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Abstract

Spatial relations play an important role in recognition of structures embedded in a complex environment and for

reasoning under imprecision. Several types of relationships can be modeled in a unified way using fuzzy mathematical

morphology. Their combination benefits from the powerful framework of fuzzy set theory for fusion tasks and decision

making. This paper presents several methods of fusion of information about spatial relationships and illustrates them

on the example of model-based recognition of brain structures in 3D magnetic resonance imaging.
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1. Introduction

The aim of this paper is to emphasize the role of

spatial relationships and of their fusion in struc-

tural pattern recognition in images. The proposed
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methodology is illustrated in a 3D brain imaging
application.

When several objects or structures have to be

recognized in an image, it happens in several appli-

cations that characteristics of the objects them-

selves may not be discriminating enough to

achieve an individual recognition. In such cases,

spatial relationships between objects become of

prime importance for recognition, as a comple-
mentary information. An example, that will be

further detailed in Section 4, concerns the recogni-

tion of internal brain structures in 3D magnetic
ed.
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resonance images (MRI). Internal grey nuclei all

have similar grey levels and shapes that are subject

to individual variability and therefore object char-

acteristics are not discriminating enough. Spatial

relationships can solve ambiguities by providing
a structural information on the scene, through

the description of the spatial arrangement of the

objects (prior anatomical knowledge), and thus

guide recognition. Moreover such relationships

are much less prone to variability than shape, size

or grey levels.

Several types of spatial relationships must usu-

ally be considered to assess the structure of a given
scene. According to the semantic hierarchy pro-

posed in (Kuipers and Levitt, 1988), we consider

two main classes of relationships (corresponding

to levels 3 and 4 of this hierarchy): topological

ones, which include part-whole relationships such

as inclusion, exclusion, adjacency, etc.; and metric

relationships such as distances and orientations.

Therefore, the recognition process can be guided
by the combination of several of these relations,

which requires information fusion tools (Bloch,

1996; Dubois et al., 1999).

The fuzzy set and possibility theory framework

has many interesting features to address these

issues. Indeed it provides appropriate tools for

representing spatial imprecision, imprecision in

knowledge description (useful in knowledge repre-
sentation), to define vague relationships, and it of-

fers a large set of fusion operators and decision

making tools (Dubois and Prade, 1980; Bloch,

2000; Nachtegael and Kerre, 2000). We recognize

in these features the main ingredients of a recogni-

tion system. Therefore the work presented in this

paper relies on this framework. 1

In Section 2, we briefly address the knowledge
representation issue. Then, the basic fusion tools

are summarized in Section 3, and we propose

several methods to include fusion in recognition

procedures. A novel application of model-based

recognition based on fusion of spatial relation-

ships is presented in Section 4.
1 This paper extends the work presented in (Bloch, 2003).
2. Knowledge representation: modeling spatial

relationships in the fuzzy set framework

The fuzzy set framework is interesting for

modeling spatial relationships for several reasons:

• the objects of interest can be imprecisely

defined, for instance due to previously applied

image processing steps such as segmentation;

• some relations are imprecise, such as to be left

of, and find a more suitable definition in the

fuzzy set framework;

• the type of knowledge available about the struc-
tures or the type of question we would like to

answer can be imprecise too.

We consider set theoretical relations, adjacency,

distances, and directional relative position, which

are the main binary spatial relationships. Some

of them have led to a rich literature in the fuzzy

set community, like distances which have been
defined by means of several different approaches,

while other relations have not raised so much

attention. Our work in this domain was mainly

based on fuzzy mathematical morphology (Bloch

and Maı̂tre, 1995), which allows us to represent

in a unified way various spatial relationships

(Bloch, 2002).

Two types of questions are important for appli-
cations in structural pattern recognition:

(1) given two objects (possibly fuzzy), assess the

degree to which a relation is satisfied;

(2) given one reference object, define the area of

the space in which a relation to this reference

is satisfied (to some degree).

Our approach provides answers to these two

types of questions.

Since the representation issues where already

addressed in previous papers (see e.g. (Bloch,

1999a,b, 2002) and the references therein), they

are not detailed here. This paper focuses on the

subsequent steps of fusion and decision making

in recognition problems. We just recall the under-
lying principle: the main idea to extend relations

on crisp objects to fuzzy objects is to translate

crisp equations into fuzzy ones by using fuzzy
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equivalents of logical and set theoretical operators

(for instance an intersection is translated as a t-

norm, etc.). Let us give an example: defining the

region of the space where an object can be

searched, knowing that it is at a distance between
n1 and n2 from an object A, can be performed by

computing Dn2ðAÞ n Dn1�1ðAÞ, where Dn denotes

the dilation of size n (this is obtained by exploiting

links between minimum and Hausdorff distances

and morphological dilation). If the distance inter-

val is defined as a fuzzy interval, two fuzzy struc-

turing elements are defined and fuzzy dilation is

applied. In more difficult cases where the relation-
ship is intrinsically vague (such as directional rela-

tionships: ‘‘left of’’, etc.), it is better to propose

directly a fuzzy definition, even for crisp objects.

Dilation by a fuzzy directional structuring ele-

ment, representing spatially the semantics of the

considered direction, proved to be a useful tool,

leading to good properties and behaviors.
3. Fusion

3.1. Fusion operators and their choice

For the combination step in the fusion process,

the advantages of fuzzy sets lie in the variety

of combination operators, which may deal with
heterogeneous information (Dubois and Prade,

1985; Yager, 1991; Dubois et al., 1999). We pro-

posed a classification of these operators with re-

spect to their behavior (in terms of conjunctive,

disjunctive, and compromise (Dubois and Prade,

1985), the possible control of this behavior, their

properties and their decisiveness, which proved

to be useful for several applications in image
processing (Bloch, 1996).

Operators such as t-norms, t-conorms and

mean operators always behave respectively in a

conjunctive, disjunctive and compromise way.

Within each class, some operators are more severe

or more indulgent, some are more or less discrim-

inating, etc. Operators such as symmetrical sums

behave differently based on the values to be com-
bined. Other operators depend on additional

information such as conflict, reliability, context,

etc.
It is of particular interest to note that, unlike

other data fusion theories (like Bayesian or Demp-

ster–Shafer combination), fuzzy sets provide a

great flexibility in the choice of the operator, that

can be adapted to any situation at hand. This
choice can be guided by the proposed classifica-

tion. Indeed, one often has to deal with situations

where a piece of information is reliable only for

some structures, or is not able to discriminate be-

tween two objects while another piece of informa-

tion does. In this context, some operators are

particularly powerful, like operators that behave

differently depending on whether the values to be
combined are of the same order of magnitude or

not, whether they are small or high, and operators

that depend on some global knowledge.

A noticeable advantage of this approach is that

it is able to combine heterogeneous information,

like it is the case here, where several types of

knowledge and information with different seman-

tics have to be combined, and it avoids defining
a more or less arbitrary and questionable metric

between pieces of information.

Let us give a few examples. If we have different

constraints about an object (for instance concern-

ing the relations it should have with respect to an-

other object) which have all to be satisfied, these

constraints can be combined using a t-norm (a

conjunction). This is typically the case when an ob-
ject is described using relations to several objects

or several relations of different types to the same

object.

If one object has to satisfy one relation or an-

other one then a disjunction represented by a t-

conorm has to be used. This occurs for instance

when two symmetrical structures with respect to

the reference object can be found (e.g. in the brain
where a high degree of symmetry exists between

structures in both hemispheres).

Mean operators can be used to combine several

estimations and try to find a compromise between

them. Such operators have a compensation effect

which is interesting in cases where both under-esti-

mation and over-estimation occur.

Operators with a variable behavior may also be
of great interest. For instance associative symmet-

rical sums can be used for reinforcing the dyna-

mics between high and low membership degrees,
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which has advantages for the decision step (since a

better discrimination between different situations

is achieved). Importance of a constraint or reliabil-

ity factors can be easily introduced in adaptive

operators, etc. Further examples will be given
below.

3.2. Including fusion in recognition procedures

A first recognition approach, called global

approach, uses the first type of question raised in

Section 2. The idea is to represent all available

knowledge about the objects to be recognized. In
the case of model-based recognition, two represen-

tations are built, one for the model and one for the

data, and recognition is then expressed as a com-

parison between both representations. A typical

example consists of graph-based representations.

The model is then represented as a graph where

nodes are objects and edges represent links be-

tween these objects. Both nodes and edges are
attributed. Node attributes are characteristics of

the objects, while edge attributes quantify spatial

relationships between the objects. A data graph

is then constructed from each image where the rec-

ognition has to be performed. Each region of the

image (obtained after some processing) constitutes

a node of this data graph, and edges represent spa-

tial relationships between regions, as for the model
graph.

The comparison between representations is per-

formed through the computation of similarities be-

tween model graph attributes and data graph

attributes. The fusion takes mainly place at this

level, in order to combine the similarity values

for different relationships. The fusion results con-

stitute an objective function to be optimized by a
matching procedure.

Mainly weighted average operators are used for

the fusion. Such operators allow to weight differ-

ently node attributes and edge attributes, or to give

more importance to some relationships than to

other ones. This is particularly useful when charac-

teristics of objects or of relations have not the

same level of stability and variability. For instance
if an attribute corresponds to a highly inter-indi-

vidual variable feature, a higher dissimilarity can

be expected between the model and the image,
but should have a low impact on the global objec-

tive function.

The similarity is located at an intermediate

level, in the sense that it does not apply directly

to the considered objects but to some global fea-
ture extracted from these objects. In order to cope

with the summarization aspect of such a feature, it

may be interesting to incorporate in the similarity

measure a weight representing the quality of the

relation. Typically a low confidence should be at-

tached to a relation (like adjacency) between two

objects that concerns only a few points. Such con-

fidence values are easy to introduce in weighted
operators.

But other operators could be used as well, in

order to exploit further the flexibility of the fuzzy

set theory. For instance, some symmetrical sums

behave in a conjunctive mode for low values and

in a disjunctive mode for high values. This results

in an increased dynamics in the combined result,

which can facilitate the decision process, as men-
tioned above.

Another aspect is that some relations have not

the same impact on recognition depending on

whether they are satisfied or not. For instance,

the fact that two objects are adjacent like in the

model is more relevant to recognition than the fact

that they are not adjacent like in the model, and it

is then interesting to have a measure that is high
only if both values are high (Bloch et al., 1997)

(since adjacency occurs between few objects only

and is moreover quite sensitive).

A second type of approach relies on the second

type of question raised in Section 2 and is called

here progressive approach. In such a progressive

approach, objects are recognized sequentially and

their recognition makes use of knowledge about
their relations with respect to other objects. Rela-

tions with respect to previously obtained objects

can be combined at two different levels of the

procedure.

First, fusion can occur in the spatial domain,

using spatial fuzzy sets. The result of this fusion al-

lows to build a fuzzy region of interest in which the

search of a new object will take place, in a process
similar to focalization of attention. In a sequential

procedure, the amount of available spatial rela-

tions increases with the number of processed ob-



I. Bloch et al. / Pattern Recognition Letters 26 (2005) 449–457 453
jects. Therefore, the recognition of the most diffi-

cult structures, usually treated in the last steps, will

be focused in a more restricted area. A drawback

of this approach may be the possible propagation

of errors from one structure to the next one.
Therefore, special attention has to be paid to the

robustness of each step, hence reinforcing the

interest of spatial relations.

Another fusion level occurs during the final

decision step: the segmentation of a structure. In-

stead of only focusing segmentation techniques

on a particular area, spatial relations are also used

to constrain the segmentation process itself. For
this purpose, relations are introduced in the evolu-

tion scheme of a deformable model, in which they

are combined with other types of numerical infor-

mation, usually edge and regularity constraints.

The evolution of a deformable model can then be

described by the following dynamic force equation

(Xu et al., 2000; Montagnat et al., 2001):

c
oX

ot
¼ F intðXÞ þ FextðXÞ ð1Þ

where X is the deformable contour or surface, Fint

is the internal force that specifies the regularity of

the surface and Fext is the external force. Instead of
representing only edge information, the external

force combines it with spatial relation information.

It is then defined as:

Fext ¼ kFC þ mFR ð2Þ
where FC is a classical data term that drives the

model towards the edges, FR is a force associated
to spatial relations and k and m are weighting coef-

ficients. The role of FR is to force the deformable

model to stay in regions where the relation is ful-

filled. In (Colliot et al., 2004), we proposed differ-

ent methods to compute FR from a fuzzy set lR
representing a spatial relation R or a combination

of relations obtained at the first fusion level. Com-

mon properties of these approaches include the
following: the constructed force is directed to-

wards high values of the membership function

lR; it is zero inside the kernel of lR and non-zero

elsewhere; and its modulus is proportional to

1 � lR. As an example, we present here one of

these methods which uses the fuzzy set to define

an energy potential, for all x in the spatial domain

S:
PRðxÞ ¼ 1� lRðxÞ þ dsuppðRÞðxÞ ð3Þ

where dsupp(R) is the distance from the support of
lR which is used to have a non-zero force outside

the support. With the following normalization, we

obtain a force satisfying the required properties:

FRðxÞ ¼ �ð1� lRðxÞÞ
rPRðxÞ

krPRðxÞk
ð4Þ

In the following section and in particular in Fig.

3, we will illustrate these equations with an exam-
ple in brain structures recognition.
4. An application to the recognition of brain

structures based on anatomical knowledge

representation

Let us now illustrate how these fuzzy spatial
relations can be used for recognizing structures

in a scene based on a model. The chosen example

concerns the recognition of internal brain struc-

tures (ventricular system and grey nuclei) in 3D

MRI. The model is a representation of anatomical

knowledge. Different representations can be used,

as will be seen below. Two types of approaches

are developed (as introduced in Section 3), corre-
sponding to the two types of questions mentioned

in Section 2.
4.1. Global approach

In the first approach, spatial relations evaluated

between spatial entities (typically objects or re-

gions) are considered as attributes in a graph.
The model is a graph derived from an anatomical

atlas. Each node represents an anatomical struc-

ture, and edges represent spatial relationships

between these structures. A data graph is con-

structed from the MRI image where recognition

has to be performed. Each node represents a re-

gion obtained from a segmentation method. Since

it is difficult to segment directly the objects, usually
the graph is based on an over-segmentation of the

image, for instance based on watersheds. Attri-

butes are computed as for the model. The use of

fuzzy relations is particularly useful in order to

be less sensitive to the segmentation step.



454 I. Bloch et al. / Pattern Recognition Letters 26 (2005) 449–457
One important problem to be solved then is

graph matching. Because of the schematic aspect

of the model and the difficulty to segment the

image into meaningful entities, no isomorphism

can be expected between both graphs. In particu-
lar, several regions of the image can be assigned

to the same node of the model graph. Such prob-

lems call for inexact graph matching. In general,

it constitutes in finding a morphism, which fur-

thermore optimizes an objective function based

on similarities between attributes. Here the fusion

applies not directly on the relations but on the sim-

ilarities between them (see Section 3). A weighted
mean operator allows us to give more importance

to the edges, which show less variability between

subjects and therefore constitute stronger anchors

for guiding recognition. The morphism aims at

preserving the graph structure, while the objective

function privileges the association between nodes,

respectively between edges, with similar attribute

values. This approach can benefit from the huge
literature on fuzzy comparison tools (see e.g. (Bou-

chon-Meunier et al., 1996)) and from recent devel-

opments on fuzzy morphisms (Perchant and

Bloch, 2002). The optimization is not an easy task

since the problem is NP-hard. Genetic algorithms,

estimation of distribution algorithms (EDA) and

tree search methods have been developed towards

this aim (Perchant et al., 1999; Bengoetxea et al.,
2002; Cesar et al., 2002).
Fig. 1. Slice extracted from a model atlas and from a 3D MRI image

interested in.
4.2. Progressive approach

4.2.1. Definition of anatomical knowledge

In the second type of approach, we use spatial

representations of spatial knowledge (Bloch
et al., 2003; Colliot et al., 2004). The representa-

tion of the model consists of two parts: an iconic

part (a digital atlas, Fig. 1, left) and a symbolic

part (linguistic descriptions of relationships be-

tween anatomical structures, as provided by

neuro-anatomists). The iconic part is directly a

spatial representation, while the linguistic part is

translated into spatial fuzzy sets according to the
methodology described in (Bloch et al., 2003)

(see the summary and the example of distance

knowledge representation in Section 2).

The recognition procedure uses the two levels of

fusion described in Section 3. It consists in first rec-

ognizing simple structures (typically brain and lat-

eral ventricles), and then progressively more and

more difficult structures, based on relationships be-
tween these structures and previously recognized

ones. Each relationship describing the structure

to be recognized is translated into a spatial fuzzy

set representing the area satisfying this relation,

to some degree. The fuzzy sets representing all rela-

tionships involved in the recognition process are

combined using a numerical fusion operator.

For instance, the recognition of a caudate nu-
cleus in a 3D MRI image uses the previous recog-
. In the atlas, each grey level represents a different object we are



Fig. 2. Information representation in the image space (only one slice of the 3D volume is shown), illustrating knowledge about one

caudate nucleus. From left to right: shape information, set relationships, relative directional relationship, membership function

representing distance knowledge, and corresponding spatial fuzzy set (the contours of the caudate nucleus we are looking at are shown

in white). Membership values vary from 0 (white) to 1 (black).
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nition of brain and lateral ventricles, the computa-

tion of a deformation field between the atlas and

the image taking into account these previously rec-

ognized objects, and the following pieces of knowl-

edge, as illustrated in Fig. 2:

• rough shape and localization are provided by

the representation of the caudate nucleus in

the atlas, on which a fuzzy dilation is applied

to account both for variability and for inexact

matching between the model and the image,

• the caudate nucleus belongs to the brain (black)

but is outside from both lateral ventricles (white
components inside the brain),

• the caudate nucleus is lateral to the lateral ven-

tricle and at a distance less than ‘‘about D’’

from it.

4.2.2. Application of prior knowledge

In (Bloch et al., 2003), the localization informa-
tion provided by the atlas is used as a region of

interest. This region is quite restricted which al-

lows an efficient automatic separation of radiomet-

ric classes in the region. From the classes obtained

in this region, the one that best matches symbolic

anatomical knowledge is selected. The fusion is

performed in a conjunctive manner for all spatial

relations, and using a mean operator for radiomet-
ric information.

In (Colliot et al., 2004), we changed the ap-

proach in order to avoid the use of the iconic part

of the model. This presents two main advantages:

the high computation time associated with the

computation of the deformation field is left aside
and the procedure is potentially more robust be-

cause it uses only the symbolic part of the knowl-

edge, which is generic instead of being built from a

single individual as in the iconic atlas. The region

of interest, instead of being derived from the atlas,
is then defined using the linguistic descriptions, the

fusion of spatial relations being still performed

using a t-norm. The main drawback is that this re-

gion is usually less restricted than the one built

with the iconic atlas.

Finally, a refinement stage is introduced using a

deformable model. This stage takes the output of

the previous classification as a starting point and
has the potential to correct possible imperfections

of the previous stage together with regularizing the

contours of structures. This deformable model

makes use of a fusion of heterogeneous knowl-

edge: edge information derived from the image,

regularization constraints and spatial relations

contained in the linguistic description. All pieces

of information are combined using the framework
described in Section 3. Fig. 3 presents an example

of this heterogeneous information, namely the

data term and the force corresponding to spatial

relations, in the case of the caudate nucleus.

Here, the primary role of spatial relations is to pre-

vent the deformable model from progressing be-

yond the limit of structures with weak boundaries.

Fig. 4 shows 3D views of some cerebral objects
recognized in an MR image with our method. In

particular, the importance of spatial relations is

illustrated in the case of the caudate nucleus. The

lower part of this structure has a very weakly de-

fined boundary and the use of a spatial relation

is essential to achieve a good segmentation. This



Fig. 3. Fusion of heterogeneous information in a deformable model. This example presents the knowledge used to segment the caudate

nucleus by combining a deformable model with spatial relations. (a) Edge map corresponding to the contour of the caudate nucleus. (b)

Data term derived from the previous edge map, denoted by FC in Eq. (2). In this case, a Gradient Vector Flow (Xu and Prince, 1998) is

used to compute the force (for visualization purpose, a zoom has been performed on a part of the previous image). (c) Spatial relation

corresponding to the conjunctive fusion of ‘‘near’’ and ‘‘lateral to the lateral ventricle’’. (d) Force corresponding to the previous spatial

relation combination, denoted by FR in Eq. (2) (for visualization purpose, a zoom as well as a 1/2 undersampling has been performed).

Fig. 4. Segmentation and recognition results obtained for the lateral ventricles, third ventricle, caudate nuclei and thalami by

integrating spatial relations in 3D deformable models. Illustration of the importance of spatial relations in the deformable model: in the

case of caudate nucleus, the force derived from spatial relations prevents the model to grow below the lower limit of the structure (third

image: result obtained without this force, fourth image: with this force).
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approach has been tested successfully on more

than 10 images.
5. Conclusion

As illustrated in this paper, the semi-qualitative
fuzzy set framework presents interesting features

both for knowledge representation (of spatial rela-

tions, of imprecision existing both in the objects

and in the relations), and for reasoning and recog-
nition. We have also shown the usefulness of fuzzy

mathematical morphology in this context. We paid

attention in particular at the fusion step, which

benefits from the high flexibility provided by the

fuzzy fusion operators. Fusion of spatial relation-

ships is proved to be useful in model-based recog-

nition procedures, either global or progressive
ones, and can be elegantly merged with power-

ful segmentation techniques. This work opens

new perspectives for spatial reasoning under

imprecision.
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