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Abstract Pervasive systems demand flexible, efficient resource management poli-
cies to handle heterogeneous infrastructures and varying application needs. This
paper introduces an extended formalism that overcomes limitations in previous ap-
proaches by distinctly separating static properties from dynamic context elements,
allowing more precise policy definitions. Mandatory and optional policies are ex-
plicitly categorized, enabling fail-fast decisions when critical conditions fail, while
also supporting opportunistic executions. These design choices reduce evaluation
costs—often down to O(1) in the best case—and permit large-scale environments to
benefit from parallel evaluations. Practical simulations demonstrate superior perfor-
mance in collaborative, multi-organization scenarios, highlighting improved adapt-
ability, reduced overhead, and effective integration of organizational knowledge
within the resource management process.

1 Introduction

Pervasive systems are designed to seamlessly integrate a wide range of services
and infrastructures, enabling intelligent environments capable of dynamic adapta-
tion [14]. These systems are characterized by their operation across heterogeneous,
distributed, and often resource-constrained environments, where computational re-
sources such as CPU, memory, and network bandwidth are shared among diverse
tasks [8] [1]. Effective management of these resources is crucial to ensure both the
performance of individual tasks and the overall system stability.

David Beserra
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Resource allocation in pervasive systems poses several challenges due to the in-
herent variability of the infrastructure and the context-dependent nature of service
requirements [2]. Tasks often have unique conditions for execution, necessitating
well-defined policies that govern resource utilization. These policies must address
both static resource properties, such as hardware specifications, and dynamic con-
textual conditions, such as current system load or network latency.

Existing approaches for police formalization in resource management for perva-
sive systems and related technologies are limited by hardcoded policies [7], inef-
ficient sequential evaluations, lack of prioritization for mandatory conditions, and
poor adaptability to dynamic resource attributes. This paper addresses these limita-
tions by introducing a formalism for resource management policies in pervasive sys-
tems. Building upon a previously established model [3][2], which categorized poli-
cies into Requeriments (must-have conditions) and Restrictions (must-not condi-
tions), the extended formalism incorporates several innovations. It introduces hierar-
chical policy categorization, distinguishing between Mandatory and Opportunis-
tic policies to enable explicit prioritization. A fail-fast mechanism halts evaluations
early when invalid conditions are encountered, reducing computational overhead.

To demonstrate the effectiveness of the proposed formalism, this paper presents
a practical example of its application in a collaborative resource-sharing scenario
involving multiple enterprises. The scenario illustrates how the formalism supports
fairness, efficiency, and adaptability in dynamic environments. Furthermore, a com-
parative analysis evaluates the computational complexity of the extended formalism
and its predecessor, supported by performance simulations to validate its benefits.

2 Related Works

Numerous studies have explored context-aware resource management in pervasive,
IoT, edge, and fog computing environments. Examples include [7], [4], [11], [13],
[6], [11], and [3][2]. In [7], a centralized, context-aware scheduler for pervasive
grids targeting MapReduce applications is proposed, while [4] describes hierarchi-
cal strategies for edge/fog environments. Studies [10] and [11] focus on a distributed
IoT/edge scheduler in a smart building, and [12] employs edge computing to exe-
cute opportunistic services. In [6], the authors analyze various uses of context in-
formation for scheduling in edge/fog and IoT environments. Further, [1] addresses
resource management in 5G/6G networks, and [3][2] present a fully distributed re-
source manager emphasizing opportunistic usage.

Despite these contributions, most of these works provide only partial or ad-hoc
policy specification approaches, often intermingling policy definitions directly with
scheduling or decision logic. First, many fail to clearly distinguish static prop-
erties (immutable attributes) from context elements [9] (dynamic, sensor-driven
data)—including research such as [6]—thereby complicating policy specification
and ignoring differences in data-access costs (rapid for properties yet slower for
sensor data). Second, policies are frequently hardcoded into decision mechanisms,
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limiting flexibility when accuracy requirements or organizational contexts change.
Third, most approaches (except [3][2]) overlook organizational aspects, such as
cross-company resource sharing. Lastly, none explicitly differentiate mandatory
from opportunistic policies, missing opportunities to ensure quality of service while
facilitating opportunistic execution.

Study [3] introduced a formalism that partially separates context elements from
static properties within a fully distributed resource manager architecture for perva-
sive systems, thereby enabling more precise resource evaluations. However, it still
offers only limited means of structuring and categorizing policies, leaving gaps in
how mandatory or optional requirements are formalized. Although [12] supports
distributed scheduling and opportunistic resource utilization, it does not explicitly
distinguish between mandatory and optional policies, nor does it fully leverage orga-
nizational knowledge or variable data accuracy. Thus, while these approaches mit-
igate some policy hardcoding, important gaps persist in policy specification and
formalization.

In this work, we extend [3][2] by introducing a more robust formalism for pol-
icy definition. We incorporate mandatory policies (to ensure QoS and accelerate
decision-making upon violations) alongside optional policies (to support oppor-
tunistic usage). We also propose more structured categorizations—including the
separation of static properties versus dynamic context elements, plus consideration
of organizational knowledge—to enhance clarity, adaptability, and overall perfor-
mance in policy specification and evaluation.

3 Management Policies Formalism

This section introduces the formalism for defining and evaluating resource man-
agement policies in pervasive systems. Policies serve two main purposes: defining
conditions under which a service can be executed on a device and specifying the
conditions for a device to accept service execution. This dual-purpose approach en-
sures comprehensive management of interactions between services and resources
in dynamic, heterogeneous environments. Key concepts—properties, context ele-
ments, remarkable states, and policies—are formally defined and illustrated to aid
understanding.

3.1 Original Formalism

The original formalism presented in [3] [2] provides a structured framework for
specifying resource management policies. Policies govern conditions for resource
allocation and service execution, ensuring precise control over dynamic interactions
between services and devices.
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Policies are divided into two categories: Requeriments (conditions that should
be true for a policy to be satisfied) and Restrictions (conditions that should be false
for validity). Formally, the set of all policies P is expressed as:

P = {E,R} (1)

where E = {E1,E2, . . . ,En} represents Exigences, and R = {R1,R2, . . . ,Rm} repre-
sents Restrictions.

Each policy Pi is characterized by its weight (Wi) and a set of remarkable states
(Si), ensuring relative importance and evaluative criteria:

Pi = {Wi,Si}, ∑
i

Wi = 1. (2, 3)

Information used in policies can be or Context Elements or Properties. Dynamic
context elements (C) describe real-time system states [5], such as CPU usage or
network latency, while static properties (P) represent immutable system character-
istics, like CPU cores or device architecture. Together, these elements define the
system’s operational conditions.

Context elements are structured as:

Ci = {Name,Value,Type} (4)

where Name identifies the element, Value reflects runtime status, and Type specifies
its data type. Similarly, properties are defined as:

Pj = {Name,Value,Type}. (5)

In this formalism, all policies are composed by a set of Remarkable States, that
encapsulate conditions for policy evaluation. A Remarkable state (Rs) is structured
as:

Rs = {Operand,Source,Operator,Expected Value,Tolerance}, (6)

where Operand identifies an attribute, Source specifies whether it belongs to Con-
text or Properties, Operator determines the comparison type, Expected Value is
the target, and Tolerance reflects permissible variation.

This original formalism has notable limitations: - Unified Collection Issue:
Context elements and properties are stored in a single flat collection without log-
ical grouping, making it challenging to distinguish between dynamic and static at-
tributes. - Sequential Evaluation Overhead: Policies are evaluated sequentially,
requiring all conditions to be checked even if an invalid condition is encountered
early, leading to inefficiency. - No Prioritization: Policies are treated equally, lack-
ing mechanisms to differentiate between critical and non-critical conditions.
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3.2 The Extended Formalism

To address the challenges outlined in Section 3.1, the extended formalism intro-
duces systematic enhancements that improve the organization, prioritization, and
evaluation of resource management policies. These enhancements include logical
subsets for properties and context elements, explicit policy prioritization, and im-
proved evaluation mechanisms.

In this extension of the original formalism, properties (P) and context elements
(C) are now explicitly linked to the logical subsets to which they belong. This struc-
tural change ensures better organization, making it easier to evaluate policies and
manage attributes.

Properties (P): Properties still represent static, immutable characteristics of the
system. However, unlike the original formalism, where properties were stored in
a single collection, the extended formalism organizes them into logical subsets
(P0,P1, . . .) based on their domain (e.g., CPU-related, memory-related). Each prop-
erty explicitly specifies its subset membership.

Formally:
P = {P0,P1, . . . ,Pn} (7)

Each property is defined as:

p = (key,values,associated set) (8)

Example:

P0 = {(”architecture”,”ARM”,”CPU”),(”physical cores”,8,”CPU”)} (9)

Context Elements (C): Context elements still represent dynamic attributes of
the system’s runtime state. But now, like properties, they are divided into logical
subsets (C0,C1, . . .) based on their relevance (e.g., CPU-related, network-related).
Each context element explicitly references its subset membership.

Formally:
C = {C0,C1, . . . ,Cn} (10)

Each context element is defined as:

c = (key,value, type value,associated set) (11)

Example:

C0 = {(”usage”,75,”CPU”),(”temperature”,65,”CPU”)} (12)

By introducing logical subsets, the extended formalism enhances the inter-
pretability and manageability of both static and dynamic information types, directly
addressing the ambiguity in the original model.

We also extended the police specification in order to enable flexibility and effi-
ciency in resource management. In order to do that, policies are now divided into
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Mandatory (Polobg) and Optional (Polopt) subsets, explicitly prioritizing condi-
tions. In turn, each policy subset remains divided into into requirements and restric-
tions, like in the original version.

Formally:
Pol = {Polobg,Polopt} (13)

Finally, the policies now also indicates to which category they belong:

p = (Context,Properties,W,SC,SP) (14)

The extended formalism offers several key advantages over the original ap-
proach. First, its logical subsets for properties and context elements reduce ambi-
guity and enable clear policy references. Second, explicitly prioritizing mandatory
and optional policies ensures that critical conditions receive precedence. Third, ef-
ficiency is greatly enhanced by the fail-fast mechanism, which avoids unnecessary
evaluations once a mandatory condition fails. Finally, this extended approach sup-
ports scalability in complex and large-scale systems, effectively addressing the orig-
inal formalism’s limitations.

4 Analysis

In this section we compare the original and extended formalisms in terms of both
complexity and practical applicability. A collaborative resource-sharing scenario
demonstrates how the extended formalism offers clear advantages over the origi-
nal. A subsequent computational complexity study further highlights improvements
made possible by the extended formalism, including parallel evaluation algorithms.

4.1 Application Example: Collaborative Resource Sharing in a
Commercial Center

This example explores the application of both formalisms to a scenario involving
three companies in a commercial center that collaborate to share computational re-
sources. Each enterprise contributes its resources and defines policies to regulate
access. The goal is to ensure that mandatory services are protected while allowing
opportunistic services whenever possible, depending on resource availability. The
scenario is resumed by Table 4.1

Each company defines policies for managing resources using either the original
or extended formalism, as resumed in the Table 4.1

In the original formalism, there is no explicit information about whether a re-
markable state operates on a context element (C) or a property (P). This ambiguity
leads to challenges in correctly interpreting and evaluating policies, particularly for
scenarios requiring precise differentiation between static and dynamic attributes. By
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Company Resources Mandatory Services Opportunistic Services
Enterprise A 2 notebooks, 3 servers Fixed, tied to resources Moderate CPU load, low

network latency
Enterprise B 1 server, 10 Raspberry Pis Low resource tasks, fixed

to devices
Lightweight, low memory,
moderate network

Enterprise C 5 servers High computation, tied to
specific servers

High computation, re-
quires significant resources

Table 1 Description of enterprises and their resource usage.

Formalism Policy Example Original Formalism Extended Formalism
Enterprise A Service-Specific Policy {(CPU usage, ≤

,70,0.1),(Network latency,≤
,50,0.05)}

{(CPU usage, C0, ≤
,70,0.1),(Network latency,C1,
≤,50,0.05)}

Resource-Specific Policy {(CPU cores, ≥
,4,0),(Available memory,≥
,8,0.05)}

{(CPU cores, P0, ≥
,4,0),(Available memory,C1,
≥,8,0.05)}

Enterprise B Service-Specific Policy {(Network throughput,
≥,50,0.05)}

{(Network throughput, C1,
≥,50,0.05)}

Resource-Specific Policy {(Available memory,
≥,2,0.05)}

{(Available memory, C1, ≥
,2,0.05)}

Enterprise C Service-Specific Policy {(Available CPU cores, ≥
,6,0.05),(Memory usage,≤
,70,0.1)}

{(Available CPU cores,
C0, ≥
,6,0.05),(Memory usage,C1,
≤,70,0.1)}

Resource-Specific Policy {(L3 cache, ≥,16,0)} {(L3 ache, P0, ≥,16,0)}
Table 2 Comparison of original and extended formalisms for different policies.

contrast, the extended formalism explicitly associates each remarkable state with
a logical subset, such as C0 for CPU-related context elements or P0 for CPU-related
properties, ensuring clarity and efficiency in evaluations.

Enterprise C requires policies that involve conditions across multiple servers and
subsets. These policies include requirements such as at least six available CPU cores
(C0), memory usage below 70% (C1), an L3 cache of at least 16 MB (P0), and CPU
usage by mandatory services not exceeding 90% (C0). Under the original formalism,
these policies present significant challenges. All context elements and properties are
stored in a unified collection, making it impossible to distinguish between dynamic
and static attributes. The lack of logical subsets (C0, C1) creates ambiguity and ham-
pers effective policy evaluation.

Furthermore, the original formalism requires all remarkable states to be checked
even if a critical failure occurs early in the sequence. For instance, if the CPU
cores requirement fails, memory usage and L3 cache conditions are still unnecessar-
ily evaluated, resulting in computational inefficiency. The absence of prioritization
mechanisms compounds the problem, as all policies are treated equally, regardless
of their criticality.

In contrast, the extended formalism resolves these challenges by introducing log-
ical subsets that explicitly separate attributes into meaningful categories. This struc-
ture allows policies to reference subsets directly, simplifying evaluations and elim-
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inating ambiguity. Fail-fast mechanisms terminate evaluations early if a condition
fails, reducing computational overhead. Additionally, parallel evaluations enable si-
multaneous processing of subsets like C0 (CPU-related) and C1 (memory-related),
significantly improving performance.

4.2 Computational Complexity Analysis

The computational complexity of evaluating policies under the original and ex-
tended formalisms is analyzed using the evaluation of a single remarkable state as
the fundamental unit of work. Let n represent the total number of remarkable states
in the policy set, and p the number of processors available for parallel evaluation.

Under the original formalism, all remarkable states are evaluated sequentially
without differentiation between mandatory and optional policies. Even in the best
case, all n states are evaluated due to the lack of fail-fast mechanisms. On average,
all n states are evaluated, and in the worst case, the process is identical. Thus, the
complexity for all cases is O(n).

The extended formalism allows the usage of fail-fast mechanisms, reducing com-
plexity. For sequential evaluation, the best case occurs when a mandatory condition
fails immediately, resulting in O(1) complexity. On average, the evaluation involves
a fraction of n, yielding O(n) complexity. In the worst case, all states are evaluated
sequentially, maintaining O(n) complexity.

Parallel evaluation distributes the workload across p processors. In the best case,
a single failure terminates the process, resulting in O(1). On average, the workload
per processor is n/p, and the complexity becomes O(n/p). In the worst case, all
states are evaluated across processors, maintaining O(n/p) complexity.

Parallel algorithms can theoretically significantly reduce the effective evaluation
time, particularly for large-scale systems. Logical subsets enable independent eval-
uations, maximizing parallelism and further enhancing scalability.

Formalism Evaluation Scenario Complexity

Original Formalism Best Case O(n)
Average Case O(n)
Worst Case O(n)

Extended Formalism (Sequential) Best Case (fail-fast) O(1)
Average Case O(n)
Worst Case O(n)

Extended Formalism (Parallel) Best Case (fail-fast) O(1)
Average Case O(n/p)
Worst Case O(n/p)

Table 3 Computational complexity comparison of the original and extended formalisms under
different evaluation scenarios. Here, n is the number of remarkable states and p is the number of
available processors.
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This comparative analysis demonstrates the extended formalism’s superior ef-
ficiency, scalability, and adaptability. By addressing the limitations of the original
framework, the extended formalism provides a robust solution for managing re-
sources in pervasive systems, making it well-suited for dynamic and large-scale
environments.

4.3 Behavior Simulation

This section presents simulations designed to verify how both formalisms behave
under different conditions. We used two C programs—one per formalism—that sim-
ulate the execution time of a set of policies defined according to either the original
or extended policy-specification approach. Both simulators incorporate random de-
lays to represent practical scenarios, such as observing a context element (via sensor
readings), accessing a static property (via a faster table lookup), and marking certain
states as invalid based on a predefined invalidation ratio. In the extended formalism,
users can additionally specify the ratio of mandatory policies. Both simulators can
operate in sequential or parallel mode using OpenMP, and the parallel mode sup-
ports dynamic, static, or guided scheduling. All parallel tests ran on a 12th Gen
Intel(R) Core(TM) i5-1235U heterogeneous processor featuring two core types, op-
erating at 1.3 GHz and 0.4 GHz, respectively. The simulation codes are freely avail-
able in a git repository 1. Every simulation was executed 30 times.

First, we evaluated how each formalism scales as the total number of remark-
able states increases under sequential processing, followed by a test of potential
parallel evaluation for both formalisms. In these tests, we varied only the number
of remarkable states while keeping all other parameters fixed. The total number of
states ranged from 100 to 1,000,000, organized into 10× 10, 40× 25, 100× 100,
and 1000×1000 geometries (i.e., Policies × States). As shown in Figure 1, the ex-
tended formalism performs significantly better than the original, largely thanks to
its fail-fast mechanism, all while maintaining flexibility in policy specification.

Next, we examined how different invalid-state ratios affect performance in the
extended formalism. We tested ratios from 0.01% to 100% in an environment of
1000 policies with 1000 states each. Results presented on Figure 2 shows that even
a 10% ratio proved impactful, as the fail-fast mechanism led to substantial time
savings by halting early once mandatory states failed. These tests also showed that,
for a small number of policies, thread-creation overhead can surpass any parallel
speedup benefits, making parallel evaluations less advantageous.

Lastly, we explored the influence of varying mandatory-policy ratios under sim-
ilar conditions. As illustrated in 3, the outcomes closely matched those in the previ-
ous experiment, indicating that the fail-fast mechanism effectively reduces evalua-
tion time even when few states or policies are invalid. Taken together, these results
confirm that the extended formalism not only remains efficient in handling both low

1 https://github.com/dwbeserra/AINA2025FORMALISM
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(a) Sequential (b) Parallel

Fig. 1 Scalability : original x extended Formalism.

(a) Sequential (b) Parallel

Fig. 2 Effects of invalid remarkable states ratio on police evaluation times.

and high invalidation rates but also offers a clear separation between mandatory and
opportunistic policies, properly manages context versus property information, and
accommodates user-defined requirements and restrictions.

(a) Sequential (b) Parallel

Fig. 3 Effects of mandatory polices ratio on police evaluation times.
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5 Conclusions

This paper introduced an extended formalism for specifying and evaluating resource
management policies in pervasive computing environments, addressing significant
shortcomings of previous approaches. By distinguishing between mandatory and
optional policies, supporting logical subsets of information (static properties versus
dynamic context), and incorporating a fail-fast mechanism, the proposed formalism
achieves both flexibility in policy specification and efficiency in policy evaluation.

Simulations demonstrated that the extended formalism outperforms its predeces-
sor under various scenarios, including different invalidation rates, mandatory-policy
ratios, and workloads. In particular, the fail-fast mechanism ensures that critical vi-
olations in mandatory policies are caught early, reducing overhead and accelerating
decisions. Meanwhile, the logical separation of static and dynamic attributes clar-
ifies policy definitions and highlights different access costs for context elements
versus static properties.

Furthermore, users can incorporate domain-specific organizational knowledge
(e.g., cross-company resource usage) and tailor policy categories (mandatory vs.
opportunistic) to align with varying quality-of-service requirements. Parallel execu-
tions, managed by OpenMP with different scheduling policies, showed that even in
large-scale settings, the extended formalism achieves consistent gains, though small
workloads sometimes negate the benefits of multithreading.

Overall, the extended formalism provides a robust and adaptable framework for
pervasive and dynamic environments, ensuring both performance and clarity in pol-
icy management. Future work may involve deeper integration with real sensing in-
frastructures, adaptive scheduling based on observed data accuracy, and extending
the fail-fast mechanism to more nuanced cases, such as partial policy fulfillment or
hybrid evaluations.
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