How Effective are OS-level Virtualization Tools
for Managing Containers?

David Beserra, Robert Nantchouang, Mickael Chau, Marc Espie, Patricia Endo and
Jean Araujo

Abstract As reliance on OS-level virtualization tools grows, understanding their
efficiency in container management tasks is essential for optimizing performance.
This study presents a comprehensive performance analysis of Docker, Podman, and
LXD across key container management tasks: loading, starting, stopping, and re-
moving containers and images. Our results indicate Docker’s consistent superiority
in speed, achieving the fastest execution times across tasks but at the cost of higher
CPU usage. Podman demonstrates balanced resource efficiency, though generally
slower than Docker in image loading. LXD, while slower in starting containers,
exhibits lower CPU usage in parallel operations, making it suitable for scenarios
where resource efficiency is prioritized over speed. These findings underscore the
impact of tool choice on containerized environment performance, highlighting the
importance of selecting a tool based on specific deployment requirements.

1 Introduction

OS-level virtualization technologies like Docker, Podman, and LXC have emerged
as alternatives in response to the challenges from traditional virtualization tech-
niques used in cloud computing environments, such as the inherent overheads asso-
ciated with hypervisors responsible for managing VM activities and CPU resource

David Beserra, Robert Nantchouang, Mickael Chau, Marc Espie
Ecole Pour I’Informatique et les Techniques Avancées (EPITA), Paris, France
e-mail: david.beserra@epita.fr

Patricia Takako Endo
Universidade de Pernambuco, Pernambuco (UPE), Brasil
e-mail: patricia.endo@upe.br

Jean Araujo
Universidade de Aveiro, Aveiro (UA), Portugal
e-mail: jean.araujo@ua.pt



2 Authors Suppressed Due to Excessive Length

allocation [4]. OS-level virtualization refers to a lightweight approach that allows
multiple isolated user-space instances (containers) to run on a single host system,
sharing the operating system kernel while maintaining isolation. Unlike traditional
hypervisor-based virtualization, which requires separate virtual machines with full
OS instances, OS-level virtualization offers efficiency by reducing overhead and
enhancing resource utilization.

These tools aim to preserve the benefits of virtualization while addressing its
performance issues [3] [2]. However, despite their recognized advantages, there is
a pressing need to comprehensively evaluate the limitations and performance bot-
tlenecks associated with these tools. Of particular concern are the performance im-
plications of container management tasks, such as container starting, stopping, and
removal. Different tools may exhibit varying performance in these activities due to
distinct underlying mechanisms and architectures [11].

This paper evaluates the performance of Docker, Podman, and LXC/LXD OS-
level virtualization tools within container management workflows. Our primary goal
is to assess and compare the effectiveness of these tools across different container
management activities. Specifically, we aim to determine the time required for con-
tainer execution, stopping, and removal, quantify the resources necessary for these
management tasks, and explore the impact of resource sharing on tool performance
and host resource utilization. The insights from this analysis will support users and
administrators in choosing the most efficient container management tools based on
their performance and resource needs.

2 Related Works

The performance of OS-level virtualization tools has been extensively studied across
arange of applications [9], however few studies have focused specifically on evalu-
ating how these tools perform in their primary role: managing containers.

Inagaki et al. [8] analyzed Docker’s performance in container management tasks
within a microservice-based production environment. They explored the scalability
of building and running containers, identifying bottlenecks in storage and network
virtualization as well as issues related to kernel interfaces. However, their analysis
was limited to Docker, reducing the applicability of their findings to other tools
like Podman and LXD [3][7]. Additionally, the study did not quantify the resource
requirements as the number of containers increased, leaving a gap in comprehensive
performance analysis.

Straesser et al. [16] conducted an empirical evaluation involving 200,000 Docker
Hub images to understand how different image configurations impacted container
startup times. They found that no single configuration aspect solely dictated startup
performance. However, the study focused exclusively on Docker and one specific
management task—container starting—Ilimiting its general relevance to broader
container management operations or other OS-level tools.



How Effective are OS-level Virtualization Tools for Managing Containers? 3

Chhikara et al. [5] proposed an energy-efficient container migration scheme for
IoT environments, addressing the computational overhead issues of traditional vir-
tualization. While highlighting the advantages of containerization over virtual ma-
chines, the study did not compare the performance of multiple container manage-
ment tools. This left an unaddressed question of how different OS-level tools per-
form under similar resource-constrained scenarios.

Pan et al. [14] explored the performance of orchestration engines, such as Kuber-
netes, Docker Swarm, and Apache Mesos, in microservice deployments. This study
demonstrated Kubernetes’ efficiency in complex deployments, but it did not extend
to the direct performance analysis of OS-level tools like Docker, Podman, or LXD
for basic container management tasks.

Vcilic et al. [6] focused on edge computing and the adaptability of orchestration
platforms, assessing their ability to manage QoS under distributed resource condi-
tions. While it provided valuable insights into orchestration at the edge, the study did
not address the direct comparison of container management tools or basic container
operations.

In a recent work, Melo et at. [11] compared Docker and Podman across various
container management scenarios with different image sizes. The results indicated
that Podman performed better with smaller containers, while Docker excelled with
larger ones. However, this study did not evaluate the performance of these tools
when a running service was present in the containers, nor did it assess the impact of
concurrent resource sharing.

It is also important to distinguish that some studies equate container management
with orchestration, which differs in focus. Orchestration involves decision-making
processes for container allocation rather than the time taken for operations like start-
ing or stopping containers [17] [15].

To the best of our knowledge, no current work has directly compared the per-
formance of multiple OS-level tools in their core container management tasks or
examined the impact of increased container density on resource utilization and per-
formance. This study aims to address these gaps, using the methodology outlined in
the following section.

3 Materials and methods

The main goal of this work is to evaluate and quantitatively compare the perfor-
mance of OS-level virtualization tools in container management tasks. This goal is
divided into specific objectives:

e Evaluate the time required by OS-level virtualization tools (Docker, Podman,
LXC/LXD) to perform container image loading, container starting, container
stopping, container removing, and container image removing.

* Measure the resources (specifically CPU, memory, and disk utilization) required
by each tool for these container management tasks.



4 Authors Suppressed Due to Excessive Length

* Analyze the effect of resource sharing on both the tools’ performance and the
host system’s resource utilization.

The first objective assesses how quickly each tool can complete key container
management actions, from image loading to image removal. This analysis is cru-
cial in environments where rapid provisioning or cleanup is required, as delays in
these processes can impact overall system efficiency and scalability. The second
objective, focused on resource requirements, is particularly relevant in high-scale
environments where even minor increases in CPU, memory, or disk usage can lead
to substantial cumulative costs. For example, a mere 5% increase in memory usage
could necessitate additional gigabytes of RAM across multiple nodes. Lastly, the
third objective examines how simultaneous container operations impact both tool
performance and host stability. Understanding this effect is essential for efficient
resource allocation in multi-container environments, as increased container density
often intensifies resource competition.

3.1 Experimental Design

To meet these objectives, we designed a standardized container lifecycle manage-
ment protocol (Figure 1) inspired by [11]. This protocol measures the performance
of key stages in the container workflow, including: Container Image Loading,
which involves loading the image required to initiate a container instance; Con-
tainer Starting, which initializes the container to begin its designated tasks; Con-
tainer Stopping, which halts the container process; Container Removing, which
deletes the container instance from the system; and Container Image Removing,
which frees up storage by removing the container image.

. Load container Start Wait 30 Run workload Stop
- N image container seconds for 2 minutes container

< N<100 >
Wait 30 Remove Wait 30 ci‘alma‘l’r‘]’; Wait 60
seconds container seconds seconds

image
\

Fig. 1 Experimental Design Flow [11]

Each stage is followed by a cooldown period (30 seconds after starting, 60 sec-
onds after image removal) to prevent interference between runs. This protocol re-
peats for up to 100 iterations to ensure consistent results. To simulate a real-world
workload, a standardized container image running the High-Performance Linpack
(HPL) benchmark [10] was employed. This benchmark solves a dense system of
linear equations, producing a CPU- and memory-intensive workload. Configured to



How Effective are OS-level Virtualization Tools for Managing Containers? 5

run for at least two minutes, this workload provides a sustained stress test for con-
tainer management. We empirically set the matrix size parameter N=8832 to meet
the time requirement, using a single process to minimize resource interference.

To address the second and third objectives, we repeated the protocol with multi-
ple containers running concurrently (2, 4, and 8 instances) to measure the impact of
resource sharing on each tool’s performance. Resource usage (CPU, memory, disk)
and execution times were monitored to assess the effect of concurrent operations on
each tool’s efficiency.

3.2 Software Infrastructure: OS-level Virtualization Tools

The OS-level virtualization tools evaluated in this work were Docker, Podman, and
LXC/LXD. Linux Containers (LXC) provide lightweight virtualization by sharing
the host kernel, which minimizes overhead and allows for efficient resource use.
LXC manages resource allocation through cgroups (Control Groups) and isolates
processes using namespaces. However, to ensure comparability with Docker and
Podman, both of which offer user-friendly interfaces and management capabilities,
we use LXD, an extension of LXC. LXD enhances LXC with a more accessible
interface and additional features, such as clustering and live migration, which make
it suitable for complex deployment scenarios. This added functionality aligns LXD
with Docker and Podman in terms of usability and management, providing a com-
parable experience across the tools while preserving LXC’s lightweight nature [12].

Docker enables applications and dependencies to be packaged into container im-
ages, which can be quickly instantiated. It uses an overlay filesystem to enhance
storage efficiency and supports image layering, facilitating the deployment of con-
tainers across cloud environments [13]. In turn, Podman is a daemonless container
management tool, making it well-suited for environments prioritizing container in-
dependence and security, while maintains Docker compatibility[1]. The software
versions tested were Docker 23.0.1, Podman 5.0.1, and LXD 5.21.

3.3 Resource Monitoring with Collectl

Throughout the experiments, Collect] was used to monitor system resources, captur-
ing CPU, memory, and disk usage metrics in real time. Collectl’s high sampling rate
of 1 second allowed for fine-grained monitoring, ensuring that resource fluctuations,
particularly under high-load conditions, were accurately recorded. This approach
was essential for identifying transient peaks and dips in resource usage, providing a
precise understanding of each tool’s behavior and resource requirements in different
container density scenarios. This data informs our analysis of each tool’s efficiency
and suitability for high-density, multi-container environments, where resource man-
agement is paramount.



6 Authors Suppressed Due to Excessive Length

3.4 Physical Infrastructure

All experiments were conducted on an HP Compaq Elite server equipped with an
Intel Core i7 3770 CPU at 3.4 GHz, 16 GB DDR3 RAM, and a 128 GB SSD,
running Debian 12 Bookworm (kernel version 6.1-amd64).

4 Results

4.1 Container Image Loading

In the Container Image Loading operation, Docker consistently achieves the shortest
loading times across all concurrency levels, indicating an efficient design optimized
for rapid image handling and initialization, as shown in Figure 2. This high perfor-
mance is facilitated by Docker’s centralized daemon and overlay filesystem, which
reduce redundancy in image loading. However, Docker’s low loading time comes
at the cost of high CPU usage, with CPU consumption increasing as concurrency
rises. This trade-off suggests Docker’s approach of allocating more CPU resources
to minimize load times, making it ideal for CPU-rich environments where perfor-
mance is prioritized.

1e10 Time (ns) - Ioad Command CPU Usage Comparison - load Command 1e6_ Memory Usage Comparison - load Command

- uo
= Docker
= podman

CPU usage (%)

(a) Time

Disk Usage Comparison - load Command

Disk usage (KB)

urrency Concurrency

(d) Disk utilization (e) Disk utilization - Zoomed

Fig. 2 Performance of OS-level virtualization tools when performing the Container Image Loading
operation

LXD shows moderate loading times and significantly lower CPU usage, reflect-
ing a conservative resource allocation approach. LXD’s focus on CPU efficiency



How Effective are OS-level Virtualization Tools for Managing Containers? 7

aligns with its lightweight container architecture, but its slower loading times rel-
ative to Docker highlight a trade-off in prioritizing efficiency over speed. Podman,
with the highest loading times across all concurrency levels, balances moderate CPU
and low memory usage due to its daemonless architecture, which avoids centralized
management overhead but sacrifices some speed in image handling. Minimal disk
usage across all tools indicates that disk I/O is not a bottleneck in the loading pro-
cess, though Podman’s slower performance suggests a trade-off favoring lightweight
resource usage over speed. The standard deviation in disk utilization is higher than
in the other metrics, however this is a normal result of a performance and disk uti-
lization measurement, regardless of the workload applied to the disk [2].

4.2 Container Starting

Figure 3 shows that the Container Starting operation further highlights Docker’s
performance-oriented design. Docker consistently maintains the shortest start times,
with a notable increase in CPU usage at higher concurrency levels. This pattern un-
derscores Docker’s strategy of aggressively utilizing CPU resources to ensure rapid
container initiation, making it suitable for environments requiring high performance
and responsiveness. Podman achieves relatively low start times but shows a more
balanced CPU usage profile, reflecting a moderate approach that optimizes resource
usage while delivering reasonable performance.

LXD, however, displays the longest start times, particularly at high concurrency,
alongside the lowest CPU usage. This trade-off suggests that LXD’s architecture
prioritizes CPU efficiency over container start speed, potentially limiting its effec-
tiveness in high-demand scenarios. Memory usage varies significantly, with LXD
consuming the highest memory across all concurrency levels, likely due to its ad-
vanced management features like clustering and state management. Docker and
Podman demonstrate efficient memory handling, aligning with their suitability for
memory-constrained environments. These results show that while Docker and Pod-
man achieve faster start times by allocating more CPU resources, LXD emphasizes
resource efficiency, resulting in slower start times but lower CPU consumption.

4.3 Container Stopping

In the Container Stopping operation, Docker again outperforms in terms of execu-
tion time, consistently achieving the shortest stop times across concurrency levels
with higher CPU usage, as shown in Figure 4. This finding aligns with Docker’s
focus on speed and makes it ideal for applications requiring rapid container termi-
nation. Podman’s stop times are slightly longer than Docker’s but remain low, with
moderate CPU usage that scales with concurrency. This balance reflects Podman’s
design for efficient container management without excessive resource allocation.



8 Authors Suppressed Due to Excessive Length

1e11 Time (ns) - start Command 10 Time (ns) - start Command CPU Usage Comparison - start Command

Py usage (%)

1 2 a s
« y

(c) CPU utilization

Disk Usage Comparison - start Command

(a) Time

1e7_ Memory Usage Comparison - start Command

350000

300000

250000

200000

usage (k8]

& 150000
100000

s0000

1 2 3 s

(d) RAM utilization

1 H 3 o

(f) Disk utilization - Zoom 1

(g) Disk utilization - Zoom
2

Fig. 3 Performance of OS-level virtualization tools when performing the Start Container operation

LXD, by contrast, demonstrates the longest stop times and the lowest CPU usage,
especially as concurrency increases, reflecting a conservative approach to resource
management. LXD’s high memory usage during stopping operations suggests that
its extensive management capabilities, including handling metadata and preserving
state, add overhead. This pattern suggests that LXD may be more appropriate in
environments where CPU efficiency and container lifecycle management are more
critical than rapid termination. Disk usage remains low across all tools for this op-
eration, indicating that disk I/O does not significantly impact the container stopping
process.

4.4 Container Removal

For the Container Removal operation, Docker again achieves the shortest removal
times, underscoring its efficiency in managing container storage and state. Podman
exhibits moderately low removal times, which slightly increase with higher concur-
rency, indicating efficient container handling even without a centralized daemon.



How Effective are OS-level Virtualization Tools for Managing Containers? 9

1e10 ‘Time (ns) - stop Command CPU Usage Comparison - stop Command
-0
- Docker

1e7__Memory Usage Comparison - stop Command

P usage (%)
Hemory usage (kB)

1 2 H s
Concurrency.

(a) Time - Full (b) CPU utilization (c) RAM utilization

107 Disk Usage Comparison - stop Command

H H
Concurrency Concurrency

- U0
= Docker
= rodman

Disk usage (KB)

Concurrency Concurrency

(d) Disk utilization (e) Disk utilization - Zoomed

Fig. 4 Performance of OS-level virtualization tools when performing the Container Stopping op-
eration

Podman’s minimal CPU and disk usage for this operation suggest a balance be-
tween performance and resource conservation, making it suitable for environments
with limited storage or compute resources.

1010 Time (ns) - remove_container Command 1es Time (ns) - remove _container Command CPU Usage Comparison - remove_container Command
-0 -0
401 e Docker

CPU usage (%)

1 2 3 ® 1 3 3 s

cncureny cncareny
(a) Time (b) Time - Zoom (c) CPU utilization
ll:smory Usage Comparison - remove_container Command mmsk Usage Comparison - remove_container Command 100000 _Disk Usage Comparison - remove_container Command
=
= i .
5" E
i 3 oo
o0 1 2 4 8 o 1 4 8 ° 1 2 a 8
conureney J— concarerey
(d) RAM utilization (e) Disk utilization (f) Disk utilization - Zoomed

Fig. 5 Performance of OS-level virtualization tools when performing the Container Removal op-
eration



10 Authors Suppressed Due to Excessive Length

LXD, however, shows consistently high removal times, especially at higher con-
currency levels, along with elevated memory and disk usage. This performance pro-
file suggests that LXD’s comprehensive management of container metadata and per-
sistent storage cleanup introduces additional overhead, which may not scale well in
high-concurrency scenarios. The high disk usage in LXD suggests intensive inter-
action with container metadata and storage, potentially limiting its effectiveness in
storage-constrained environments. These results suggest that Docker’s rapid con-
tainer removal capability is beneficial for environments requiring frequent container
turnover, while LXD’s resource-intensive approach may suit environments priori-
tizing complex container state management.

4.5 Container Image Removal

Figure 6 shows that the Container Image Removal operation further differentiates
the tools’ performance characteristics. Docker maintains the fastest image removal
times, suggesting highly optimized image deletion protocols facilitated by its over-
lay filesystem and centralized resource management.

1e8 Time (ns) - remove._image Command CPU Usage Comparison - remove_image Command

(a) Time (b) CPU utilization

Memory Usage Comparison - remove_image Command 17 Disk Usage Comparison - remove_image Command
e6

X

-0

= rodman

Memory usage (KB)

Concurrency Concurrency

(¢) RAM utilization (d) Disk utilization

Fig. 6 Performance of OS-level virtualization tools when performing the Container Image Re-
moval operation

LXD, however, displays substantial variation in image removal times, with an
anomalously high execution time at concurrency level 2. This inconsistency, com-
bined with high memory and disk usage, suggests that LXD’s image management
processes are resource-intensive, likely due to its advanced state management. Pod-



How Effective are OS-level Virtualization Tools for Managing Containers? 11

man, with moderate image removal times and balanced resource usage, indicates
efficient but conservative resource handling.

5 Conclusions

This study evaluated the performance of three OS-level virtualization tools—LXD,
Docker, and Podman—across key container management tasks, analyzing their exe-
cution times, CPU usage, memory usage, and disk usage at varying concurrency
levels. Our results show that Docker consistently achieves the fastest execution
times by leveraging high CPU usage, making it ideal for performance-critical en-
vironments with sufficient CPU resources. Podman balances moderate execution
times with lower CPU and disk usage, aligning it with resource-constrained en-
vironments. LXD, while the slowest, prioritizes CPU efficiency and comprehensive
management capabilities, making it suitable for scenarios where advanced container
lifecycle management is essential.

The results highlight the trade-offs between speed, resource efficiency, and man-
agement capabilities in each tool’s design. Docker’s high CPU allocation ensures
speed but may be costly in resource-limited setups, whereas Podman’s balanced ap-
proach offers versatility. LXD’s extensive management features come with higher
memory and disk usage, impacting performance under high concurrency.

This work has limitations, including the lack of investigation into container or-
chestration tools like Kubernetes, which may impact each tool’s efficiency in large-
scale environments. Future research should explore the effects of orchestration,
different hardware configurations, and network performance to broaden the under-
standing of these tools’ applicability across diverse scenarios.

Based on the findings of this study, several future research directions can be ex-
plored to expand the understanding of OS-level virtualization tools for container
management. One potential avenue is to investigate the integration of these tools
within container orchestration frameworks, such as Kubernetes or Docker Swarm,
to evaluate how orchestration impacts performance and resource utilization in com-
plex, large-scale environments. Additionally, examining the effects of various hard-
ware configurations, including multi-node clusters or specialized hardware such as
GPUs, could provide insights into optimizing container management for specific
workload types. Finally, exploring the impact of security features on the perfor-
mance of these tools, particularly in environments with stringent compliance re-
quirements, could further inform the selection of OS-level virtualization tools in
security-sensitive scenarios.



12

Authors Suppressed Due to Excessive Length

References

10.

11.

12.

13.

14.

15.

16.

17.

. Alqaisi, O.1., Tosun, A.S., Korkmaz, T.: Performance analysis of container technologies for

computer vision applications on edge devices. IEEE Access (2024)

. Beserra, D., Moreno, E.D., Endo, P.T., Barreto, J.: Performance evaluation of a

lightweight virtualization solution for hpc i/o scenarios. In: 2016 IEEE International
Conference on Systems, Man, and Cybernetics (SMC). pp. 004681-004686 (Oct 2016).
https://doi.org/10.1109/SMC.2016.7844970

. Beserra, D., Pinheiro, M.K., Souveyet, C., Steffenel, L.A., Moreno, E.D.: Performance evalu-

ation of os-level virtualization solutions for hpc purposes on soc-based systems. In: IEEE Int.
Conf. on Advanced Information Networking and Applications (AINA 2017) (2017)

. Beserra, D., Espie, M., Tomasimo, L., de Poncins, H., Lacombe, H., Vondracek, T., Araujo, J.:

Could the topology of virtual processors affect the performance of a bsd-family os running in
a vm? In: 2023 18th Iberian Conference on Information Systems and Technologies (CISTI).
pp. 1-6. IEEE (2023)

. Chhikara, P., Tekchandani, R., Kumar, N., Obaidat, M.S.: An efficient container management

scheme for resource-constrained intelligent iot devices. IEEE Internet of Things Journal 8(16),
12597-12609 (2020)

. Cili¢, 1., Krivié, P., Podnar Zarko, 1., Kusek, M.: Performance evaluation of container orches-

tration tools in edge computing environments. Sensors 23(8), 4008 (2023)

. Gomes Xavier, M., Veiga Neves, M., de Rose, F., Augusto, C.: A performance comparison

of container-based virtualization systems for mapreduce clusters. In: Parallel, Distributed and
Network-Based Processing (PDP), 22nd Euromicro Int. Conf. on. pp. 299-306 (2014)

. Inagaki, T., Ueda, Y., Ohara, M.: Container management as emerging workload for operating

systems. In: 2016 IEEE International Symposium on Workload Characterization IISWC). pp.
1-10. IEEE (2016)

. Li, Z., Kihl, M., Lu, Q., Andersson, J.A.: Performance overhead comparison between hy-

pervisor and container based virtualization. In: 2017 IEEE 31st International Conference on
advanced information networking and applications (AINA). pp. 955-962. IEEE (2017)
Luszczek, P, Meek, E., Moore, S., Terpstra, D., Weaver, V.M., Dongarra, J.: Evaluation of the
hpc challenge benchmarks in virtualized environments. In: Euro-Par 2011: Parallel Processing
Workshops. pp. 436-445. Springer (2012)

Melo, P.,, Gama, L., Dantas, J., Beserra, D., Araujo, J.: Performance evaluation of container
management tasks in os-level virtualization platforms. In: 2023 IEEE International Conference
on Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE). pp. 1-6.
IEEE (2023)

Moravcik, M., Segec, P., Kontsek, M., Uramova, J., Papan, J.: Comparison of Ixc and docker
technologies. In: 2020 18th International Conference on Emerging eLearning Technologies
and Applications (ICETA). pp. 481-486. IEEE (2020)

Muzumdar, P., Bhosale, A., Basyal, G.P., Kurian, G.: Navigating the docker ecosystem: A
comprehensive taxonomy and survey. Muzumdar, P., Bhosale, A., Basyal, GP, & Kurian,
G.(2024). Navigating the Docker Ecosystem: A Comprehensive Taxonomy and Survey. Asian
Journal of Research in Computer Science 17(1), 42-61 (2024)

Pan, Y., Chen, I., Brasileiro, F., Jayaputera, G., Sinnott, R.: A performance comparison of
cloud-based container orchestration tools. In: 2019 IEEE International Conference on Big
Knowledge (ICBK). pp. 191-198. IEEE (2019)

Shih, W.C., Yang, C.T., Ranjan, R., Chiang, C.I.: Implementation and evaluation of a con-
tainer management platform on docker: Hadoop deployment as an example. Cluster Comput-
ing 24(4), 3421-3430 (2021)

Straesser, M., Bauer, A., Leppich, R., Herbst, N., Chard, K., Foster, I., Kounev, S.: An empiri-
cal study of container image configurations and their impact on start times. In: 2023 23rd IEEE
International Symposium on Cluster, Cloud and Internet Computing (CCGrid). io (2023)
Yang, S., Wang, X., An, L., Zhang, G.: Yun: a high-performance container management ser-
vice based on openstack. In: 2019 IEEE Fourth International Conference on Data Science in
Cyberspace (DSC). pp. 202-209. IEEE (2019)



