109/TPAMI.1986.4767808

5. Canny, J.: A computational approach to edge detection. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence 8(6), 679–698 (1986).
https://doi.org/10.1109/TPAMI.1986.4767851

6. Casiez, G., Roussel, N., Vogel, D.: 1€ filter: a simple speed-based low-pass
filter for noisy input in interactive systems. In: Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems. pp. 2527–2530 (2012).
https://doi.org/10.1145/2207676.2208639

7. Castrejon, L., Kundu, K., Urtasun, R., Fidler, S.: Annotating object instances with
a polygon-rnn. In: Proceedings of the IEEE conference on computer vision and
pattern recognition. pp. 5230–5238 (2017). https://doi.org/10.1109/cvpr.2017.477

8. Chazalon, J., Carlinet, E., Chen, Y., Perret, J., Duménieu, B., Mallet, C., Géraud,
T., Nguyen, V., Nguyen, N., Baloun, J., Lenc, L., , Král, P.: Icdar 2021 competition
on historical map segmentation. In: Proceedings of the 16th International Confer-
ence on Document Analysis and Recognition (ICDAR’21). Lausanne, Switzerland
(2021). https://doi.org/10.1007/978-3-030-86337-1 46

9. Cho, N.G., Yuille, A., Lee, S.W.: A Novel Linelet-Based Repre-
sentation for Line Segment Detection. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence 40(5), 1195–1208 (May 2018).
https://doi.org/10.1109/tpami.2017.2703841, code available at https:

//github.com/NamgyuCho/Linelet-code-and-YorkUrban-LineSegment-DB

10. Dai, X., Gong, H., Wu, S., Yuan, X., Yi, M.: Fully convolutional line parsing.
Neurocomputing 506, 1–11 (2022). https://doi.org/10.1016/j.neucom.2022.07.026,
code available at https://github.com/Delay-Xili/F-Clip

11. Denis, P., Elder, J.H., Estrada, F.J.: Efficient Edge-Based Methods for Estimating
Manhattan Frames in Urban Imagery. In: Forsyth, D., Torr, P., Zisserman, A.
(eds.) Computer Vision – ECCV 2008. pp. 197–210. Lecture Notes in Computer
Science, Springer, Berlin, Heidelberg (2008). https://doi.org/10.1007/978-3-540-
88688-4 15

12. Desolneux, A., Moisan, L., Morel, J.M.: From gestalt theory to image analy-
sis: a probabilistic approach, vol. 34. Springer Science & Business Media (2007).
https://doi.org/10.1007/978-0-387-74378-3

13. Galamhos, C., Matas, J., Kittler, J.: Progressive probabilistic Hough transform
for line detection. In: Proceedings. 1999 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition. pp. 554–560. IEEE Comput. Soc, Fort

https://doi.org/10.1109/cvpr.2018.00096
https://github.com/fidler-lab/polyrnn-pp
https://github.com/fidler-lab/polyrnn-pp
https://doi.org/10.1016/j.patrec.2011.06.001
https://github.com/CihanTopal/ED_Lib
https://github.com/CihanTopal/ED_Lib
https://opencv.org/
https://doi.org/10.1109/TPAMI.1986.4767808
https://doi.org/10.1109/TPAMI.1986.4767851
https://doi.org/10.1145/2207676.2208639
https://doi.org/10.1109/cvpr.2017.477
https://doi.org/10.1007/978-3-030-86337-1_46
https://doi.org/10.1109/tpami.2017.2703841
https://github.com/NamgyuCho/Linelet-code-and-YorkUrban-LineSegment-DB
https://github.com/NamgyuCho/Linelet-code-and-YorkUrban-LineSegment-DB
https://doi.org/10.1016/j.neucom.2022.07.026
https://github.com/Delay-Xili/F-Clip
https://doi.org/10.1007/978-3-540-88688-4_15
https://doi.org/10.1007/978-3-540-88688-4_15
https://doi.org/10.1007/978-0-387-74378-3

Linear Object Detection using MOT 17

Collins, CO, USA (1999). https://doi.org/10.1109/cvpr.1999.786993, code avail-
able at https://github.com/rmenke/ppht

14. Grompone von Gioi, R., Jakubowicz, J., Morel, J.M., Randall, G.: LSD: A
Fast Line Segment Detector with a False Detection Control. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence 32(4), 722–732 (Apr 2010).
https://doi.org/10.1109/TPAMI.2008.300

15. He, J., Zhang, S., Yang, M., Shan, Y., Huang, T.: Bi-directional cascade
network for perceptual edge detection. In: IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR). pp. 3823–3832. IEEE (2019).
https://doi.org/10.1109/CVPR.2019.00395

16. Huang, K., Wang, Y., Zhou, Z., Ding, T., Gao, S., Ma, Y.: Learning to parse
wireframes in images of man-made environments. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. pp. 626–635 (2018).
https://doi.org/10.1109/cvpr.2018.00072

17. Illingworth, J., Kittler, J.: A survey of the hough transform. Com-
puter vision, graphics, and image processing 44(1), 87–116 (1988).
https://doi.org/10.1016/0734-189x(88)90071-0

18. Kalman, R.E.: A New Approach to Linear Filtering and Prediction
Problems. Journal of Basic Engineering 82(1), 35–45 (Mar 1960).
https://doi.org/10.1115/1.3662552

19. Kirillov, A., He, K., Girshick, R., Rother, C., Dollár, P.: Panoptic segmentation.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. pp. 9404–9413 (2019). https://doi.org/10.1109/cvpr.2019.00963

20. Kiryati, N., Eldar, Y., Bruckstein, A.M.: A probabilistic Hough transform. Pattern
recognition 24(4), 303–316 (1991). https://doi.org/10.1016/0031-3203(91)90073-e

21. Kultanen, P., Xu, L., Oja, E.: Randomized hough transform (rht). In: Proceedings.
10th International Conference on Pattern Recognition. vol. 1, pp. 631–635. IEEE
(1990). https://doi.org/10.1109/ICPR.1990.118177

22. LaViola, J.J.: Double exponential smoothing: an alternative to kalman filter-based
predictive tracking. In: Proceedings of the workshop on Virtual environments 2003.
pp. 199–206 (2003). https://doi.org/10.1145/769953.769976

23. Leplumey, I., Camillerapp, J., Queguiner, C.: Kalman filter contributions to-
wards document segmentation. In: Proceedings of 3rd International Conference
on Document Analysis and Recognition. vol. 2, pp. 765–769. IEEE (1995).
https://doi.org/10.1109/icdar.1995.602015

24. Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.:
Feature pyramid networks for object detection. In: IEEE Conference on
Computer Vision and Pattern Recognition (CVPR). pp. 936–944 (2017).
https://doi.org/10.1109/CVPR.2017.106

25. Lu, X., Yao, J., Li, K., Li, L.: Cannylines: A parameter-free line segment de-
tector. In: IEEE International Conference on Image Processing (ICIP). pp. 507–
511. IEEE (2015). https://doi.org/10.1109/icip.2015.7350850, code available at
https://cvrs.whu.edu.cn/cannylines/

26. Mukhopadhyay, P., Chaudhuri, B.B.: A survey of Hough Transform. Pattern
Recognition 48(3), 993–1010 (2015). https://doi.org/10.1016/j.patcog.2014.08.027

27. Poulain d’Andecy, V., Camillerapp, J., Leplumey, I.: Kalman filtering for segment
detection: application to music scores analysis. In: Proceedings of 12th Interna-
tional Conference on Pattern Recognition. vol. 1, pp. 301–305 vol.1 (Oct 1994).
https://doi.org/10.1109/ICPR.1994.576283

28. Poulain d’Andecy, V., Camillerapp, J., Leplumey, I.: Analyse de partitions musi-
cales. Traitement du Signal 12(6), 653–661 (1995)

https://doi.org/10.1109/cvpr.1999.786993
https://github.com/rmenke/ppht
https://doi.org/10.1109/TPAMI.2008.300
https://doi.org/10.1109/CVPR.2019.00395
https://doi.org/10.1109/cvpr.2018.00072
https://doi.org/10.1016/0734-189x(88)90071-0
https://doi.org/10.1115/1.3662552
https://doi.org/10.1109/cvpr.2019.00963
https://doi.org/10.1016/0031-3203(91)90073-e
https://doi.org/10.1109/ICPR.1990.118177
https://doi.org/10.1145/769953.769976
https://doi.org/10.1109/icdar.1995.602015
https://doi.org/10.1109/CVPR.2017.106
https://doi.org/10.1109/icip.2015.7350850
https://cvrs.whu.edu.cn/cannylines/
https://doi.org/10.1016/j.patcog.2014.08.027
https://doi.org/10.1109/ICPR.1994.576283

18 P. Bernet et al.

29. Pu, M., Huang, Y., Liu, Y., Guan, Q., Ling, H.: EDTER: Edge de-
tection with transformer. In: IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition (CVPR). pp. 1392–1402. IEEE (2022).
https://doi.org/10.1109/CVPR52688.2022.00146

30. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: Towards real-time object
detection with region proposal networks. In: Cortes, C., Lawrence, N., Lee, D.,
Sugiyama, M., Garnett, R. (eds.) Advances in Neural Information Processing Sys-
tems. vol. 28. Curran Associates, Inc. (2015), https://proceedings.neurips.cc/
paper/2015/file/14bfa6bb14875e45bba028a21ed38046-Paper.pdf

31. Ronneberger, O., Fischer, P., Brox, T.: U-Net: Convolutional networks for
biomedical image segmentation. In: International Conference on Medical Image
Computing and Computer-Assisted Intervention. pp. 234–241. Springer (2015).
https://doi.org/10.1007/978-3-319-24574-4 28

32. Sobel, I., Feldman, G.: An isotropic 3x3 image gradient operator (2015).
https://doi.org/10.13140/RG.2.1.1912.4965

33. Suárez, I., Buenaposada, J.M., Baumela, L.: Elsed: Enhanced
line segment drawing. Pattern Recognition 127, 108619 (2022).
https://doi.org/10.1016/j.patcog.2022.108619, code available at https:

//github.com/iago-suarez/ELSED

34. Visani, M., Kieu, V., Fornés, A., Journet, N.: Icdar 2013 music scores competition:
Staff removal. In: 2013 12th International Conference on Document Analysis and
Recognition. pp. 1407–1411. IEEE (2013). https://doi.org/10.1109/icdar.2013.284

35. Welch, G., Bishop, G.: An Introduction to the Kalman Filter. techreport TR 95-
041, Department of Computer Science, University of North Carolina at Chapel Hill,
Chapel Hill, NC 27599-3175 (2006), https://www.cs.unc.edu/~welch/media/

pdf/kalman_intro.pdf

36. Xie, S., Tu, Z.: Holistically-nested edge detection. In: IEEE Interna-
tional Conference on Computer Vision (ICCV). pp. 1395–1403 (2015).
https://doi.org/10.1109/ICCV.2015.164

37. Xu, Y., Xu, W., Cheung, D., Tu, Z.: Line segment detection us-
ing transformers without edges. In: Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition. pp. 4257–4266
(2021). https://doi.org/10.1109/cvpr46437.2021.00424, code available at https:

//github.com/mlpc-ucsd/LETR

38. Xue, N., Bai, S., Wang, F., Xia, G.S., Wu, T., Zhang, L.: Learning attraction field
representation for robust line segment detection. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. pp. 1595–1603 (2019).
https://doi.org/10.1109/cvpr.2019.00169, code available at https://github.com/
cherubicXN/afm_cvpr2019

39. Zhang, Y., Wei, D., Li, Y.: AG3line: Active grouping and geometry-gradient
combined validation for fast line segment extraction. Pattern Recognition 113,
107834 (2021). https://doi.org/10.1016/j.patcog.2021.107834, code available at
https://github.com/weidong-whu/AG3line

40. Zhou, Y., Qi, H., Ma, Y.: End-to-end wireframe parsing. In: Proceedings of the
IEEE/CVF International Conference on Computer Vision. pp. 962–971 (2019).
https://doi.org/10.1109/iccv.2019.00105, code available at https://github.com/

zhou13/lcnn

https://doi.org/10.1109/CVPR52688.2022.00146
https://proceedings.neurips.cc/paper/2015/file/14bfa6bb14875e45bba028a21ed38046-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/14bfa6bb14875e45bba028a21ed38046-Paper.pdf
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.13140/RG.2.1.1912.4965
https://doi.org/10.1016/j.patcog.2022.108619
https://github.com/iago-suarez/ELSED
https://github.com/iago-suarez/ELSED
https://doi.org/10.1109/icdar.2013.284
https://www.cs.unc.edu/~welch/media/pdf/kalman_intro.pdf
https://www.cs.unc.edu/~welch/media/pdf/kalman_intro.pdf
https://doi.org/10.1109/ICCV.2015.164
https://doi.org/10.1109/cvpr46437.2021.00424
https://github.com/mlpc-ucsd/LETR
https://github.com/mlpc-ucsd/LETR
https://doi.org/10.1109/cvpr.2019.00169
https://github.com/cherubicXN/afm_cvpr2019
https://github.com/cherubicXN/afm_cvpr2019
https://doi.org/10.1016/j.patcog.2021.107834
https://github.com/weidong-whu/AG3line
https://doi.org/10.1109/iccv.2019.00105
https://github.com/zhou13/lcnn
https://github.com/zhou13/lcnn

