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ABSTRACT

We tackle the problem of recommending tests to learners to achieve
upskilling. Our work is grounded in two learning theories: mastery
learning, an instructional strategy that guides learners by providing
them tests of increasing difficulty, reviewing their test results, and
iterating until they reach a level of mastery; Flow Theory, which
identifies different test zones, frustration, learnable, flow and bore-
dom zones, to determine the best 𝑘 tests to recommend to a learner.
We formalize the AdUp Problem and develop a multi-objective
optimization solution that adapts the difficulty of recommended
tests to the learner’s predicted performance, aptitude, and skill gap.
We leverage existing models to simulate learner behavior and run
experiments to demonstrate that our formalization is best to attain
skill mastery. We discuss open research directions including the
applicability of reinforcement learning and the recommendation of
peers in collaborative projects.
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1 INTRODUCTION

The rapid growth in new learning opportunities e.g., MOOCs, tuto-
rials, and community-based discussion forums, is shifting attention
to online skill improvement. Upskilling that is occurring outside
of formal offerings is a fast-growing segment of the educational
economy [? ]. Yet, there is little algorithmic work that focuses on
crafting dedicated strategies to reach high skill mastery. To the best
of our knowledge, our work is the first to propose a formalization
and develop algorithms for skill mastery.
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Figure 1: Example of the process of learning Math.

Today, learners engage in self-directed learning, managing many
elements of their own study, which, in turn, often requires work-
ing on various learning activities independently with less direct
guidance from teachers [? ]. Consequently, providing guarantees
on the quality of learning outcomes is increasingly difficult in these
new bite-sized learning structures as they can lead to the so-called
illusion of explanatory depth [? ] where learners only acquire a
superficial understanding of a topic. Ideally, each learner should
receive tests chosen in a such way that the learner’s skill progresses.
This should account for the learner’s ability to resolve tests based on
skill and past performance. That is the topic of mastery learning [?
] where the focus of instruction is the time required for different
learners to acquire the same competencies and achieve the same
level of mastery. This is very much in contrast with classic models
of teaching where all learners are given approximately the same
amount of time to learn. We illustrate that with an example.

Motivating example. Consider a learner with very basic math
knowledge who wants to learn mathematical functions. Figure 1
illustrates an example of the learning process. In the beginning,
the learner receives tests with a moderate difficulty level of 0.3
for which they provide correct answers. As a result, they incur no
skill gap, and their skill is estimated. This triggers a second step
where they are assigned more difficult tests (on limits of functions)
for which they fail. In addition to not increasing their skill, they
incur a skill gap. To fill that gap, they are given a second chance
with the same type of tests in which they succeeded. Their input is
correct and their skill increases. The same process is repeated, and
the learner receives more difficult tests on derivatives and then on
integrals. They provide correct results and their skill increases.

Challenges. Our example identifies several challenges. First, we
need to determine which 𝑘 tests to assign to a learner at each itera-
tion. Existing work on recommending tests optimizes the learner’s
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Figure 2: Illustration of the combination of the Zone of Prox-

imal Development (ZPD) [? ] and Flow Theories [? ]. In [? ],

it is shown that learners improve their skills by completing

tests that are more but not too challenging (dotted line).

expected performance either by assuming tests with the same dif-
ficulty level [? ] or by pre-defining the composition of difficulties
beforehand (e.g., by alternating test difficulty levels [? ]). Indeed,
according to learning theories illustrated in Figure 2, simply relying
on the learner’s expected performance runs the risk of narrowing
down the learner into a zone of "boring" and under challenging
tests that do not incur upskilling. To address that, we propose to
also account for the learner’s aptitude, i.e., the difference between
the learner’s skill and the test difficulty level. This will encourage
selecting tests that challenge the learner (the learnable zone in
Figure 2). Hence, we need to balance expected performance and ap-
titude. Second, we need to account for the skill gap in determining
the next 𝑘 tests. To the best of our knowledge, no existing work
does so. Third, we need to simulate the learners’ performance and
devise a skill update strategy after they complete a batch of 𝑘 tests.

Contributions. We formalize the AdUp Problem, our Adaptive
Upskilling Problem as an optimization problem where a learner
receives 𝑘 tests that maximize expected performance and aptitude,
and minimize accumulated skill gap. The combination of these
objectives constitutes the novelty of our formalization. Most related
work focuses on modeling learners and neglects the test selection
question [? ]. We adopt a Pareto solution by defining dominance
between 𝑘 test sets and develop a heuristic algorithm based on Hill
Climbing [? ] that finds a subset of the solutions [? ].We use real data
collected from a Czech educational system MatMat (matmat.cz)1
to infer test difficulty levels. To simulate learners and predict their
probability of providing correct answers, we leverage an extended
version of Bayesian Knowledge Tracing (BKT) [? ] that leverages test
difficulties [? ]. After each iteration, the skill of a learner is updated
following existing approaches that aggregate consecutive correct
answers [? ].

Our empirical study examines the impact of the optimization
dimensions on upskilling and mastery. We run a simulation for 100
learners. We compare our solution to different variants (optimizing
single or two objectives, alternating difficulty levels). We find that
optimizing one objective is worse than optimizing two or three
objectives. We confirm that alternating skill difficulty yields good
skill gain and progression but is not well-adapted to attain skill
1https://github.com/adaptive-learning/matmat-web/blob/master/data/data_description.md

mastery. We verify that optimizing aptitude is required to attain
mastery and that combining aptitude, expected performance, and
skill gap reduce the number of iterations needed to attain mastery.

Implications for education systems and databases. Our
work is closely related to the domain of education data systems.
Our framework can constitute a solution for different challenges of
AI-based assessments [? ]. It could be adapted to either design an
adaptive educational system [? ] (e.g., Desire2Learn 2) or be applied
directly to extend one of the existing systems: e.g., the LabNbook 3

environment at our university that scaffolds students’ activity as
they learn to write experimental protocols. It also aims to assist
instructors as it might be challenging for them to provide rich and
timely support to students [? ]. It aims to keep instructors in the
decision loop [? ] and not replace them, by either giving them the
chance to develop the content of tests or assisting them in choosing
the best tests to assign. Also, our work might propose a starting
solution to address AI explainability in education [? ] as it optimizes
interpretable optimization-related dimensions for test assignments.
Our work is also relevant to teaching databases as described in our
recent publication [? ]. It could be used to extend the constraint-
based tool SQL-Tutor [? ] to produce a hybrid tutoring paradigm to
help students master writing SQL queries.

2 MODEL AND PROBLEM

We consider a learner 𝑙 ∈ L who follows an iterative learning
process for a given skill 𝑠𝑘 . We assume one and only one skill in this
work that has a scalar as a value. Extending the skill representation
to a vector is not straightforward. It requires studying independence
between skills or making an independence assumptionwhichwould
be unrealistic in most scenarios.

At each step, 𝑙 completes a set of 𝑘 tests with different difficulty
levels for 𝑠𝑘 . Each test 𝑡 ∈ T has a skill difficulty 𝑑𝑡 that remains un-
changed. We associate to each learner 𝑙 a skill value 𝑙 .𝑠𝑘 that either
remains the same or increases as the learner successfully completes
tests. The initial value of 𝑙 .𝑠𝑘 can be computed from the information
the learner fills when joining the system (e.g., by completing an
initial set of tests or through a pre-assessment questionnaire).

We aim to formalize a problem where at any given iteration, the
learner receives a batch of 𝑘 tests whose difficulty level is greater
than 𝑙 .𝑠𝑘 . To define our problem, we formalize dimensions that
characterize the learning process of a learner 𝑙 for a skill 𝑠𝑘 .

2.1 Expected performance, aptitude, and gap

Expected performance. It is the expected performance of learner
𝑙 for a test 𝑡 . It is based on the similarity of 𝑡 with successfully
completed tests 𝑙 .S ⊆ T by 𝑙 and is formalized as follows:

exPerf (𝑙, 𝑡) = sim(𝑡, 𝑙 .S)

Aptitude. It quantifies the difference between a learner’s skill
value (𝑙 .𝑠𝑘) and the difficulty level of a test 𝑡 (𝑑𝑡 ). It represents the
learner’s progression ability for the skill when assigned tests that
are correctly completed. Aptitude is defined as follows:

𝑎𝑝𝑡 (𝑙, 𝑡) = 𝑑𝑡 − 𝑙 .𝑠𝑘

2https://www.d2l.com/
3https://labnbook.fr/en
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Gap. It quantifies the distance between the past failed tests of
learner 𝑙 (set 𝑙 .F ⊆ T ) and the test 𝑡 and is defined as follows:

gap(𝑙, 𝑡) = dist (𝑡, 𝑙 .F )

Similarity and distance between tests can be computed in sev-
eral ways. In our implementation, we use the Euclidean distance
between the difficulty levels of tests.

2.2 The AdUp problem

To achieve skill mastery, we propose an iterative formulation that
solves the following problem:

Problem 1 (The AdUp Problem). Given a learner 𝑙 , with a skill
𝑙 .𝑠𝑘 , find a batch 𝐵 ⊆ T of 𝑘 tests to assign to 𝑙 at iteration 𝑖 s.t.:

maximize
∑︁
𝑡 ∈𝐵

exPerf (𝑙, 𝑡 )

maximize
∑︁
𝑡 ∈𝐵

apt (𝑙, 𝑡 )

minimize
∑︁
𝑡 ∈𝐵

gap (𝑙, 𝑡 )

subject to |𝐵 | = 𝑘

(1)

The main challenge in solving the AdUp problem, is the multi-
objective nature of the problem. Naive solutions would be, using a
weighted sum method by transforming the problem into a single
objective optimization, or 𝜖-Constraint method where a single ob-
jective is optimized and the remaining ones are restricted within
user-specific values [? ]. These methods suffer from the need to fix
weights or the thresholds of the restricted objectives and cannot
provide optimal solutions when the objectives are conflicting.

3 ALGORITHM

We propose a method that finds the Pareto solutions by addressing
all objectives at once [? ]. To do so, we define a dominance relation
between two sets of size 𝑘 .

We represent the set of all test batches as 𝐶𝑘 = {𝐵 |𝐵 ∈ T , |𝐵 | =
𝑘}. We define batch dominance 𝐵1 ≻ 𝐵2 between any two sets in𝐶𝑘 :

Batch dominance.We say that 𝐵1 dominates 𝐵2 (𝐵1 ≻ 𝐵2) iff:
• 𝐵1 is no worse than 𝐵2 for all three objectives.
• 𝐵1 is strictly better than 𝐵2 for at least one objective.

We design a heuristic Algorithm 1 to avoid an exhaustive ex-
ploration of the whole search space. It starts by performing 𝑡𝑖𝑚𝑒𝑠

iterations where in each it finds an optimal batch of tests (Lines 3
to 7) to avoid local optimums. At each iteration, it first generates
a random candidate. Then it performs Hill Climbing to optimize
both expected performance and aptitude. The returned candidates
are added to the set of results. From this set, only non-dominated
candidates are kept (Line 8). Finally, the candidate that yields the
lowest skill gap is chosen (Line 9) and assigned to the learner (Line
10). The learner’s skill is updated after the completion of the test
batch (Line 11). Refer to Section 4.3 for our skill update strategy.
This process is repeated until the learner 𝑙 achieves skill mastery.

Algorithm 2 searches over all the neighbors of the input batch
and selects the one that improves aptitude and expected perfor-
mance. A neighbor of a batch is computed by replacing one and
only one test with another test that has either the next higher

Algorithm 1: Heuristic MOO
Input: learner 𝑙 , set of tests T , size 𝑘 , # repetition 𝑡𝑖𝑚𝑒𝑠

1 while not mastery do

2 𝑅𝑒𝑠𝑢𝑙𝑡𝑠 ← ∅
3 for 𝑛 in [1..𝑡𝑖𝑚𝑒𝑠] do
4 𝐶 ← 𝑅𝑎𝑛𝑑𝑜𝑚_𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 (𝑘)
5 𝐶∗ ← 𝐻𝐶𝐴𝐸 (𝐶)
6 𝑅𝑒𝑠𝑢𝑙𝑡𝑠 .𝐴𝑑𝑑 (𝐶∗)
7 end

8 Keep non-dominated candidates in 𝑅𝑒𝑠𝑢𝑙𝑡𝑠

9 𝐵 ← The solution from 𝑅𝑒𝑠𝑢𝑙𝑡𝑠 with the lowest skill 𝑔𝑎𝑝
10 𝑙 completes 𝐵
11 𝑙 .𝑠𝑘 ← 𝑠𝑘𝑖𝑙𝑙_𝑢𝑝𝑑𝑎𝑡𝑒 (𝑙 .𝑠𝑘, 𝐵)
12 end

Algorithm 2: HCAE - Hill Climbing for Aptitude and Ex-
pected Performance
Input: Batch of 𝑘 tests 𝐵
Output: Optimized batch 𝐵∗

1 while 𝑇𝑟𝑢𝑒 do

2 𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 ← ∅
3 for 𝑡𝑒𝑠𝑡 ∈ 𝐵 do

4 𝑡𝑒𝑠𝑡_𝑑𝑜𝑤𝑛 ← A test with the next lower difficulty
5 𝐵_1← 𝐵 − {𝑡𝑒𝑠𝑡} + {𝑡𝑒𝑠𝑡_𝑑𝑜𝑤𝑛}
6 𝑡𝑒𝑠𝑡_𝑢𝑝 ← A test with the next higher difficulty
7 𝐵_2← 𝐵 − {𝑡𝑒𝑠𝑡} + {𝑡𝑒𝑠𝑡_𝑢𝑝}
8 𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠.𝑎𝑑𝑑 ( [𝐵_1, apt (𝐵_1), exPerf (𝐵_1)])
9 𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠.𝑎𝑑𝑑 ( [𝐵_2, apt (𝐵_2), exPerf (𝐵_2)])

10 end

11 Keep non-dominated candidates in 𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠
12 if 𝐵 dominates all candidates in 𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 then
13 return 𝐵

14 end

15 else

16 𝐵 ← A random candidate from 𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠

17 end

18 end

or lower difficulty (Lines 3 to 10). If all neighbors are dominated
by the current batch, this latter is chosen as the optimized batch.
Otherwise, the algorithm replaces the current batch by randomly
selecting one from the non-dominated neighbors.

4 EXPERIMENTS

The purpose of our experiments is to verify the assumptions we
made in this work, namely (i) alternating skill difficulty yields a
good skill gain and progression but is not well-adapted to attain
skill mastery, (ii) optimizing aptitude is required to attain mastery,
and (iii) optimizing all three dimensions reduces the number of
iterations needed to attain mastery.
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4.1 Data

We use real data collected from a Czech educational system4. It is
an adaptive practice system for elementary arithmetic tests. The
data contains more than 1800 tests from which we infer 42 distinct
difficulty levels ranging in ]0, 1[. We assume this order of difficulty
level: “divisions” > “multiplications” > “subtractions” > “additions”
> “numbers". We also assume multi-digit operations are more diffi-
cult than single-digit ones. We also use the display type of the tests
as a feature to infer difficulty. We consider that tests displayed with
visual examples are simpler than written tests. We assume that all
tests for “numbers” have the lowest difficulty (0.13). The difficulty
ranges of “additions”, “subtractions”, “multiplications”, and “divi-
sions” are [0.2, 0.4[, [0.4, 0.6[, [0.6, 0.8[, and [0.8, 1[ respectively. For
each type of operation, and starting from the beginning of its range,
we increase the difficulty with a fixed rate of tests that encounter
multi-digit numbers and tests displayed without any example.

4.2 Learner simulation

We simulate learners using an extended version of BKT (KT-IDEM)
as it is a cognitively diagnostic form of assessment that has been
recognized as beneficial to learners and instructors [? ]. BKTmodels
the learning process given the chronological sequence and correct-
ness of tests. It infers the knowledge of learners by predicting the
probability of learning. In addition to this inferred probability, two
more probabilities are used to estimate the performance of the
learner: Guess and Slip probabilities. Guess is the probability of
correctly answering a test when the learner does not master the
difficulty while Slip is the probability of incorrectly answering a
test even if the learner masters the difficulty. If the test is easy, the
probability of Guess is high. If the test is hard, the probability of
Slip is high as the learners are likely to make mistakes [? ].

4.3 Skill update

After the completion of a batch 𝐵 of 𝑘 tests, we update the skill of
learner 𝑙 as follows:

𝑠𝑘𝑖𝑙𝑙_𝑢𝑝𝑑𝑎𝑡𝑒 (𝑙 .𝑠𝑘, 𝐵) =𝑚𝑎𝑥𝑠𝑘∈𝐷∪{𝑙 .𝑠𝑘 }𝑠𝑘 (2)

where 𝐷 is the set of difficulty values of correctly completed tests
for which all tests with lower difficulties were correctly completed.

To show the intuition of this strategy, we consider a learner
with 𝑙 .𝑠𝑘 = 0.3 at iteration 𝑖 . At the next iteration 𝑖 + 1, the learner
is targeted with 𝑘 = 3 tests 𝑡4, 𝑡5, and 𝑡6 having 0.35, 0.4, and
0.45 as difficulty levels respectively. We consider that the learner
correctly answered 𝑡4 and 𝑡6 and failed 𝑡5. Using our strategy, the
skill value 𝑙 .𝑠𝑘 is updated to be equal to 0.35 (difficulty of 𝑡4). The
correct completion of 𝑡6 is not considered as exists one test (𝑡5)
with a lower difficulty that was wrongly completed. To account for
variability in learners, we used the static mastery detection method
𝑁𝐶𝐶 [? ] that updates the skill if the number of consecutive correct
answers, for a given difficulty level is 𝑁 .

4.4 Variants

As we aim to study the impact of each optimization dimension,
we devise several variants that produce a batch of 𝑘 tests: MOO:
uses the multi-objective optimization Algorithm 1. MOEG, MOAG, and
4https://github.com/adaptive-learning/matmat-web/blob/master/data/data_description.md

Figure 3: Average skill gain for each variant.

Figure 4: Skill progression as a function of # iterations.

MOAE: optimize expected performance and gap, aptitude and gap, or
aptitude and expected performance respectively. MOG, MOE, and MOA:
optimize gap only, expected performance only, or aptitude only.
ALTERNATE: assigns a random set of 𝑘 tests whose difficulty levels
alternate in round-robin: 𝑘 easy then 𝑘 medium then 𝑘 hard [? ].

We assume learners attain mastery when their skill value equals
the highest difficulty level. We set the maximum number of iter-
ations to 500. We vary the value of 𝑘 in {3, 5, 10, 15, 20} and the
number of simulations, i.e., learners, in {50, 100, 300}. Due to lack
of space, we only report results of 100 simulations for 𝑁 = 1, 𝑘 = 3.
For other settings, we see similar observations and we refer the
reader to our GitHub repository5 for our complete results and code.

4.5 Simulation results

We first report (1) the average skill gain and (2) the average skill pro-
gression in each variant. To better understand this first experiment,
we examine (3) the percentage of learners who attained mastery
and (4) the average number of iterations required to attain mas-
tery. Finally, we compute (5) the average time each variant takes to
generate a batch of 𝑘 tests.
Skill gain and progression. Figure 3 reports the difference be-
tween the last and first skill values for all simulated learners (aver-
age skill gain). We observe that MOO and MOAE produce the highest
average skill gain. Surprisingly, ALTERNATE seems to also produce
a high skill gain. To elucidate that, we plot Figure 4 to examine the
average step-wise skill progression. Here again, we observe that
MOO and MOAE result in the fastest upskilling with a clear advan-
tage for the former. MOAG is slower than these two variants but still

5https://github.com/AdaptiveUpskilling/AdUp.git
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quicker than MOEG. This reinforces our initial assumption that opti-
mizing for all three objectives at once yields the best results. This
experiment also shows that ALTERNATE yields a high skill progres-
sion. This confirms our initial assumption that existing alternating
task difficulties do yield good skill gain and progression. Next, we
examine whether ALTERNATE compares favorably to MOO and MOAE
in terms of achieving skill mastery.

Figure 5: (a) Percentage of learners who attain mastery - (b)

Average number of iterations to attain mastery.

Mastery. Figure 5 (a) reports the number of times each variant
attained mastery. One can see that while ALTERNATE reaches a rea-
sonable mastery level (≈ 59%), it is much lower than MOO, MOAG and
MOAE (≈ 90%). This clearly confirms that aptitude plays a central role
in attaining mastery. Hence, while alternating test difficulty levels
in ALTERNATE does achieve good skill gain and skill progression
performances, it is capped in terms of mastery level since it does
not explicitly optimize aptitude. We can also observe that single-
objective variants rarely attain mastery. This experiment confirms
our initial assumptions: MOE assigns tests that are similar to the
ones the learner completed correctly, thereby staying within the
under-challenging zone [? ]. MOA assigns tests that are too difficult
and that keep the learner in a frustration zone [? ].

Figure 5 (b) shows the average number of iterations to attain
mastery for each variant. One can observe that ALTERNATE attains
mastery in a similar number of iterations as MOAG but has a lower
rate of mastery. Nevertheless, it is quicker than all single-objective
variants. As explained before, these variants narrow the learners
into zones where their skill value does not evolve while ALTERNATE
offers more challenging batches which allow learners to attain
mastery more often. However, simulated learners under ALTERNATE
are able to correctly complete difficult tests but are unable to do
so for the most difficult tests. While MOAE attains a slightly higher
mastery level than MOO, it is outperformed by MOO in terms of the
number of iterations needed to achieve mastery.
Response time. MOO has the worst time average as it has to opti-
mize three objectives (≈10 seconds). MOAE would be a good candi-
date since it runs faster than MOO. However, MOO does better than
MOAE on skill progression and on the average number of iterations
needed to attain mastery. Therefore, we will need to focus on im-
proving response time for MOO in future work.

5 RELATEDWORK

Education Science. Flow [? ] and ZPD [? ] theories conceptualize
the idea of experiential learning [? ] that emphasizes the importance
of choosing appropriate tests for learners. Flow theory was shown
to be effective in the physical world in on-the-job training [? ? ].
More recently, it was used in crowdsourcing to compose tasks with
different difficulty levels and test the impact on skill improvement
and worker satisfaction [? ]. The difference with our work is that the
composition of test difficulties is decided beforehand (for instance, by
alternating easy and difficult tasks).
Learner Modeling & Mastery Detection. Many works [? ] de-
velop criteria that determine if a learner mastered a skill. 𝑁𝐶𝐶 (N
Consecutive Correct) [? ] declares mastery if the number of con-
secutive correct answers exceeds a threshold. Moving Average [? ]
declares mastery if the average of correct answers within a moving
window exceeds a threshold. More sophisticated models were also
proposed [? ? ]. The two most popular are Bayesian Knowledge
Tracing (BKT) [? ] and Latent Factor models [? ? ? ]. BKT [? ] is a
hidden Markov model with 4 parameters: probability that the skill
is initially mastered, probability of learning in one iteration, prob-
ability of an incorrect answer when the skill is learned (slip), and
probability of a correct answer when the skill is unlearned (guess).
Many extensions were proposed [? ? ? ]. For example, KT-IDEM [?
] accounts for test difficulty. Latent Factor are based on logistic
regression. They learn latent parameters to infer the probability
of mastery using a sigmoid function.We leverage KT-IDEM [? ] to
simulate learners. We also leverage 𝑁𝐶𝐶 to update skills.

6 CONCLUSION AND FUTUREWORK

We tackled the question of adaptive upskilling following a mastery
learning approach. The originality of our approach lies in adapt-
ing the difficulty of tests to the learner’s predicted performance,
aptitude, and skill gap. However, it is worth mentioning that our
framework has a number of limitations. First, it is tested on simula-
tions. It would need to be deployed with user studies in a real-world
system with real learners or on a crowdsourcing platform. Second,
while the learner model (BKT) is largely equivalent to other models
[? ? ], our results might differ with the use of other models. Also,
test difficulties are inferred and not defined by a domain expert.
Finally, the condition of reaching skill mastery could be relaxed
since in our case, learners might be able to reach high skill levels
and still not be considered as mastering a skill.

For future work, we are investigating two research directions.
Reinforcement learning. One direction we are pursuing is the
applicability of reinforcement learning to our setting. The idea
would be to devise a reward function that reflects our optimization
dimensions and learn a policy as a series of𝑘 tests. This will have the
benefit of pre-training different policies and reducing waiting time
at deployment. It will also provide the ability to incorporate more
constraints into our framework in the spirit of our recent work [?
]. Our aim is to explore the benefit of this global optimization and
compare it to the step-wise optimization we proposed in this paper.
Collaborative learning in the physical world. There are many
learning theories in the physical world, such as situated learning [?
] and collaborative learning [? ]. One representative of the former
is apprenticeship where knowledge is propagated from experts
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to novice learners based on the principle of Legitimate Peripheral
Participation [? ]. Collaborative learning is also effective in online
learning environments like MOOCs, and studies showed that rich
interactions such as peer feedback and discussion promote learning

[? ? ? ]. Our framework could be extended to account for peer
recommendation at each step.
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