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1. Submission Descriptions
1.1. Core systems

Our submissions were built upon 5 core systems:

• ivec-MITLL/JHU HLT COE – two i-vector systems from
MITLL and JHU using the same code base

• ivec-MIT CSAIL/LRDE – i-vector system from MIT and
LRDE

• SVM IPDF – MITLL SVM system with IPDF KL kernel

• Content Graph – MITLL content graph system using
IPDF kernel

Details of the core systems are provided in the sections that follow.

1.2. Submitted Systems

We examined various combinations of the core systems based on
dev fusion results for the different conditions represented in the
evaluation. Our final system was a fusion of calibrated individual
systems.

The systems submitted were:

• (Primary Submission) MITLL 01 Fuse – Fusion of the 3
i-vector systems and the SVM IPDF system

• MITLL 02 – SVM IPDF system

• MITLL 03 – MITLL i-vector system

• MITLL 04 – MIT CSAIL and LRDE i-vector system

• MITLL 05 – JHU HLT COE i-vector system

2. Development Data
2.1. Development Trial Lists

Speaker training lists were obtained from the NIST distribution.
Training lists were filtered to eliminate any nominally short du-
rations (10s) and 2-wire data. Lists were augmented with some
additional speaker data found in keys. Some redundant cuts (exact
duplicates and same sessions) were included in the lists. Addition-
ally, inconsistent key speaker pins for various key releases resulted
in some changes in lists.

The resulting training lists were split into development lists:

• dev-trn A training set consisting of approximately 36k
sides from all of the target speakers.

• dev-tst A test set consisting of approximately 2k telephone
sides and 6k microphone sides from known target speakers.

By side, we mean one channel of a two-channel telephone or mi-
crophone file.

Additional data preparation was used to construct a full devel-
opment set. For interview microphone data in the development set,
a new set of files was constructed to better match the NIST SRE
2012 plan. The process used was:

• NIST SRE 08 interview data. All 13 microphone types
were covered. When needed, new files were constructed
with the interviewee on side “a” and the corresponding in-
terviewer on a lapel microphone on side “b.” Only nominal
length 3 minute data was used. Data was in its original 8
kHz format.

• NIST SRE 10 interview data. Interview and interviewee
data was paired as side a/b using 16 kHz data. The speech
was then resampled using an FIR filter to 8 kHz. Both 3
minute and 8 minute nominal duration data was available.

Both phonecall microphone and 4-wire data were left in their orig-
inal form. Note that mismatch occurs across the microphone data.
NIST SRE 08 data was ulaw’d and resampled by LDC/NIST; the
original 16 kHz data was not available. The NIST SRE 10 in-
terview data was encoded with linear PCM (no ulaw) and resam-
pled to 8 kHz by MIT LL. Additionally, interviewer data was not
“clean”, but included the original noise added during the evalua-
tion in 2008 and 2010.

Several modifications to the files generated for dev-tst were
constructed to address the conditions specified in the NIST evalu-
ation plan:

• Utterances of varying duration. Using SAD, durations of 5,
10, 15, 20, 25, 30, 35, 40, 50, and 60 seconds were extracted
from the full sides.

• Utterances with added noise. Noise was added at SNRs of
6dB and 15dB. Noise types used were babble and hvac.

For development trials, all models were scored against all dev-
tst utterances including the modified test. Approximately 212 mil-
lion trials were available for development.

Additional data was also available for hyperparameter con-
struction. Data was aggregated from NIST SRE evaluation 2004,



2005, 2006, 2008, and 2010 as well as the Fisher data set to pro-
vide additional training. Different uses of this data are highlighted
in the system descriptions.

3. Front-End Processing
3.1. Features

Two forms of preprocessing before feature extraction were per-
formed on all the NIST data (including microphone and tele-
phone): 1) steady tone removal and 2) wideband noise reduc-
tion. The steady tone suppression method used a very long anal-
ysis window, 8 seconds, to exploit the coherent integration of the
Fourier transform. The wideband noise reduction algorithm used
an adaptive Wiener-filter approach directed toward preserving the
dynamic components of a speech signal while effectively reducing
noise. Details can be found in [1, 2].

Speech activity detection (SAD) was performed with multi-
ple methods based on the system. SAD was available to all sys-
tems in three forms: a SAD system based on GMMs trained on 4-
wire data, a standard energy based detector based on one-channel
data, and a two-channel multi-frequency band SAD designed by
Borgstrom, see [2], was used on microphone data. Additional al-
ternate SAD methods were used on a per-site basis—see the sys-
tem descriptions.

MFCC features were extracted from the speech signal every
10ms using a 20ms window to produce a 20-dimensional mel-
cepstral vector. The mel-cepstral vector is computed using a sim-
ulated triangular filterbank on the DFT spectrum. All frequency
bands are kept from 0Hz-4kHz, and cepstral coefficients are com-
puted via a DCT transform. The MFCC C0 coefficient was also
included as an energy estimator. Delta cepstra are then computed
over a +-2 frame span and appended to the cepstra vector. Double
delta cepstral coefficients are formed on top of these, producing a
60 dimensional feature vector. Finally, the cep+dcep+ddcep fea-
tures are normalized using mean/variance normalization and op-
tionally RASTA on speech-only frames.

For LPCC features, pre-emphasis with a coefficient of 0.97
and a Hamming window are applied to a 30ms window every 10ms
to obtain 18 LP coefficents. These LP coefficients are converted to
18 LPCCs and energy is appended to form a 19 dimensional vec-
tor. Both delta- and acceleration coefficients are found to form a
57 dimensional feature vector. Feature normalization and RASTA
were applied to speech only frames.

Individual systems used different subsets of features based on
tuning.

4. Detailed System Descriptions
4.1. MITLL and JHU HLT COE i-vector systems

Both the MIT LL and JHU HLTCOE i-vector systems use
Bayesian model adaptation with an additive Gaussian noise
model [3]. More specifically, we assume that speakers are nor-
mally distributed with mean θ and across-class covariance Φs, and
observed i-vectors are degraded by an additive channel component
with within-class covariance Φc. This results in a scoring formula
for test i-vector wt given by

L(wt|D) = log
N (wt; µD,Φc + ΦD)
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This is equivalent to full-rank Gaussian PLDA scoring, but this
form is simpler to evaluate with multiple enrollment cuts. How-
ever, due to the high redundancy of training data in this evaluation,
we found it more effective to assume only one enrollment cut, i.e.
to represent each enrollment set by its mean i-vector.

The total variability space of dimension 600 was trained using
principal component analysis (PCA). Linear discriminant analy-
sis (LDA) was applied to further reduce dimension to 200. The
within-class and across-class parameters were initially estimated
by sample covariance matrices (as in LDA), and then refined us-
ing discriminative training. We used the two-class maximum mu-
tual information (MMI) technique from [3]. To match the adverse
acoustic conditions introduced in the SRE12, we used multicon-
dition data, which included both additive noise and short duration
speech.

The HLTCOE i-vector system also included MMI training of
the mean vector for each speaker, µD , while keeping the Bayesian
covariance ΦD . This was done for all speakers simultaneously us-
ing multiclass MMI to optimize the closed-set identification per-
formance. Again, multicondition training data was used including
clean and noisy speech cuts.

To leverage information provided by the known speakers of
the SRE12, we normalized the LLR scores using a back-end based
on Bayes’ rule. If Li,j denotes the log-likelihood ratio (LLR) ob-
tained when scoring test cut i against model j, the normalized LLR
was determined as:

L̂i,j = log
1
M

exp (Li,j)
1
M

P
l 6=j exp (Li,l) + Poos

1−Poos

(4)

Here, Poos refers to the out-of-set probability, and M is the total
number of known speakers.

Specific system parameters for both systems were:

• Identical processing for telephone and microphone speech
signals

• Completely gender-independent parameters

• Tonal and wideband noise reduction

• MFCCs and deltas

• Short-term mean and variance normalization

• GMM and 2-channel frequency dependent energy SAD

• 2048 mixture GMM-UBM trained on clean target cuts

• 600-dimensional i-vector extractor trained using clean tar-
get cuts

• 200-dimensional LDA estimated from multicondition target
cuts



4.2. MIT/LRDE i-vector system

This system is based on a gender independent i-vector representa-
tion [4] of dimension of 800 trained on all switchboard II and pre-
vious NIST SRE datasets as well as some noisy from NIST SRE
data. The i-vector was trained using a gender independent uni-
versal background model comprised by 2048 Gaussians using the
same data as the i-vector training. This system operates on cepstral
features and log energy with delta and double-delta to produce a
60 dimensional feature vector (as described in the feature extrac-
tion section). Feature warping was performed using a 3s sliding
window.

The silence was removed based on two different VADs. The
first VAD, which is an MLP based system, was provided by Brno
University of Technology (BUT), this VAD was applied only for
telephone data. We would like to thanks BUT for agreeing to share
their system with us. The second VAD was applied for both micro-
phone and interview data. For microphone data, we used an iter-
ative algorithm based on GMM models. At each iteration, we use
the previous Viterbi segmentation to estimate two different GMMs
comprised by 16 Gaussians each and which correspond to the noise
and speech frames. These two GMMs were respectively initialized
with frames that have the 10% highest and lowest energy. For the
interview data, similar steps were applied as in microphone data
for both channels, which corresponds to the interviewer and in-
terviewee. After obtaining both segmentations for the interviewer
and interviewee, we select the speech labeled frames from the in-
terviewee side that have higher energy or have been labeled as
noise in the corresponding frames in the interviewer.

Our channel compensation approach consists on a cascade of
gender dependent Linear Discriminant Analysis (LDA) and Within
Class Covariance Normalization (WCCN) [5]. We estimated two
different LDA matrices on target and no-target data. In the first
LDA, the between speaker covariance was estimated on telephone
data and within speaker covariance matrix was estimated on both
telephone and microphone dataset. However for the second LDA,
we estimated both between and within speaker covariance matri-
ces on telephone and microphone data. The last within class co-
variance normalization matrix was trained on the target speaker
telephone and microphone data.

The speaker verification decision was based on cosine scor-
ing [4, 6] and the score were s-normalized directly in the i-vector
space as described in [6].

4.3. SVM IPDF System

The SVM IPDF supervector system is based on a combination of
SVMs using GMM supervectors [7] and an approximate KL kernel
using utterance-dependent mixture weights and MAP mean adap-
tation [8]. Extensive experiments were conducted to determine the
best combination of SVM training, features, channel compensa-
tion and score normalization needed to optimize the NIST scoring
criterion.

GMM supervectors were derived using MAP adaptation of
means with a relevance factor of 0.01 on a per utterance basis and
ML estimation of mixture weights. The SVM inner product CGM

is given by

CGM (ai,aj) =

(mi −m)t(λ
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In equation (5), m is the vector of stacked UBM means, Σ is the
block diagonal matrix of UBM covariances, ⊗ is the Kronecker

product, In is the identity matrix of size n, and λi and λj are
diagonal matrices of mixture weights.

For compensation, weighted NAP (WNAP) [9] was used.
Weighted NAP optimizes the criterion,

min
U

X
j

Wj‖QU,Dδj‖2D (6)

where U is the nuisance subspace, QU,D is the WNAP projection,
D is the metric induced by the UBM,

D = (λ1/2 ⊗ In)Σ−1/2, (7)

δj is the training set, and Wj is set to the number of frames of
speech. WNAP used a fixed matrix multiply.

All target speaker GMM supervectors for training were pooled
into one data set. A kernel matrix was computed in parallel. Then,
SVM training was applied using the standard 1-vs-rest technique.

System specifics include:

• Gender independent GMM UBM with 512 mixture compo-
nents

• Pooled WNAP model. We pooled all microphone and tele-
phone data from the target speakers and constructed a NAP
projection that was gender independent. A corank of 64
was used for the projection.

• Z-norm. After training speaker models, z-norm parameters
were computed using approximately 1k utterances per gen-
der from NIST Eval05 telephone data.

• T-norm. T-norm was applied gender dependent across all
target models. Bayes rule was applied as a score normalizer
using (4) after T-norm to the scores.

• SAD. A cascade of GMMSAD and energy-based 1-channel
SAD was used for 4w data. For microphone data, 2-channel
energy based SAD followed by 1-channel energy-based
SAD was used.

• Multiple features. The same SVM IPDF system (no config-
uration changes) was used with MFCCs and LPCCs. The
output scores were averaged.

4.4. Content Graph System

For this evaluation, we also implemented a content graph based
system. A content graph is a sparse representation of the speaker
space in a graphical model. Each vertex corresponds to an ut-
terance and vertices are connected via weighted edges if they are
likely to be from the same speaker with the weight correspond-
ing to the strength of this likelihood. For the evaluation, we cre-
ated a content graph from the development data using the Force-
Clique link prediction algorithm developed in [10]. Test utterances
were added to the graph using incremental k nearest neighbors in-
stead of incremental force-clique link prediction in order to reduce
P (miss).

We explored two methods of performing speaker verification
on content graphs. The first exploited local features of the test
utterance node and and the set of nodes comprising the target
speaker. We computed scores by comparing the number of con-
nections between the test node and the target nodes, the number
of connections from one target node to another, and the number of
connections form either the test node or a target node to some node
not in either of those sets. This method performed well in areas



of the graph with high edge prediction recall, but suffered a higher
miss rate when edge prediction recall was low. Our second method
consisted of perfoming a random walk originating from the test
node and computing a score based on the likellihood that the ran-
dom walk ended on a node from the target speaker. This method
had improved performance in areas of the graph with lower edge
prediction recall. The best performance was achieved by combin-
ing the two methods, using the local features method when there
was at least one connection between the test node and the set of
target nodes and using the random walk method otherwise.

The performance of the experimental content graph system
was quite good, but not as good as our best systems. In the fu-
ture, we will be working to improve it by applying techniques such
as combining results across content graphs generated with differ-
ent parameters and better fusion of the local features and random
walk methods.

4.5. Fusion

Fusion was accomplished using a two-stage method. In the first
stage, individual systems were calibrated using scores and meta-
data. In the second stage, individual systems were fused and a
calibrated output was produced using a logistic regression method.

First stage. Calibration of individual systems was performed
using system scores and a variety of meta-data similar to [11]. A
main feature of our methods was adaptation of calibration to the
varying means and variances of the target and non-target distribu-
tions across different operating conditions (duration, SNR, chan-
nel).

For the SVM IPDF system, an MLP with 3 hidden nodes and
inputs of score, duration, channel (mic/tel–from NIST), and gen-
der (male/female–from NIST) were used. Full multilayer MLP
training was done using scaled conjugate gradients and the Netlab
MLP tool using a cross-entropy optimization criterion. For the i-
vector systems, a fixed input layer was used which was hand-tuned
and had inputs of SNR, duration, estimated gender, estimated lan-
guage, score, and estimated reverberation. The output layer was
trained using logistic regression.

Second stage. Fusion was accomplished by applying logistic
regression to the individual calibrated log likelihood ratio scores
produced by the four classifiers and was implemented using a
single-layer perceptron available in the LNKnet pattern classifi-
cation software package [12]. The perceptron configuration had
four input nodes, two output nodes (target and nontarget), and no
hidden layers. Input scores were normalized to zero mean and
unit standard deviation using parameters derived from the training
data. The perceptron weights were trained from the development
data with a mean squared error criterion. Development testing in-
dicated no difference in performance using either the squared error
or cross entropy criterion. Both training and testing used uniform
priors. The posterior probability was computed from the average
of the target and (1-nontarget) scores and was converted to the final
log-likelihood ratio using the logit function.
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