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Abstract In discrete topology, we like digi-

tally well-composed (shortly DWC) interpola-

tions because they remove pinches in cubical

images. Usual well-composed interpolations are

local and sometimes self-dual (they treat in a

same way dark and bright components in the

image). In our case, we are particularly inter-

ested in n-D self-dual DWC interpolations to

obtain a purely self-dual tree of shapes. How-

ever, it has been proved that we cannot have

an n-D interpolation which is at the same time

local, self-dual, and well-composed. By remov-

ing the locality constraint, we have obtained

an n-D interpolation with many properties in

practice: it is self-dual, DWC, and in-between

(this last property means that it preserves the

contours). Since we did not published the pro-

ofs of these results before, we propose to pro-

vide in a first time the proofs of the two last

properties here (DWCness and in-betweeness)

and a sketch of the proof of self-duality (the

complete proof of self-duality requires more

material and will come later). Some theoret-

ical and practical results are given.
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1 Introduction

It is well-known that images coming from the

digitization of the real world loose a part of

their topological properties (their boundaries

are no longer topological manifolds for exam-

ple). In a discrete image, different possible con-

nectivities exist (like c2n and c3n−1), to cite

only the most famous, which means that de-

pending on the chosen connectivity, some al-

gorithms will work in a specific way; this can

lead to topological paradoxes (it can happen

that a simple, closed curve in the digital plane

no longer separates this plane into an inte-

rior and an exterior like in the Euclidian case).

Latecki introduced then well-composed images

with topological properties similar to the ones

of the objects in the real world; for example, in

2D and 3D, an image which is well-composed

will not longer have pinches in its boundary.

Note that a summary of the different flavors

of well-composednesses can be found in [9].

The question which arises then is: since

natural or synthetic discrete images are gener-

ally not well-composed, how can we compute

a “good” DWC representation of a given im-

age u? It has been shown in [6] that it is im-

possible in a local manner, and thereafter we

proposed a way to compute a well-composed

approximation in [7] (without interpolation).

However, this last approach modifies the val-

ues of the initial function, and then we pro-

posed a new method in [8] (with interpolation)
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that we can consider as being a “representa-

tion” of the initial image since it preserves the

topology of this image. The aim of the present

paper is thus to prove that this last represen-

tation is in-between (roughly speaking, it pre-

serves the contours of the initial image), and

that it is a well-composed interpolation (in the

digital sense, that is, without critical configu-

rations). This last property leads to a strong

mathematical property: the tree of shapes of a

same image is unique and no longer depends

on the choice of connectivities (for the upper

and lower threshold sets).

This paper extends [8] and [7] in the sense

that we provide mainly:

– the proof that digital well-composedness is

equivalent to local 2n-connectivity (as seen

in [8]),

– the proof of the characterization of a digi-

tally well-composed gray-level image pub-

lished in [7],

– the proof that the interpolation provided

in [8] is digitally well-composed,

– the formalization of the notion of in-betwee-

ness (it preserves the contours, see [8]),

– the proof that the interpolation provided

in [8] is in-between.

Among the different methods used to make

an image well-composed, there exist two main

approaches: topological reparations [7,18,36,10]

and well-composed interpolations [13,24,25,30,

34,37]. The topological reparations are gen-
erally not topology-preserving, such as in [7,

36], are limited to the 3D case [16,17,19,20,

21], or are just proven to be weakly well-com-

posed [10]. We will then not go further into

details about topological reparations in this

paper. However, well-composed interpolations

are more likely to preserve the topology of the

initial image, since they preserve the initial

data, and a brief state-of-the-art will then be

presented hereafter.

Applications of digital well-composedness

are numerous: as well depicted in [9], we do

not have any hole problem [35] or ambigu-

ous cases using the technology called March-

ing Cubes[28], used to represent surfaces sur-

rounding a set of points in a 3D space. We can

also compute thin topological maps [29], we

can proceed to text extraction using the tree of

shapes of the sign of the morphological Lapla-

cian [22] made digitally well-composed, we can

compute the Dahu pseudo-distance [15], a good

approximation of the Minimum Barrier dis-

tance, to proceed to salient object detection [38],

and so on.

Section 2 briefly discusses the state-of-the-

art in matter of well-composed interpolations.

Then, in Section 3, we recall the theoretical

background relative to DWCness in n-D. In

Section 4, we introduce new material relative

to DWCness; in particular we prove some as-

sertions from [7] and from [8] related to DWC-

ness itself. In Section 5, we explain how to

compute our n-D interpolation based on a fro-

nt-propagation algorithm (FPA). In Section 6,

we show the main results of the paper, that is,

the proofs that our interpolation is in-between

and that its output is digitally well-composed

(extending [8]). Section 7 shows some theoret-

ical and practical applications resulting from

our interpolation. Finally, Section 8 provides

a sketch of the proof of self-duality, Section 9

concludes the paper, and Section 10 is the ap-

pendix of the paper, containing secondary pro-

ofs.

2 State-of-the-Art

In this section, we recall the different exist-

ing well-composed interpolations, and we de-

tail why local self-dual interpolations cannot

be well-composed in n-D, n ≥ 3. For the inter-

ested reader, all the details about the origin of

well-composedness can be found in the tuto-

rial [9] of Boutry et al..

The restriction of an interpolation to the

initial domain is equal to the initial image. In

that sense, interpolations preserve the initial

data. However, without constraints, there is no

guarantee that the interpolation has the same

topology as the initial image. For example, the

1D image • • represents two connected pixels,

valued at 1. One non-constrained interpolation

can then be • ◦ •, where ◦ denotes a pixel val-

ued at 0. The two black points are then discon-

nected. For this reason, we will consider only

what we call in-between interpolations, that is,

interpolations such that the secondary pixels

have values that are between the values of the

primary pixels. They have the property not to

create any new extrema in the image. In that

sense, in-between interpolations preserve the

topology of the initial image.

In 1998, Rosenfeld, Kong and Nakamura

[34] developed the first well-composed 2D in-

terpolation, that is a method able to compute
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an image on a larger domain than the one

of the initial image, such that its restriction

to the initial domain equals the original im-

age and such that the resulting interpolation

is well-composed. This method can be decom-

posed in two steps: first, an image magnifi-

cation [34], which is equivalent to replacing

each pixel of the original image by a set of

(k + 1)× (k + 1) pixels (where k ≥ 1 is given)

of the same value and which replaces the orig-

inal pixel; second, a modification step removes

the critical configurations of the magnified im-

age by changing one of the values of the 4

points of the critical configuration (from 0 to 1

or the converse). Since the magnification pro-

cess and the modifications are simple deforma-

tions [34], they preserve the topology (in the

sense that the two images have the same adja-

cency tree and the same homotopy type), and

then the final image is a well-composed image

topologically equivalent to the initial one.

Then, in 2000, Latecki [25] developed an al-

ternative method to make a 2D binary image

well-composed. This new method is based on

the image expansion of Köthe [24], and con-

sists of doubling the resolution of the square

grid of the initial image by adding new pixels

(the so-called “secondary” pixels) between the

original pixels (the “primary” pixels). A sec-

ondary pixel added between two edge-connec-

ted pixels will take the value of these primary

pixels iff they have the same value. Otherwise,

they will be labeled as “boundary points”. A

secondary pixel added at the center of a square

of 4 vertex-connected pixels will take the value

of these pixels iff they all have the same value.

In the complementary case, they will be la-

beled boundary points. Finally, we obtain 3

sets, a set of zeros, a set of ones, and a set

of boundary points, each of them being well-

composed. We can denote the difference be-

tween these two first algorithms: the one of

Rosenfeld et al. is based on simple deforma-

tions, so it ensures topological equivalence, but

the one of Latecki is based on a “counting pro-

cess”, which ensures well-composedness but no

topological equivalence.

Then in 2006, Stelldinger proposed a me-

thod called Majority Interpolation [37] which

can be seen as a slightly modified 3D exten-

sion of Latecki’s method [25], since it is based

on a similar counting process. The resulting

binary image is always well-composed in the

sense that the resulting boundary in the inter-

polated image is a 2-manifold, but this method

is not self-dual.

In 2000, Latecki [25] developed the first

gray-level well-composed interpolation method

in 2D. Starting with the same image expansion

as the one used for his binary interpolation,

the new pixels are valued based on bilinear in-

terpolation: a pixel added between 2 primary

pixels is valued at the mean of these two pix-

els, and at the center of a square of primary

pixel, the new pixel is set a the mean of the

values of these 4 pixels if the restriction of the

image to these four pixels is well-composed,

and at the median of these same values other-

wise. This last method has been slightly mod-

ified by Géraud et al. [13] in 2015 where the

new pixels added at the center of a square of

4 pixels is systematically the median of these

four primary pixels, since the median is always

the good solution in 2D to make an image

well-composed. This method does not create

any extrema. We can notice that these gray-

level interpolation methods are self-dual in the

sense that they do not overemphasize bright

components over the dark ones, nor the con-

verse. The counterpart of this powerful prop-

erty is that the initial images having a integer-

based value space, the value space of the new

images is Z/4 for Latecki’s method and Z/2
for the method of Géraud et al..

In addition, Mazo et al. [30] developed a

method able to interpolate any image in n-D

into a well-composed one, based on the con-

nectivity function where ε = 1 corresponds

to the max interpolation and ε = −1 corre-

sponds to the min interpolation. Even if this

method is initially made for binary images de-

fined on Khalimsky grids, its extension to Zn
and to gray level images is well known and

frequently used. However this method is not

self-dual, contrary to the one we are going to

present in this paper.

In [6], it has been suggested that the “ideal”

well-composed interpolation I : u → I(u) of

the gray-level image u into the gray-level im-

age I(u) would be the one which verifies the

following set of properties:
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Fig. 1: A counter-example proving that a self-dual interpolation satisfying the usual constraints

(including locality) cannot ensure digital well-composedness [6] in 3D and beyond. We finally

obtain that the value at the center of the cube must be greater than or equal to 3 and lower

than or equal to 1, which is impossible.



I is invariant by translations,

I is invariant by π
2 rotations,

I is invariant by axial symmetries,

I is local,

I is ordered,

I is self-dual,

I is an in-between interpolation,

I(u) is digitally well-composed, ∀u.

where

– locality means that the interpolation is or-

dered and that the values at the secondary

(new) pixels depend only on the nearest

primary (old) pixels,

– orderedness means that the interpolation is

local and first sets the values at the corners,

then at the centers of the edges, then at the

centers of the faces, and so on,

– in-betweeness means that the values of u′

at the centers of the edges are between the

values of u′ at the extremities of the edges,

that the values of u′ at the centers of the

faces are between the values of u′ at the

centers of its edges, and so on,

– self-duality formally means that for any im-

age u,

I(−u) = −I(u),

that is, dark components are treated in the

same way as bright components.

However, it has been shown in [6] that such

an interpolation does not exist, as depicted in

Figure 1. Indeed, we can show that a local (or-

dered) interpolation will set the values of the

new function at the corners of the cube (the

green values), then it will use the mean func-

tion (since we want to be self-dual) on the

extremities of the edge to set the values of

the interpolation at the centers of these edges

(which leads to the blue values). After that,

since each face of the cube draws a “critical

configuration” (observing the green values at

its corners), the only possible values (drawn

in red) at the centers of these squares will be

the median of the values at the corners of the

squares. Finally, the constraints such that the

interpolation is in-between and DWC will lead

to two incompatible inequations for the value

m ∈ R of the interpolation at the center of

the cube: m ≥ 3 and m ≤ 1. In other words,

no self-dual local interpolation can ensure that

the output image is always DWC as soon as

n ≥ 3.

For this reason, a new interpolation, this

times non-local and then not ordered, has been

proposed in n-D in [8]. This interpolation is

digitally well-composed and in-between (the

proofs are provided herafter) and self-dual (the

proof will be provided in another paper).

Now, let us present the theoretical back-

ground relative to DWCness.

3 Theoretical background

After having recalled some basics in matter

of n-dimensional digital topology [6,8,23,33]

in Zn, we recall the formal definition of n-D

DWCness introduced first in [8] and some of

its properties.
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3.1 Basics of digital topology in Zn

For the moment, we will only work with digital

sets, that is, subsets of Zn which are finite or

whose complement in Zn is finite.

Let n ≥ 2 be a (finite) integer called the di-

mension. Now, let B = {e1, . . . , en} be the (or-

thonormal) canonical basis of Zn. We use the

notation xi, where i belongs to J1, nK, to deter-

mine the ith coordinate of the vector x ∈ Zn.

We recall that the L1-norm of a point x ∈ Zn
is denoted by ‖.‖1 and is equal to

∑
i∈J1,nK |xi|

where |.| is the absolute value. In addition, the

L∞-norm is denoted by ‖.‖∞ and is equal to

maxi∈J1,nK |xi|.

For a given point x ∈ Zn, the 2n-neigh-

borhood in Zn is noted N2n(x) and is equal to

{y ∈ Zn ; ‖x − y‖1 ≤ 1}, and the (3n − 1)-

neighborhood in Zn is noted N3n−1(x) and is

equal to {y ∈ Zn ; ‖x − y‖∞ ≤ 1}. Let

ξ be a value in {2n, 3n − 1}. The starred ξ-

neighborhood of x ∈ Zn is noted N ∗ξ (x) and

is equal to Nξ(x) \ {x}. An element of the

starred ξ-neighborhood of x ∈ Zn is called

a ξ-neighbor of x in Zn. Two points x, y ∈
X ⊂ Zn such that x ∈ N ∗ξ (y) or equivalently

y ∈ N ∗ξ (x) are said to be ξ-adjacent in X. Let

x, y be two points in Zn and X be a subset

of Zn. A finite sequence (p0, . . . , pk) in X is

a ξ-path in X when p0 is ξ-adjacent only to

p1 in X, pk is ξ-adjacent only to pk−1 in X,

and for any i ∈ J1, k − 1K, pi is ξ-adjacent to

pi−1 and to pi+1 only in X. Such paths are

said to be of length k. A digital set X ⊂ Zn
is said ξ-connected if for any pair of points

x, y ∈ X, there exists a ξ-path joining them in

X. A subset C of X which is ξ-connected and

which is maximal in the inclusion sense, that

is, there is no ξ-connected subset Y of X which

is greater than C, is said to be a ξ-component

of X.

3.2 n-D DWCness

In this subsection, we recall the notion of dig-

ital well-composedness for sets in Zn, that we

call in this way because it is based on patterns

called “k-dimensional critical configurations”,

k ∈ J2, nK, and these patterns can only occur

in subsets of Zn. So let us introduce the basic

mathematical background which will allow us

to generalize the notion of well-composedness

based on critical configurations to dimension

n ≥ 2. As usual, B = {e1, . . . , en} is the canon-

ical basis of Zn.

Fig. 2: 2D, 3D and 4D blocks.

Fig. 3: In the raster scan order: the white

points are 1-antagonists, 2-antagonists, 3-

antagonists, and 4-antagonists.

Definition 1 Given a point z ∈ Zn and a

family of vector F = (f1, . . . , fk) ⊆ B, we de-

fine the block S(z,F) associated to the couple

(z,F) such as:z +
∑

i∈J1,kK

λif
i
∣∣ λi ∈ {0, 1},∀i ∈ J1, kK

 .

A subset S ⊂ Zn is called a block if there

exists a couple (z,F) ∈ Zn × P(B) such that

S = S(z,F). Note that a block which is as-

sociated to a family F ∈ P(B) of cardinality

k ∈ J0, nK is said to be of dimension k, what

will be denoted by dim(S) = k. Figure 2 shows

2D, 3D and 4D blocks. We will denote the set

of blocks of Zn by B(Zn).

Using this notion of blocks, we can define

antagonists. Two points p, q belonging to a

block S ∈ B(Zn) are said to be antagonists

in S if their distance equals the maximal dis-

tance using the L1 norm between two points

into S. In other words, two points p and q in

Zn are antagonists in S ∈ B(Zn) if p, q ∈ S

are such that:

‖p− q‖1 = max{‖x− y‖1 ; x, y ∈ S},
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Fig. 4: The white points draw 2D primary crit-

ical configurations.

and in this case we write that q = antagS(p)

or equivalently p = antagS(q). The antagonist

of a point p in a block S ∈ B(Zn) containing

p exists and is unique. Sometimes we will use

the notation S(p, q) where p, q ∈ Zn are (3n −
1)-neighbors or equal to indicate the block in

B(Zn) such that p and q are antagonists in this

block.

In addition, two points which are antago-

nists in a block of dimension k ∈ J0, nK are

said k-antagonists. In this case, k of their co-

ordinates differ, and they differ from a value

1, their other coordinates being equal. Two

points which are 0-antagonists are equal, two

points which are 1-antagonists are 2n-neighbors

in Zn, and two points which are k-antagonists,

k ∈ J0, nK, in a block S ∈ B(Zn) are (3n − 1)-

neighbors in Zn or equal. See Figure 3 for dif-

ferent possible pairs of antagonists (in white)

in a 4D space.

Now, we are able to define critical configu-

rations of dimension k ∈ J2, nK in a n-D space:

Definition 2 Let X ⊂ Zn be a digital set,

and let S ∈ B(Zn) be a block of dimension

k ∈ J2, nK. We say that X contains a pri-

mary critical configuration of dimension k in

the block S if X ∩ S = {p, p′} with p, p′ ∈ S
two points that are antagonists into S. We

say that X contains a secondary critical con-

figuration of dimension k in the block S if

X ∩ S = S \ {p, p′} with p, p′ ∈ S two points

that are antagonists into S. A critical configu-

ration of dimension k ∈ J2, nK is either a pri-

mary or a secondary critical configuration of

dimension k.

Figures 4, 5 and 6 depict respectively 2D,

3D, and 4D critical configurations.

There comes our definition of digitally well-

composed sets:

Definition 3 A digital set X ⊂ Zn is said

digitally well-composed or DWC if it does not

contain any critical configuration, that is, for

any block S ∈ B(Zn), the restriction X ∩ S
is neither a primary nor a secondary critical

configuration.

Fig. 5: The white points draw a 3D primary

critical configuration on the left and a sec-

ondary 3D critical configuration on the right.

Fig. 6: The white points draw a 4D primary

critical configuration on the left and a sec-

ondary 4D critical configuration on the right.

Obviously, this definition is self-dual, since

a set X ⊂ Zn contains a primary (respectively

a secondary) critical configuration in the block

S ∈ B(Zn) iff its complement Xc contains

a secondary (respectively a primary) critical

configuration in this same block S.

3.3 Digitally well-composed gray-level n-D

images

Let us now recall the definition of well-com-

posed (gray-level) images. Let u : D → Z be

a gray-level image, that is, a mapping from a

domain D ⊆ Zn to a totally ordered set (like

R, Z, or Z/2). Let λ ∈ R be a given threshold,

then the following sets are called the threshold

sets [2,3,4,31] of u:

[u ≥ λ] = {x ∈ D ; u(x) ≥ λ},
[u > λ] = {x ∈ D ; u(x) > λ},
[u ≤ λ] = {x ∈ D ; u(x) ≤ λ},
[u < λ] = {x ∈ D ; u(x) < λ}.

They are respectively called the large upper,

the strict upper, the large lower, and the strict

lower threshold sets of u.

Definition 4 A gray-level image u : D → Z
is said digitally well-composed (DWC) if all

its threshold sets are digitally well-composed.



Topological Properties of the First DWC Interpolation on n-D Cubical Grids 7

3.4 DWCness for interval-valued maps

We have seen what means digital well-compo-

sedness for single-valued maps, that is, maps

such that for a point p belonging to their do-

main D, the value at p is a real value. How-

ever, as seen in [1], which introduces set-valued

analysis, we can define set-valued maps, that

is, maps such that for a point p belonging to

their domain D, the value at p is a subset of

some value space V. We will be particularly in-

terested in interval-valued maps, a class of set-

valued maps such that the value at each point

of the domain is an interval [a, b] ∩ V. But let

us recall these definitions more formally.

[1,3] [2,4] [1,3]

[4,5] [3,6] [4,5]

[1,3] [2,4] [1,3]

U

[U 7]

[U 6]

[U 3]

[U 5]

[U 4]

Fig. 7: A family of (large upper) threshold sets

{[U D λ]}λ of an interval-valued image U . We

can remark the straightforward inclusion rela-

tionship [U D λ] ⊆ [U D λ − ε] for any λ ∈ R
and ε > 0.

We call value space a subset of R which is

isomorphic to Z. We call interval in a value

space V any set which can be written [a, b]

with a, b ∈ V and a ≤ b. The set of intervals in

[1,3] [2,4] [1,3]

[4,5] [3,6] [4,5]

[1,3] [2,4] [1,3]

U

[U 4]

[U 3]

[U 0]

[U 2]

[U 1]

Fig. 8: A family of (strict upper) threshold sets

{[U B λ]}λ of an interval-valued image U . We

can remark the straightforward inclusion rela-

tionship [U B λ] ⊆ [U B λ − ε] for any λ ∈ R
and ε > 0.

a value space V is denoted by IV. An interval-

valued map [8] is a map U : D → IV (shortly

written U : D  V) such that for any p ∈ D,

U(p) is an interval in the value space V.

Now that we have defined interval-valued

maps, we can define their threshold sets [8] (see

Figures 7 and 8).

Definition 5 For a given interval-valued map

U : D ⊆ Zn  V, we define for any λ ∈ V
respectively the large upper, the strict upper,

the strict lower, the large lower threshold sets

as well:

[U D λ] = { z ∈ D
∣∣ ∃ v ∈ U(z), v ≥ λ },

[U B λ] = { z ∈ D
∣∣ ∀ v ∈ U(z), v > λ },

.[U C λ] = { z ∈ D
∣∣ ∀ v ∈ U(z), v < λ },

[U E λ] = { z ∈ D
∣∣ ∃ v ∈ U(z), v ≤ λ }.

Definition 6 An n-D interval-valued map U :

D ⊆ Zn  V is said digitally well-composed



8 N. Boutry et al.

u

U

(u[,R)

T (u[)

T (u)

immersion

sort

union-find

emersion

Fig. 9: Computation of the tree of shapes.

if all its threshold sets are digitally well-com-

posed.

Now, let us define the upper/lower bounds

of an interval-valued map.

Definition 7 For an n-D interval-valued map

U : D ⊆ Zn  V, the upper bound dUe :

D → V and the lower bound bUc : D → V
are defined such that for any p ∈ D, dUe(p) =

max(U(p)) and bUc(p) = min(U(p)).

3.5 Origin of the FPA

The front propagation algorithm studied in

the next subsection is related to the algorithm

proposed in [12,14], which computes in quasi-

linear time the morphological tree of shapes [11]

of a n-D image. Schematically, the tree of sha-
pes computation algorithm is composed of 4

steps as depicted in Figure 9. The input is

an integer-valued image u, defined on the n-D

cubical grid. First an immersion step creates

an interval-valued map U , defined on a larger

space K. A front propagation step, based on a

hierarchical queue, takes U and produces two

outputs: an image u[ and an array R contain-

ing the elements of K. In this array, the el-

ements are sorted so that the next step, an

union-find-based tree computation, produces

T (u[) the tree of shapes of u[. Actually u[
∣∣
Zn =

u and T (u[)
∣∣
Zn = T (u). The last step, the

emersion, removes from T (u[) all the elements

of K\Zn, and also performs a canonicalization

of the tree. So T (u), the tree of shapes of u, is

obtained [14].

The front propagation step (highlighted in

red in the schematic description) acts as a flat-

tening of an interval-valued map U into a func-

Algorithm 1: Handling of a hierar-

chical queue is ensured thanks to pri-

ority push and priority pop.

priority push(Q, h, U, `)
/* modifies Q */
begin

[lower , upper ]← U(h)
if lower > ` then

`′ ← lower

else if upper < ` then
`′ ← upper

else
`′ ← `

push(Q[`′], h)

priority pop(Q, `) : h
/* modifies Q, and sometimes ` */
begin

if Q[`] is empty then
`′ ← level next to ` such as Q[`′] is
not empty

`← `′

return pop(Q[`])

tion u[, because we have:

∀ z, u[(z) ∈ U(z).

In the following, we will denote by FP both the

front propagation algorithm (the part high-

lighted in red in Figure 9) and the mathemat-

ical operator FP : U 7→ u[.

Last, let us give two important remarks. 1.

We are going to reuse the front propagation al-

gorithm FP, yet in a very different way than

it is used in the tree of shapes computation al-

gorithm. Indeed, its input U will be different

(both the structure and the values of U will

be different), and its purpose also will be dif-

ferent (flattening versus sorting). 2. Actually,

the front propagation algorithm is just a part

of the solution that we present to make n-D

functions digitally well-composed.

3.6 Front-propagation algorithm

Let us now explain shortly the FP algorithm,

which is recalled in Algorithm 2. The basic

procedures used to handle the hierarchical que-

ue are recalled in Algorithm 1 . The reader

can also refer to [14] for the original version.

This algorithm uses a classical front propaga-

tion on the definition domain of U . This prop-

agation is based on a hierarchical queue, de-

noted by Q and the current (queue) level is de-

noted by `. There are two notable differences

with the well-known hierarchical-queue-based
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Algorithm 2: Computation of the

function u[ from an interval-valued

map U defined on Zn, s ∈ N∗.
FP(U) : Image ;
/* computes u[ */ ;
begin

for all h ∈ Zn do
deja vu(h)← false;

push(Q[`∞], p∞);
deja vu(p∞)← true;
`← `∞ /* start from root level */ ;
while Q is not empty do

h← priority pop(Q, `);

u[(h)← `;
for all n ∈
N2n(h) such as deja vu(n) =
false do

priority push(Q, n, U, `);
deja vu(n)← true;

return u[

propagation. First the values of U are interval-

valued so we have to decide at which (single-

valued) level to enqueue the domain points.

The solution is to enqueue a point h at the

value of the interval U(h) that is the clos-

est to ` (see the procedure priority push).

The image u[ actually stores the enqueuing

level of the points. Second, when the queue

at the current level, Q[`], is empty (and when

the hierarchical queue Q is not yet empty),

we shall decide what is the next current level.

We have the choice of taking the next level,

either less or greater than `, such that the

queue at that level is not empty (see the pro-

cedure priority pop). Practically, choosing

going up or down the levels does not change

the resulting image u[. The neighborhood N2n

used by the propagation corresponds to the

2n-connectivity into Zn (but can easily be ada-

pted to any cubical grid).

Like in [14], the initialization of the front

propagation relies on the definition of a point,

p∞ (first point enqueued), and of a value `∞ ∈
U(p∞),1 which is the initial value of the cur-

rent level `. Similarly to the case of the tree of

shapes computation, p∞ is taken in the outer

boundary of the definition domain of U . The

initial level `∞ is set at the median value of

the points belonging to the inner boundary

of the definition domain of U ; more precisely,

when the interval-valued U is constructed from

1 The∞ subscript in `∞ comes from the fact that
it is related to the point p∞ which represents the
initial position of the algorithm, itself correspond-
ing to the outer border of the domain of the image.

an integer-valued function u, `∞ is computed

from the values of the inner boundary of u.

Using the median operator ensures that `∞ is

set in a self-dual way (the value `∞ chosen for

an image u will be the opposite of the value

`∞ chosen for −u).

Note that a first example of propagation

will be given hereafter to explain how works

the flattening process step-by-step.

Let us now illustrate this algorithm on a

simple run, depicted in Figure 10. The ini-

tial interval-valued image U is displayed in

(i). Squares filled in gray indicate the points

that have already been processed at previous

iterations. A circle filled in orange indicates

the point h being processed, and the value

displayed in the circle is the current level `;

it means that we have just executed the line

“u[(h) ← ` ” of the algorithm. A dashed cir-

cle filled in green, say at a point p, indicates

that this point is in the hierarchical queue Q;

the value displayed in this circle, say v, is the

queue level of this point, i.e., we have p ∈ Q[v].

When no symbol is displayed at a point, it

means that this point is not yet processed and

is not in Q; we then depict its value in U .

The input interval-valued image U is shown

in (i). In the following, the point coordinates

are (row , column); for instance we have U(2, 1)

= U(2, 3) = [4, 5]. The initialization step is de-

picted by (ii). We assume that we have p∞ =

(1, 1) and `∞ = 2. The initialization thus adds

p∞ in Q[2], and sets ` ← `∞, so the current

level ` is 2. The first iteration of the ’while’

loop is depicted by (iii). It pops the point h =

(1, 1), and performs the assignment u[(h)← `,

precisely u[(1, 1)← 2. It then pushes its neigh-

boring points (1, 2) and (2, 1) into Q, respec-

tively with level 2 and 4. Indeed, we have

U(1, 2) = [2, 4] and U(2, 1) = [4, 5] so pri-

ority push respectively chooses in these in-

tervals the levels that are the closest to the

current level ` = 2. The second iteration is

depicted by (iv). Since the queue Q[`] is not

empty, the current level does not change, and

the point h = (1, 2) is popped. u[(h) ← ` is

performed; precisely u[((1, 2)) ← 2. Then the

points (1, 3) and (2, 2) are pushed respectively

in Q[2] and Q[3] since ` = 2, U(1, 3) = [1, 3] =

{1,2, 3}, and U(2, 2) = [3, 6]. The third iter-

ation is depicted by (v), popping (1, 3) from

Q[2] (the current level does not change), and

pushing (2, 3) in Q[4] since U(2, 3) = [4, 5].

For the fourth iteration, depicted by (vi), the

current level is ` = 2, and the queue corre-
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(i)                   (ii)                   (iii)                  (iv)                   (v)                   (vi) 

(vii)                 (viii)                  (ix)                  (x)                   (xi)                  (xii) 

Fig. 10: The front propagation algorithm applied on a digitally well-composed interval-valued

image U .

u

Fig. 11: The initial image u.

U

Fig. 12: The “continuous” interpolation U .

sponding to the current level, namely Q[2], is

empty. Indeed, the hierarchical queue is only

composed of Q[3] ∪ Q[4]; the four points de-

picted with circles in (vi) only contains the

values 3 and 4. The procedure priority pop

thus changes the current level to the closest

level whose queue is not empty, so `← 3. The

point h = (2, 2) is then popped from Q[3], the

assignment u[(2, 2)← 3 is performed, and the

neighbor point (3, 2) of h is pushed in Q[3]

since U(3, 2) = [2, 4] = {2,3, 4}. The follow-

ing iterations, depicted by the sub-figures (vii)

to (xi), lead to the final integer-valued image

u[, depicted by (xii). This resulting image is

such as:

∀ z ∈ D, u[(z) ∈ U(z).

This front propagation algorithm thus flattens

an interval-valued map U into the integer-va-

lued image u[ = FP(U).

Indeed, if we consider that orderedness and

locality are not so necessary, we can use a

front-propagation algorithm (FPA); in this case,

our approach is then non-local.

So, let us proceed in two steps. First, we

make the input image u depicted in Figure 11

“continuous” by using the span-based interpo-

lation (detailed later); the values of the new

image are not single values but intervals, as

depicted in Figure 12. We call this new map

the interval-valued interpolation U .

step 1

♭u
0

step 2

♭u
1

step 3

♭u
2

step 4

♭u
3

Fig. 13: Flattening process.

Then, we use the FPA to “flatten” this

function into a third map u[, which is then

single-valued. Moreover, this new map u[ will

have new topological properties thanks to the

“regularization” properties of the FPA. The

whole process is developed later.

We depicted the details of the flattening

process in Figure 13: starting from the interval-

valued interpolation U , we add a border that

we consider as being the initial front (for this

reason, we depict it using green points), to
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step 5

♭u
4

Fig. 14: The interpolation of u.

a b

c

i i+1

j

j+1
d

a b

d

i i+1

j

j+1
c

ab

cd

ac abcd bd

Fig. 15: The subdivision of a 2D block (ex-

tracted from [6]).

ensure that the propagation starts from the

contour. Then we propagate the front deeper

and deeper in the image until the front, made

of the green points, covers the whole domain

of U . The new image is called u[ because it

corresponds to U which has been flattened.

Then, we remove the temporary border (see

Figure 14) to obtain an interpolation which is

“smoother” than the original image u. Apply-

ing this algorithm in n-D, n ≥ 2, leads to dig-

itally well-composed images, as we will prove

later.

3.7 Prerequisites relative to in-betweeness

In this subsection, we first recall basics in mat-

ter of digital topology coming from [6] and

that we will use to define in-betweeness.

A block of Zn can be subdivided into blocks

of (Z/2)n (see Figure 15), where s belongs to

N∗, using the following procedure:

Definition 8 Let S ∈ B(Zn) be a block of di-

mension k ≥ 0 associated to a point z ∈ Zn
and the family of vectors F = (f1, . . . , fk) ⊆ B
associated to S. Then the cubical subdivision

of S is denoted by Subd(S) and is equal to:z +
∑

i∈J1,kK

λif
i;∀i ∈ J1, kK, λi ∈

{
0,

1

2
, 1

} .

Let us define now the cubical subdivision of

a domain:

Definition 9 Let D ⊆ Zn be a bounded hy-

perrectangle. Then the cubical subdivision of

1

1

11
2

0 01
1D:

2D:

Fig. 16: Computation of the direct parents in

1D and in 2D (extracted from [6]).

this domain is the union of the subdivision of

the blocks of Zn that are subset of this domain:

Subd(D) =
⋃

S∈B(D)

Subd(S).

Obviously, Subd(D) ⊆ (Z/2)n.

For that, let us define the mapping o :(Z
2

)n → N, called the order, defined as the

number of half coordinates of z.

This way, we can define the binary relation

R :
(Z

2

)n × (Z2 )n → {0, 1} such that p, q ∈(Z
2

)n
verify pRq which is said “p is parent of

q” if o(p) ≤ o(q) and ‖p − q‖∞ ≤ 1/2. The

pair (
(Z

2

)n
, R) which represents

(Z
2

)n
supplied

with the order relation R is called a partial

order or poset. In addition, a point p ∈
(Z

2

)n
is said to be a direct parent of q ∈

(Z
2

)n
if pRq,

p 6= q, and there exists no point into
(Z

2

)n \
{p, q} such that pRr and rRq.

Definition 10 We denote by 1
2 (z) the set of

the coordinates of the point z ∈
(Z

2

)n
such that

they are not integers:

1

2
(z) =

{
i ∈ J1, nK ; zi ∈

Z
2
\ Z
}
.

This notation, even if looking much sim-

ple, will be very useful in the sequel, because

it permits to classify the points of
(Z

2

)n
just

based on the number of integral coordinates.

Definition 11 Let k be an element of J0, nK.
We denote by Ek the set of points in

(Z
2

)n
such

that they have (n− k) integral coordinates:

Ek =

{
z ∈

(
Z
2

)n
; Card

(
1

2
(z)

)
= k

}
.

Then, we can remark that for any point z ∈(Z
2

)n
, the value k such that z ∈ Ek is equal to

o(z). Note that {Ek}k∈J0,nK represents a par-

tition of
(Z

2

)n
.

The sets of direct parents can then be de-

fined very easily:
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Fig. 17: The computation of the ancestors of

the center of a 1D block (edge) and of the

ancestors of a 2D block (square) (extracted

from [6]).

0 01

1

1

11
2

0 0

00

Fig. 18: The computation of a group of the

center of a 1D block (edge) and of the center

of 2D block (square) (extracted from [6]).

Proposition 1 Let z be an element of
(Z

2

)n \
Zn. The set of direct parents (see Figure 16)

of z is denoted by P(z) and equal to:

P(z) :=
⋃

i∈ 1
2 (z)

{
z +

ei

2
, z − ei

2

}
.

Definition 12 With z an element of
(Z

2

)n
,

we define the 0th order parents of z denoted

P0(z) and equal to {z}. In addition, we define

recursively, for any z element of
(Z

2

)n \ Zn,

and for k ∈ J1,o(z)K:

P
k(z) =

⋃
p∈P(z)

P
k−1(p).

Now we define a category of points that

we call ancestors (of a point p ∈
(Z

2

)n
). They

are very useful because they represent the set

of positions of the pixels of which directly de-

pends the value of the interpolation at p when

using local interpolations.

Definition 13 Let z be an element of
(Z

2

)n
.

The set of the ancestors of p (see Figure 17)

is denoted by A(p) and is defined such that:

A(p) = P
o(z)(z).

Note that A(p) is a subset of Zn.

Definition 14 Let z be an element of
(Z

2

)n
.

The group of p (see Figure 18) denoted by G(p)

is defined such that:

G(p) =
⋃

k∈J0,o(z)K

P
k(z),

Fig. 19: Computation of opposites relatively

to the center of a 1D block (up row) and rel-

atively to the center of a 2D block (bottom

row); points of the same color are paired.

and represents the set of all the parents of any

order of z in
(Z

2

)n
.

Definition 15 Let z be an element of
(Z

2

)n \
Zn. The set of opposites (see Figure 19) rel-

atively to z is the set of paired points:

opp(z) =
⋃

i∈ 1
2 (z)

{{
z − ei

2
, z +

ei

2

}}
.

Let a, b, z be three points of
(Z

2

)n
, we say that

a is opposite to b relatively to z if {a, b} ∈
opp(z).

In the sequel we will use these notations:

Im(A,D,V) := {u : D ⊆ A→ V ; D given} ,
Im(A,V) := {u ∈ Im(A,D,V) s.t. D ⊆ A} ,

where V is the space value, A is the ambient

space, and D is the domain.

Definition 16 Let u ∈ Im(Zn,D,R) be a given

image with D a bounded hyperrectangle. We

call cubical interpolation of u any image

u : Subd(D) ⊆
(
Z
2

)n
→ R

such that its restriction to D is equal to u.

Definition 17 An interpolation operator I :

Im(Zn,R)→ Im(
(Z

2

)n
,R) is said to be a cu-

bical interpolation method if for any image

u ∈ Im(Zn,R) defined on a bounded hyper-

rectangle D ⊆ Zn, I(u) : Subd(D) → R is a

cubical interpolation of u.

The formal definition of an in-between in-

terpolation will come later in the new materi-

als relative to DWCness (see page 20) and will

need the preceding definitions.

Definition 18 A cubical interpolation I from

Im(Zn,R) to Im(
(Z

2

)n
,R) is said to be digi-

tally well-composed (DWC) when for any u ∈
Im(Zn,R), then I(u) is DWC.
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With B = {− 1
2 , 0, 1

2}
n, where Bz is the

translation of B by z, and with “op” an op-

erator on (finite) subsets of R, we define the

following interpolation:

Definition 19 Let u : D → R with D a boun-

ded hyperrectangle in Zn. We define the ope-

rator-based interpolation:

Iop(u) : D′ = Subd(D)→ R

such that, for any z ∈ D′, (Iop(u)) (z) :={
op{u(z) } if z ∈ D,
op{u(z′), z′ ∈ Bz ∩ D } otherwise.

This interpolation is local since it is com-

puted at each point p ∈ D′ using only the near-

est neighbors of p in
(Z

2

)n
.

Proposition 2 ([5,30]) The (n-D) interpo-

lations Imin and Imax are digitally well-com-

posed.

4 New material relative to DWCness

Let us start to present our new results, that is,

the proofs of a part of the assertions presented

in [8] and in [7].

4.1 Reformulating DWCness with 2n-paths

We can reformulate digital well-composedness

based on 2n-paths as asserted in [8]. Note that

the proof provided below is new material.

Theorem 1 A digital set X ⊂ Zn is digitally

well-composed iff, for any block S ∈ B(Zn) and

for any couple of points (p, antagS(p)) such

that they belong to X ∩S (resp. S \X), p and

antagS(p) are 2n-connected in X ∩S (resp. in

S \X).

Proof: Let us begin by the converse im-

plication. If X is not digitally well-composed,

there exists some block S ⊂ Zn such as X∩S is

a primary or a secondary critical configuration

in Zn. In the primary case, Card(X ∩ S) = 2,

what contradicts that Card(X ∩ S) ≥ k + 1

due to the fact that every couple of antagonists

(p, p′) in this block is connected by a 2n-path

in S. In the secondary case, Card(Xc∩S) = 2,

what contradicts that Card(Xc ∩ S) ≥ k + 1

for the same reason.

Concerning the direct implication, let us

prove firstly that for two antagonists p and p′

in some block S ∈ B(Zn) of dimension k ∈
J1, nK such that p, p′ ∈ X, there exists a 2n-

path in X∩S joining them when X is digitally

well-composed. Let us proceed by induction.

Initialization (k = 1): the 2n-path joining

p and p′ into X ∩ S is simply π = (p, p′).

Heredity (k ∈ J1, n− 1K): let us assume that

this property is true for every l ∈ J1, kK. Now,

let us assume that there exists a couple of

points p and p′ of X such as they are an-

tagonists in a block S ∈ B(Zn) of dimension

(k+1). We know that X is digitally well-com-

posed and then does not contain any primary

critical configuration. Consequently, there ex-

ists one point q ∈ X ∩ S such that q 6= p and

q 6= p′. That means that p and q are antag-

onists in some block S′ ∈ B(Zn) of dimen-

sion l strictly lower than k + 1, and then they

are connected by a 2n-path πpq = (p, . . . , q)

in X ∩ S′ ⊂ X ∩ S. For the same reason,

q and p′ are connected by a 2n-path πqp′ =

(q, . . . , p′) ⊆ X ∩ S. Consequently, by joining

the two paths πpq and πqp′ we obtain a 2n-path

πpp′ in X ∩ S joining p and p′.

A similar reasoning will prove that the non

existence of secondary critical configurations

in X (and then the non existence of primary

critical configurations in Xc) implies that for

any couple of points (p, p′) of Xc and antag-

onists in some block S ∈ B(Zn), there exists

some 2n-path joining them in Xc ∩ S. ut

This proof is illustrated in Figure 20: two

antagonists, depicted in red in the block S (the

tesseract), are assumed to belong to a digitally

well-composed set X ⊂ Zn, which is shown

on Subfigure (A). Since the two red points

(0, 0, 0, 0) and (1, 1, 1, 1) belong to X and are

4-antagonists in S, there exists at least one

more point in the block S belonging to X (in

the contrary case, X contains a critical con-

figuration, which is impossible by hypothesis).

A first possibility is shown on Subfigure (B),

and a second possibility is shown on Subfigure

(C), where the green point depicts this addi-

tional point. Let us treat first the case cor-

responding to Subfigure (B): since the points

(0, 0, 1, 0) and (1, 1, 1, 1) are 3-antagonists in

the 3D block C depicted in yellow, there must

be at least one more point in this block which

belongs to X (for the same reason as before),

and then we obtain that the blue point lo-

calized in (1, 0, 1, 1) belongs to X, which is
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Fig. 20: Step-by-step construction of the 2n-path joining the two (red) antagonists into X ∩ S
into Zn.

shown on Subfigure (D). Applying recursively

the reasoning until X does not contain any

critical configuration, we obtain that the point

(1, 0, 1, 0) also belongs to X, which is shown in

purple on Subfigure (F ). Finally, we obtain a

2n-path joining the two red points (0, 0, 0, 0) to

(1, 1, 1, 1) into X∩S. Let us now treat the case

corresponding to Subfigure (C): if (0, 0, 0, 0)

and (0, 0, 1, 1), which are 2-antagonists, are the

only points of X in the block A, X ∩ A is a

critical configuration, then there exists an ad-

ditional point among (0, 0, 1, 0) and (0, 0, 0, 1)

which belongs to X. The same thing happens

in the block B where at least (0, 0, 1, 1) and

(1, 1, 1, 1) belongs to X: at least (0, 1, 1, 1) or

(1, 0, 1, 1) must belong to X. Let us assume

that (0, 0, 0, 1) and (0, 1, 1, 1) belong to X, we

obtain Subfigure (E) where a 2n-path joins

the two red points (0, 0, 0, 0) to (1, 1, 1, 1) in

X∩S. Obviously, the reasoning is similar when

(0, 0, 0, 0) and (1, 1, 1, 1) belong to Xc. In this

case, we obtain that a 2n-path joins these two
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points in Xc ∩S, thanks to self-duality of dig-

ital well-composedness.

4.2 Characterizing DWC gray-level n-D

images on bounded hyperrectangles

Now let us recall that we can characterize [7]

gray-level DWC images defined on bounded hy-

perrectangles; for that, let us introduce our

definition of such domains.

A set Id that can be written [m,M ] ∩ V
where V ⊂ R is countable and where m,M ∈
V verify m ≤ M is called a discrete interval.

The values m and M are then called the lower

bound and the upper bound of Id respectively.

Now, assuming that a sequence of discrete

intervals ([mi,Mi] ∩ Vi)i∈J1,nK is given, we de-

fine the bounded hyperrectangle associated to

this sequence of intervals as the Cartesian prod-

uct of these discrete intervals:⊗
i∈J1,nK

[mi,Mi] ∩ Vi.

When for each i ∈ J1, nK, Vi is equal to the

same set Z, we call this set a bounded hyper-

rectangle in Zn.

Now let us show that in the case of a gray-

level image defined on a bounded hyperrectan-

gle, we are able to detect the digital well-com-

posedness of this image only using the upper

(respectively lower) threshold sets, as proven

using the following lemmas.

Lemma 1 Let u : D → Z be a gray-level im-

age defined on a bounded hyperrectangle D in

Zn. Then u is digitally well-composed on D
iff for any λ ∈ R, [u ≤ λ] and [u > λ] are

both digitally well-composed (or equivalently iff

[u ≥ λ] and [u < λ] are both digitally well-com-

posed).

Proof: The direct implication is obvious.

For the converse implication, let us define

V(u) := {u(z)
∣∣ z ∈ D}

and:

ε = min{|u(p)−u(q)|
∣∣ p, q ∈ D, u(p) 6= u(q)}.

Since Card (D) < +∞, ε > 0. Now, let us

proceed in two steps.

Firstly, we can observe that for any λ ∈ R,

every threshold set [u < λ] can be rewritten

[u ≤ f(λ)] with f : R→ R defined such that:

f(λ) =

{
λ− ε/2 if λ ∈ V(u),

λ otherwise.

That means that every threshold set [u < λ]

is equal to [u ≤ λ′] for some λ′ ∈ R.

Secondly, we can observe that every thresh-

old set [u ≥ λ] can be rewritten [u > f(λ)]

using this same function f . That means that

every threshold set [u ≥ λ] is equal to [u > λ′]

for some λ′ ∈ R.

Finally, all the threshold sets [u ≤ λ] and

[u > λ] are digitally well-composed, then u is

digitally well-composed. The reasoning is dual

for the proposition in brackets. ut

We have previously defined blocks of Zn.

The extension to blocks of a domain D ⊆ Zn is

straightforward. For a given domain D ⊂ Zn,

the set of blocks of D is denoted B(D) and is

such that:

B(D) := {S ∈ B(Zn) ; S ⊆ D} .

Lemma 2 Let n ≥ 2 be an integer, and let

H be a bounded hyperrectangle in Zn. Let X

and Y be two sets of Zn such as: X ∩ Y = ∅
and X ∪ Y = H (i.e., (X,Y ) is a partition of

H). Then, X is digitally well-composed iff Y

is digitally well-composed.

Proof: Let us assume that X contains a

primary critical configuration. It means that

there exists some block S ∈ B(H) such that

X ∩ S = {p, p′} with p and p′ antagonists in

S. Because X and Y are complementary in H,

X∩S and Y ∩S are complementary in S ⊆ H.

The consequence is that Y ∩S = S\{p, p′}, i.e.,

Y contains a secondary critical configuration

in S. So, we have proven that X contains a

primary critical configuration iff Y contains a

secondary critical configuration. That finally

means that X is digitally well-composed iff Y

is digitally well-composed. ut

Lemma 3 Let n ≥ 2 be an integer, and let H

be a bounded hyperrectangle. Let u : H → R be

a gray-level image. Then, u is digitally well-

composed iff for any λ ∈ R the threshold set

[u ≤ λ] is digitally well-composed (or equiv-

alently iff for any λ ∈ R the threshold set

[u ≥ λ] is digitally well-composed).

Proof: Using Lemma 1, we know that u

is digitally well-composed iff for any λ ∈ R,

[u ≤ λ] and [u > λ] are digitally well-com-

posed. Furthermore, using Lemma 2, and be-

cause [u ≤ λ] ∩ [u > λ] = ∅ and [u ≤ λ] ∪ [u >

λ] = H (with H a bounded hyperrectangle),

we know that [u ≤ λ] is digitally well-compo-

sed iff [u > λ] is digitally well-composed. We
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can conclude that u is digitally well-composed

iff [u ≤ λ] is digitally well-composed. ut

Like exposed in [8], there exists a charac-

terization for gray-level digitally well-compo-

sed images defined on bounded hyperrectan-

gles. It is the natural extension of the charac-

terization of Latecki for 2D images in [25]. Let

us recall that for two reals a, b, the interval

value intvl(a, b) of the pair (a, b) is equal to:

[min(a, b),max(a, b)],

and the span of a finite subset S of R is de-

noted by Span(S) and is equal to:

[min(S),max(S)].

Proposition 3 Let n ≥ 2 be an integer, and

let H be a bounded hyperrectangle. A gray-level

image u : D ⊂ Zn → R is digitally well-com-

posed iff for any block S ∈ B(D) such that

dim(S) ≥ 2 and for any pair of points (p, p′) ∈
S × S such that p′ = antagS(p),

intvl(u(p), u(p′))

intersects

Span
{
u(p′′)

∣∣ p′′ ∈ S \ {p, p′}} .
Proof: Let us assume that there exists a

block S ∈ B(D) and a couple of points (p, p′) ∈
S×S such that this intersection is empty. Let

us denote by S′ the set S\{p, p′}. Then either:

max{u(p′′)
∣∣ p′′ ∈ S′ } < min(u(p), u(p′)),

and in this case [u ≥ min(u(p), u(p′))] ∩ S is

equal to {p, p′} and then is a primary critical

configuration, or:

max(u(p), u(p′)) < min{u(p′′)
∣∣ p′′ ∈ S′ },

and [u ≥ min{u(p′′)
∣∣ p′′ ∈ S′ }]∩S is equal to

S′, which is a secondary critical configuration.

In both cases, u is obviously not digitally well-

composed. Conversely, if there exists a value

λ ∈ R such that [u ≥ λ] contains a critical

configuration in a block S ∈ B(D), either [u ≥
λ] ∩ S is a primary critical configuration (1),

or it is a secondary critical configuration (2).

In case (1), there exists p, p′ ∈ S such that

p′ = antagS(p) and [u ≥ λ] ∩ S = {p, p′},
which means that

min{u(p), u(p′)} ≥ λ,

and in parallel we have [u < λ] ∩ S = S′,

which means that max{u(p′′)
∣∣ p′′ ∈ S′} < λ,

and then the intersection we are looking for is

empty. In case (2), we can proceed to a dual

reasoning to obtain the same result. This con-

cludes the proof. ut

Practically, this characterization means th-

at for a given and finite dimension n ≥ 2,

we can easily check if an image defined on a

domain D is digitally well-composed with an

algorithm [5]. Furthermore, the complexity of

this algorithm is for a fixed dimension in linear

time relatively to the number of blocks in the

domain D, which means that it is very fast for

small dimensions.

4.3 Characterizing DWC interval-valued

maps

Now, let us show how we can characterize inter-

val-valued maps seen before.

Proposition 4 An n-D interval-valued map

U : D ⊆ Zn  V defined on a bounded hyper-

rectangle D is digitally well-composed iff both

dUe : D → V and bUc : D → V are digitally

well-composed.

Proof: Indeed, for any λ ∈ V, we have the

remarkable equalities:

[U B λ] = [bUc > λ], (1)

[U C λ] = [dUe < λ], (2)

[U D λ] = [dUe ≥ λ], (3)

[U E λ] = [bUc ≤ λ]. (4)

This way, if U is digitally well-composed, then

for any λ ∈ V, [U D λ] and [U E λ] are digi-

tally well-composed, and then by (3) and (4),

dUe and bUc are digitally well-composed by

Lemma 3. Conversely, if both dUe and bUc are

digitally well-composed, then for any λ ∈ V,

[bUc > λ], [dUe < λ], [dUe ≥ λ], and [bUc ≤ λ]

are digitally well-composed and then by (1) to

(4), U is digitally well-composed. ut

4.4 Extending topological notions from Zn to

(Z/2)n

The topological notions that have been pre-

sented before can be naturally extended from

Zn to (Z/2)n.

For example, a digital set is a subset X of

(Z/2)n such that X or Xc := (Z/2)n \X is fi-

nite. In addition, two points p, q ∈ (Z/2)n are
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said to be 2n-neighbours respectively (3n−1)-

neighbors) in (Z/2)n if ||p−q||1 = 1/2 (respec-

tively if ||p−q||∞ = 1/2), the 2n-neighborhood

(respectively the (3n − 1)-neighborhood) of a

point p ∈ (Z/2)n are the sets

N2n(p, (Z/2)n) = {q ; ||p− q||1 ≤ 1/2},

and respectively

N3n−1(p, (Z/2)n) = {q ; ||p− q||∞ ≤ 1/2},

from which we deduce their starred versions

which are respectively

N ∗2n(p, (Z/2)n) = N2n(p, (Z/2)n) \ {p}

and

N ∗3n−1(p, (Z/2)n) = N3n−1(p, (Z/2)n) \ {p}.

For ξ ∈ {2n, 3n − 1}, the ξ-connectivity and

then the ξ-components are computed based on

the ξ-neighborhood relationship in (Z/2)n. In

the same manner, blocks in (Z/2)n are defined

such that, given a point z ∈ (Z/2)n and a fam-

ily of vector:

F = (f1, . . . , fk) ⊆ B,

the block associated to the couple (z,F) in

(Z/2)n is S2(z,F , (Z/2)n) equal to:z +
∑

i∈J1,kK

λif
i
∣∣ λi ∈ {0, 1/2},∀i ∈ J1, kK

 ,

and the set of blocks in (Z/2)n are denoted by

B((Z/2)n). By extension, the set of blocks of

the domain D as a subset of (Z/2)n is equal

to:

B(D, (Z/2)n) := {S ∈ B((Z/2)n) ; S ⊆ D} .

Based on this definition of block of (Z/2)n,

we define that two points p, q ∈ (Z/2)n are

antagonists in a block of (Z/2)n if they maxi-

mize the L1-distance between two points into

this block. Then, let X ⊂ (Z/2)n be a dig-

ital set, and let S ∈ B((Z/2)n) be a block

of dimension k ∈ J2, nK. We say that X con-

tains a primary critical configuration of di-

mension k in the block S as a subset of (Z/2)n

if X∩S = {p, p′} with p, p′ ∈ S two points that

are antagonists into S. We say that X con-

tains a secondary critical configuration of di-

mension k in the block S as a subset of (Z/2)n

if X ∩S = S \ {p, p′} with p, p′ ∈ S two points

that are antagonists into S. As usual, a critical

configuration in (Z/2)n is either a primary or

a secondary critical configuration in (Z/2)n.

A subset X of (Z/2)n is then said digitally

well-composed (DWC) if it does not contain

any primary or secondary critical configura-

tion in (Z/2)n.

5 Formalization of our interpolation

Let us formally define the different operators

used to compute our n-D interpolation.

Using the span operator on the interpola-

tions Imin(u) and Imax(u), we obtain the fol-

lowing span-based interpolation of u that we

call ISpan(u), defined such that:
bISpan(u)c = Imin(u)

dISpan(u)e = Imax(u).

Since this interpolation is interval-valued,

we say it is an immersion of u. Then, start-

ing from ISpan(u) : D′ ⊂
(Z

2

)n
 Z as devel-

oped above, we add an outer border to the

hyperrectangle D′, which becomes D′+, and

we define U+ : D′+  Z/2 such that ∀p ∈
D′, U+(p) = (ISpan(u))(p), and ∀p ∈ D′+ \
D′, U(p) = {`∞(u)}.

Then we proceed to the front propagation

on U+ with p∞ belonging to the outer border

of D′+. We obtain the single-valued image u[ :

D′+ → Z/2 from which we remove the border.

Finally, we obtain the interpolation uDWC :

D′ → Z/2 of u.

With α ∈ R, let us denote by bα the opera-

tor which adds an outer border set at {α} to a

interval-valued image defined on an hyperrect-

angle, and b− the operator which removes the

outer border to a single-valued image defined

on an hyperrectangle. We can then define our

interpolation in this way:

uDWC := IDWC(u),

where

IDWC := b− ◦ FP ◦ b`∞(.) ◦ ISpan.

An example of the complete process is de-

picted in Figure 21. We start from an image

u that we interpolate using the interval-valued

interpolation ISpan(u) at which we add a bor-

der to obtain U+. This boundary is displayed

in light gray and is filled with a single value

`∞(u), which is actually the median value of
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9 11 15

7 1 13

3 5 3

(a) u

{9} [ 9, 11] {11} [ 11, 15] {15}

[ 7, 9] [ 1, 11] [ 1, 11] [ 1, 15] [ 13, 15]

{7} [ 1, 7] {1} [ 1, 13] {13}

[ 3, 7] [ 1, 7] [ 1, 5] [ 3, 13] [ 3, 13]

{3} [ 3, 5] {5} [ 3, 5] {3}

(b) U = ISpan(u)

{8} {8} {8} {8} {8} {8} {8}
{8} {9} [ 9, 11] {11} [ 11, 15] {15} {8}

{8} [ 7, 9] [ 1, 11] [ 1, 11] [ 1, 15] [ 13, 15] {8}

{8} {7} [ 1, 7] {1} [ 1, 13] {13} {8}

{8} [ 3, 7] [ 1, 7] [ 1, 5] [ 3, 13] [ 3, 13] {8}

{8} {3} [ 3, 5] {5} [ 3, 5] {3} {8}

{8} {8} {8} {8} {8} {8} {8}

(c) U+

8 8 8 8 8 8 8

8 9 9 11 11 15 8

8 8 8 8 8 13 8

8 7 7 1 8 13 8

8 7 7 5 8 8 8

8 3 5 5 5 3 8

8 8 8 8 8 8 8

(d) u[

9 9 11 11 15

8 8 8 8 13

7 7 1 8 13

7 7 5 8 8

3 5 5 5 3

(e) uDWC

Fig. 21: The complete process in detail.

the set of values of the boundary of the defi-

nition domain of u. We have:

`∞(u) = med{ 3, 3, 5, 7, 9, 11, 13, 15 } = 8.

When we take U+ as input to the FPA, p∞ can

be any point of its boundary. This way, which

is similar to [14], we ensure that the propa-

gation starts from the outer boundary of U+,

and that all the points of the inner boundary

of u are enqueued. Having `∞(−u) = −`∞(u)

guarantees that U+ remains self-dual with re-

spect to u. Then the flattening process is ap-

plied on U+ and results in the image u[.

Figure 22 depicts the propagation steps:

we start from Subfigure (a) where p∞ is the

only point to be enqueued in Q[`∞(u)] = Q[8].

Then, untilQ[8] is empty, the propagation con-

tinues across the domain of the image, which

contains (at least) the outer boundary, as sho-

wn on Subfigure (b) in light gray. The green

pixels correspond to the points which have be-

en enqueued during the propagation, and that

are not valued yet. Then ` is set at 9, and

the same process reiterates, until the whole

domain of the image has been enqueued and

valued, which results in u[ on Subfigure (j).
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8

{9} {11} {15}

{13}{1}{7}

{3} {5} {3}

{8} {8} {8} {8} {8} {8}

{8} {8} {8} {8} {8} {8}

{8}

{8}

{8}

{8}

{8}

{8}

{8}

{8}

{8}

{8}

{8}

{8}

[9,11] [11,15]

[7,9] [1,11] [1,11] [1,15] [13,15]

[1,13][1,7]

[3,7] [1,7] [1,5] [1,13] [3,13]

[3,5][3,5]

(a) U+.

11 11 15

13

137 7 1

5

55

7

3 5 3

{9} {11} {15}

{13}{1}{7}

{3} {5} {3}

8 8 8 8 8 8

8 8 8 8 8 8

8

8

8

8

8

8

8

8

8

8

8

8

[9,11] [11,15]

8 8 8 8 [13,15]

8[1,7]

[3,7] [1,7] [1,5] 8 8

[3,5][3,5]

9 9

(b) ` = 8

11 11 15

13

137 7 1

5

55

7

3 5 3

{11} {15}

{13}{1}{7}

{3} {5} {3}

8 8 8 8 8 8

8 8 8 8 8 8

8

8

8

8

8

8

8

8

8

8

8

8

[11,15]

8 8 8 8 [13,15]

8[1,7]

[3,7] [1,7] [1,5] 8 8

[3,5][3,5]

9 9

(c) ` = 9

15

13

137 7 1

5

55

7

3 5 3

{15}

{13}{1}{7}

{3} {5} {3}

8 8 8 8 8 8

8 8 8 8 8 8

8

8

8

8

8

8

8

8

8

8

8

8

8 8 8 8 [13,15]

8[1,7]

[3,7] [1,7] [1,5] 8 8

[3,5][3,5]

9 9 11 11

(d) ` = 11

15

7 7 1

5

55

7

3 5 3

{15}

{1}{7}

{3} {5} {3}

8 8 8 8 8 8

8 8 8 8 8 8

8

8

8

8

8

8

8

8

8

8

8

8

8 8 8 8

8[1,7]

[3,7] [1,7] [1,5] 8 8

[3,5][3,5]

9 9 11 11

13

13

(e) ` = 13

7 7 1

5

55

7

3 5 3

{1}{7}

{3} {5} {3}

8 8 8 8 8 8

8 8 8 8 8 8

8

8

8

8

8

8

8

8

8

8

8

8

8 8 8 8

8[1,7]

[3,7] [1,7] [1,5] 8 8

[3,5][3,5]

9 9 11 11

13

13

15

(f) ` = 15

1

5

553 5 3

{1}

{3} {5} {3}

8 8 8 8 8 8

8 8 8 8 8 8

8

8

8

8

8

8

8

8

8

8

8

8

8 8 8 8

8

[1,5] 8 8

[3,5][3,5]

9 9 11 11

13

13

15

7 7

7 7

(g) ` = 7

1

3 3

{1}

{3} {3}

8 8 8 8 8 8

8 8 8 8 8 8

8

8

8

8

8

8

8

8

8

8

8

8

8 8 8 8

8

8 8

9 9 11 11

13

13

15

7 7

7 7

5

5

55

(h) ` = 5

1
{1}

8 8 8 8 8 8

8 8 8 8 8 8

8

8

8

8

8

8

8

8

8

8

8

8

8 8 8 8

8

8 8

9 9 11 11

13

13

15

7 7

7 7

5

5

553 3

(i) ` = 3

8 8 8 8 8 8

8 8 8 8 8 8

8

8

8

8

8

8

8

8

8

8

8

8

8 8 8 8

8

8 8

9 9 11 11

13

13

15

7 7

7 7

5

5

553 3

1

(j) ` = 1

Fig. 22: From U+ to u[.

The final result is uDWC which corresponds

to u[ minus its boundary.

Let us notice that in practice, we will have

an integer-valued map u whose values are de-

fined into Z, and then its immersion U will

be also defined into Z. When we add a border

to the domain of U , we obtain a new func-

tion U+, which is no more defined into Z but

into Z/2, since the median at which we set the

border belongs to Z/2. The use of a generic

library is then necessary [27] (or we can round

the value of `∞ but we can loose perfect self-

duality [13]). The consequence is that u[ and

the final image uDWC will have their value do-

main equal to Z/2.
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6 Properties of our n-D DWC

interpolation

In this section, we formally define what is an

in-between interpolation on cubical grids, we

show that the FPA satisfies what we call an in-

trinsic continuity property, and we prove that

our interpolation is in-between thanks to this

intrinsic property. Then, we prove a second in-

trinsic continuity property of the FPA, we re-

call the two well-known DWC interpolations

of Mazo et al. [30], and we deduce from these

facts that our interpolation is DWC.

6.1 Definition of in-betweeness

Fig. 23: The example u is depicted on the left

side with a blue frame. From left to right,

some random interpolation, the min interpo-

lation, the max interpolation, the median in-

terpolation and finally the interpolation pub-

lished in [8] and studied here.

Definition 20 A cubical interpolation meth-

od I : Im(Zn,R) → Im(
(Z

2

)n
,R) is said in-

between if for any image u ∈ Im(Zn,R) de-

fined on a bounded hyperrectangle D ⊆ Zn,

its cubical interpolation u′ = I(u) defined on

D′ = Subd(D) is such that at each point p ∈
D′ \ D, the value u′(p) satisfies the relation:

u′(p) ∈
⋂

{z−,z+}∈opp(p)

intvl(u′(z+), u′(z−)).

Some examples of interpolations, which are

in-between or not, are depicted in Figure 23

(see hereafter).

6.2 First intrinsic property of the FPA

Two main continuity properties of the FPA are

of major interest for the sequel. Both proper-

ties relate the values of the flattened image

u[ at two pixels p and q of the domain D′ ⊂
(Z/2)n of U which are neighbors in (Z/2)n de-

pending on the values U(p) and U(q). We say

that these properties are intrinsic in the sense

that they are a direct result of the internal

Fig. 24: From tom to bottom, we can ob-

serve in red the boundaries of the upper

large threshold sets of the images depicted

in the figure before and corresponding to λ.

The random interpolation introduces new con-

tours and pinches, and is not in-between. Con-

versely, the other interpolations preserve the

boundaries while they separate the level lines

containing self-crossings into simple closed

curves. Note that our interpolation (on the

right side) behaves sometimes like a min in-

terpolation and sometimes like a max interpo-

lation.

functioning of the algorithm. But let us intro-

duce first some additional notations concern-

ing the FPA.

We define ` : D′ → R as the level map: for

a given point z ∈ D′, `(z) ∈ R is the value

of ` when we enqueue z into the hierarchical

queue Q during the front propagation. Note

that it is different from the “enqueuing level”

`′ presented just before in the algorithm. In

addition, we define the enqueuing time map

t : D′ → N such that, for any point z ∈ D′,
t(z) is the time at which the point z has been

enqueued into Q during the front propagation.

We say that a position p ∈ D′ is being pro-

cessed while the current position h is equal to
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p. Obviously, for any p ∈ D′, we use the no-

tation u[(p) assuming that this pixel has been

valued yet by the front propagation algorithm

(we recall that each pixel of u[ is valued only

once).

Now, let us expose the first intrinsic con-

tinuity property of the FPA that we will use

later to prove that the interpolation method

developed in this paper is in-between.

Lemma 4 Let U : D′ ⊆ (Z/2)n  R be an n-

D interval-valued map, and let u[ = FP(U) :

D′ → R be the function resulting from the front

propagation algorithm applied on U . Now, let

a,m ∈ D′ be 2n-neighbors in (Z/2)n such that

U(a) ⊆ U(m). Then u[(m) < u[(a) implies

that u[(a) = bUc(a) and u[(m) > u[(a) im-

plies that u[(a) = dUe(a).

The proof of this lemma has been post-

poned in the appendix at page 26.

6.3 In-betweeness of our interpolation

Let us announce one of the most important

result of the paper.

Proposition 5 Let u : D ⊂ Zn → Z be a

given image. Then the image:

uDWC := IDWC(u)

is an in-between interpolation of u.

Proof: Let u : D → Z be a given image,

and uDWC = IDWC(u) be its interpolation.

This way, we know that ∀z ∈ D, uDWC(p) =

u(p). Let us assume now that uDWC is not in-

between. Then there exists some point m ∈
Subd(D) \D such that uDWC(m) does not be-

long to:⋂
{p−,p+}∈opp(m)

intvl(uDWC(p−), uDWC(p+)).

In other words, there exists two points a, b ∈
Subd(D) such as {a, b} ∈ opp(m) and:

uDWC(m) 6∈ intvl(uDWC(a), uDWC(b)).

Two situations are then possible:

– either uDWC(m) < min(uDWC(a), uDWC(b))

(Case 1)

– or uDWC(m) > max(uDWC(a), uDWC(b)

(Case 2).

Since these two relations are dual, we will

study only the first case, the reasoning being

the same for the second.

By hypothesis, uDWC(m) < uDWC(a), and

then:

u[(m) < u[(a), (P1).

In addition, we know that a and m are 2n-

neighbors in D′ (P2). Finally, since a ∈ P(m),

U+(a) = (ISpan(u))(a) ⊆ (ISpan(u))(m) = U+(m)

(P3). This way, we have the three properties

of Lemma 4 and we can conclude that

uDWC(a) = u[(a) = bU+c(a).

With the same reasoning applied to b, we

obtain that uDWC(b) = bU+c(b), which leads

to:

uDWC(m) < min(bU+c(a), bU+c(b)).

By construction,

bU+c(a) = min {u(p) ; p ∈ A(a)} ,

and

bU+c(b) = min {u(p) ; p ∈ A(b)} .

This implies that

u[(m) < min {u(p) ; p ∈ A(m)}

(since A(a) ∪ A(b) = A(m)), which is equal

to bU+c(m). However uDWC(m) < bUc(m) is

impossible by construction. This concludes the

proof.

ut

6.4 Second intrinsic continuity property of

the FPA and the Key Lemma

Now let us begin with a preliminary lemma

which correlates the values of the initial inter-

val-valued image U , the interpolation u[ and

the map of levels ` : D′ → R. This lemma

will be necessary to prove the second intrinsic

continuity property detailed after.

Lemma 5 Let U : D′ ⊆ (Z/2)n  R be an n-

D interval-valued map, and let u[ = FP(U) :

D′ → R be the function resulting from the front

propagation algorithm applied on U . Now, let

r be a point of D′. We can observe the two

following implications:
u[(r) < dUe(r)⇒ `(r) ≤ u[(r) (1)

u[(r) > bUc(r)⇒ `(r) ≥ u[(r) (2)
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Fig. 25: A situation impossible to obtain with

p, q ∈ D being 2n-neighbors.

The proof of this lemma is reported into

the appendix at page 27.

There follows a lemma that we call the first

intrinsic property of the FPA. Note that this

is the key to understand why a digitally well-

composed interval-valued image results in a

digitally well-composed single-valued image.

Lemma 6 (The Key Lemma) Let U : D′ ⊆
(Z/2)n  R be an n-D interval-valued map,

and let u[ = FP(U) : D′ → R be the gray-level

function resulting from the front propagation

algorithm applied on U . Let p, q ∈ D′ be two

2n-neighbors in (Z/2)n and λ ∈ R. Then, it is

impossible to get the following set of properties

together: 
u[(p) ≤ λ, (H1)

dUe(p) > λ, (H2)

u[(q) > λ, (H3)

bUc(q) ≤ λ. (H4)

The proof of this lemma is in the appendix

at page 27.

6.5 The proof of DWCness of our

interpolation

Let us recall how we obtain uDWC:

uDWC = IDWC(u),

with

IDWC = b− ◦ FP ◦ b`∞(.) ◦ ISpan.

So, when computing uDWC, we start from

ISpan(u) which is DWC thanks to the following

proposition.

Proposition 6 For any u : D ⊂ Zn → Z, the

n-D interval-valued function ISpan(u) : D′ ⊂(Z
2

)n
 Z is digitally well-composed, and the

interpolation operator ISpan is self-dual (it ver-

ifies ∀u, ISpan(u) = −ISpan(−u)).

Proof: This follows from the fact that the

min interpolation Imin(u) and the max inter-

polation Imax(u) are DWC (see Proposition 2).

ut

Then, we obtain

b`∞(u)(ISpan(u)),

which is DWC since adding a constant border

preserve DWCness. (see Proposition 7 in the

appendix at page 28).

Now we want to prove that

FP(b`∞(u)(ISpan(u)))

is DWC. This property follows from the fact

that the FPA preserves DWCness:

Theorem 2 If the n-D interval-valued map

U : D′ ⊂
(Z

2

)n
 R, defined on a bounded

hyperrectangle D′, is digitally well-composed,

the resulting n-D function u[ = FP(U) is dig-

itally well-composed.

Proof: Let us assume that u[ is not dig-

itally well-composed. Then, there exists some

λ ∈ R such that [u[ ≥ λ] contains a criti-

cal configuration of primary or secondary type.

Let us begin with the primary case.

If [u[ ≥ λ] contains a critical configuration

of primary type, that means that there exists

some block S ⊆ D′ of dimension k (with 2 ≤
k ≤ n) such that [u[ ≥ λ] ∩ S = {p, p′}
where p and p′ are two antagonists in S. In

other words, we have:
u[(p) ≥ λ,

u[(p′) ≥ λ,

u[(p′′) < λ, ∀ p′′ ∈ S \ {p, p′}.

We know that u[(p′′) < λ implies that

bUc(p′′) < λ, ∀ p′′ ∈ S \ {p, p′}.

. This way, we obtain the following relation:

max
{
bUc(p′′)

∣∣ p′′ ∈ S \ {p, p′}} < λ.

Moreover, bUc is digitally well-composed

(since U is digitally well-composed) by Propo-

sition 4. The characterization of a digitally

well-composed single-valued function implies

that intvl(bUc(p), bUc(p′)) intersects

Span{bUc(p′′)
∣∣ p′′ ∈ S \ {p, p′}},

so there exists some p∗ ∈ {p, p′} such that:

bUc(p∗) < λ.
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DWC by Proposition 6

DWC by Proposition 7

DWC by Theorem 2
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ISpan

b`∞

FP
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Fig. 26: Summary of the proof that uDWC is

DWC: we know by Proposition 6 that ISpan(u)

is DWC. Then, Proposition 7 ensures that

adding a border preserves DWCness and then

U+ is DWC. Theorem 2 shows that the front

propagation preserves DWCness, and then u[

is DWC. Finally, removing the outer bor-

der preserves DWCness, which concludes the

proof: uDWC is DWC.

In addition, we have:

{
dUe(p∗) ≥ λ,
dUe(antagS(p∗)) ≥ λ.

This means that these two antagonists in

S belong to the set [dUe ≥ λ] which is digi-

tally well-composed. Then, there exists a 2n-

path connecting them into [dUe ≥ λ] ∩ S.

Consequently, there exists some point p′∗ ∈
N2n(p∗) ∩ S such that:

dUe(p′∗) ≥ λ.

We thus end up with the four properties:

u[(p∗) ≥ λ, bUc(p∗) < λ, u[(p′∗) < λ, and

dUe(p′∗) ≥ λ with p∗, p
′
∗ 2n-neighbors in D′.

Thanks to Lemma 6, we obtain a contradic-

tion. For the secondary case, a dual reasoning

leads also to a contradiction. ut

Since removing a border of constant width

preserves DWCness, we obtain finally that the

image uDWC is DWC:

Theorem 3 Let u : D ⊂ Zn → Z be a given

image. Then the image uDWC = IDWC(u) is

digitally well-composed.

Note that the proof of DWCness of uDWC

is summarized in Figure 26.

7 Applications

Here we present some possible theoretical and

practical applications relative to our n-D dig-

itally well-composed interpolation.

7.1 Theoretical applications

In this subsection, we show that, thanks to

DWC images, the tree of shapes does not de-

pend on the chosen connectivity.

As described in [11,14,32], the tree of sha-

pes is a hierarchical representation of a gray-

level images based on the connected compo-

nents of its threshold sets. More formally, given

an image u : D ⊆ (Z/2)n → Z and a couple

of dual connectivities (ca, cb), let us define the

two following sets:

T<(u) := {Γ ∈ CCca([u < λ])}λ ,
T≥(u) := {Γ ∈ CCcb([u ≥ λ])}λ .

Based on these sets and using the satura-

tion or cavity fill-in operator Sat [11], defined

such that:

Satc(Γ ) := Ω \ CCc(Ω \ Γ, p∞)

where Ω is the ambient space, Γ ⊆ Ω, p∞ ∈ Ω
and c is a given connectivity, we can define the

upper shapes and respectively the lower shapes

of u:

S<(u) := {Satcb(Γ ) ; Γ ∈ T<(u)} ,
S≥(u) := {Satca(Γ ) ; Γ ∈ T≥(u)} .

Then, the set defined by:

S(u) := S<(u) ∪ S≥(u)

is called the tree of shapes of u.

We can easily understand that the tree of

shapes computed with ca := c2n and cb :=

c3n−1 will not always be the same as the one

computed with ca := c3n−1 and cb := c2n. In

other words, the resulting tree depends on the

couple of connectivities (ca, cb).

Let us assume now that we work with a

DWC gray-level image u : D → Z. DWCness

implies that we do not have critical config-

urations (where the choice of the connectiv-

ity matters at a local point of view), it im-

plies then that the connected components of a

DWC set will not depend on the chosen con-

nectivity neither (see Subsection 10.4 for the

proof of Theorem 5 presenting this result). We
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call this property well-composedness based on

the equivalence of connectivities [8] (EWCness).

Now, there comes one of the main prop-

erties (according to us) that can be obtained

thanks to n-D well-composed interpolations like

the one we propose in this paper or the ones

of Mazo et al. [30]:

Theorem 4 Let u be a gray-level image from

a domain D to a space value V isomorphic to

Z. Let D be either (Z/2)n or a bounded hyper-

rectangle in (Z/2)n with n ∈ N∗. When u is

DWC, the tree of shapes S(u) of u does not

depend of the chosen connectivities.

Proof: When u is a DWC image, its threshold

sets are DWC and then EWC by Theorem 5,

and then the sets T<(u) and T≥(u) are not

functions of the used connectivity. Since each

component Γ of T<(u) or T≥(u) is DWC, the

set Ω \Γ is DWC too by self-duality of DWC-

ness, and then it is EWC. The consequence

is that the sets Satc(Γ ) for any Γ in T<(u)

or T≥(u) are not functions of the used con-

nectivity c neither. Then S<(u) and S≥(u) do

not depend on the chosen connectivity. It con-

cludes the proof. ut

7.2 Practical application

An interesting application of our interpola-

Fig. 27: Starting from a gray-level image (see

(a)), we compote its well-composed gray-level

Laplacian, then we deduce from its sign (see

(b)) the labeling of the different characters (we

look “inside” the zero-level-lines), and then we

label the characters of the image (see (c) and

(d)). This picture is extracted from [22].

tion is the computation of the Laplacian of

an image [22] and of its zero-crossings; the

zero-level-lines of the Laplacian often contain

pinches since the Laplacian is a second deriva-

tion of the initial signal. Then, to get rid of

these pinches, we interpolate the Laplacian us-

ing the method described in the present paper,

and then the zero level-lines become simple

closed curves (see Figure 27).

8 Sketch of the proof of self-duality

Since the proof of the computation of the self-

duality of u[ needs additional tools, it will be

published in a future paper. In brief, the proof

is in two steps. First, given a point p∞ and

a value `∞, we have to prove the determin-

ism of the computation of u[: the choice of

the next current level (when Q[`] is empty),

which can be performed either increasingly or

decreasingly, does not change the final valua-

tion of u[. Then, knowing that, we can prove

the self-duality.

Let us denote by nextlevel the opera-

tion that changes the current level ` in the

case where the possible levels are in Z. It cor-

responds to the first line inside the if block in

the routine priority pop of Algorithm 1. A

simple implementation can be:

1. Choose at random a direction between in-

creasing (∆ ← +1) or decreasing (∆ ←
−1).

2. Look in Q for the next closest level `′, ap-

plying `′ ← `′ + ∆, such as Q[`′] is not

empty.

3. If found, `′ is the new current level; done.

Otherwise, switch the direction (∆← −∆)

and run the look-up of step 2.

Since the hierarchical queue Q cannot be

empty when nextlevel is called (the prop-

agation is not completed), we have found

the new current level `′.

Note than at each call to nextlevel, we pick

at random a direction to look for the new cur-

rent level.

When the routine nextlevel is called, the

algorithm has inspected (popped from Q) all

the points related to a node of the tree of

shapes at level `. Finding the next closest level

in Q, either increasingly or decreasingly, en-

sures that we are going to inspect the points

of the child nodes, and not the ones of the

other descendants. It means that we do not

skip the immediate sub-shapes of the one just

processed. The children nodes correspond to

distinct and separated connected components,
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Fig. 28: The algorithm propagation, where

progressing with increasing or decreasing gray

levels does not change the result.

so the order in processing these nodes has no

influence on the propagation and, as a con-

sequence, on the result of the algorithm. The

same image u[ is obtained whatever the choice

of the direction in the step 1 of the routine

nextlevel. Said differenty, we just browse

the nodes of the tree of shapes in a down-

ward fashion; there are several ways to browse

the nodes downwards, but they do not lead

to different results. This is illustrated in Fig-

ure 28 with the image (left) and its tree of

shapes (right) on the top row. When the cur-

rent level is medium gray, we process the shape

A (middle row), and afterwards, the hierarchi-

cal queue (in yellow) contains two non-empty

bins: the black level one, of shape B, and the

light-gray level one, of shape C. Choosing as

the next current level the former (decreasing

the current gray level) or the latter (increasing

it) just changes the order used to browse the

tree of shapes downwards, but does not change

the result. As a conclusion, we can change the

strategy of the routine nextlevel in finding

the next level `′, since we ensure that it is the

first non-empty level increasingly or decreas-

ingly.

We have the guarantee that the computa-

tion of u[ from U is deterministic. Now we can

prove that the algorithm is self-dual, meaning

that −U leads to −u[.

Assuming that we start from p∞ at level

`∞ for U , we have to start at −`∞ for −U .

Since usually we chose for `∞ the median value

of the border of u, we have such a property.

To compute u[ from U , let us pick a dif-

ferent strategy for nextlevel than the one

above (we know that it does not change the

result). For that, we just remove the step 1

“choose at random a direction”, and we chose

the initial direction ∆ ← +1 before the prop-

agation. It means that the hierarchical queue

will be browse with increasing values of ` un-

til there is no more points, then decreasingly

until there is no more points, then again in-

creasingly, and so on. With −u, we can pick

a different strategy: remove again step 1 from

nextlevel but initialize the direction with

∆ ← −1. It is trivial to see that the propa-

gation of the algorithm with −U in the image

space is the same than for U , except that the

levels in the hierarchical queue and the cur-

rent level are changed from ` to −`—we can

say that both the strategy in browsing the hi-

erarchical queue and the queue itself have been

symmetrized. The result we obtain is prov-

ably −u[. Last, since the particular strategy

of nextlevel that we have chosen to run the

algorithm on −u provides us with the same re-

sult than any valid strategy, we can conclude

that:

[(U) = − [(−U),

with [ being the flattening operation performed

by the algorithm. This algorithm is therefore

self-dual.

9 Conclusion

In this paper, we have proven two of the funda-

mental properties of the first non-local inter-

polation introduced in the discrete topology

community to repair cubical images contain-

ing pinches: digital well-composedness and in-

betweeness.

In the future, we will provide the proof

that this interpolation is also self-dual, that

is, treats bright and dark components in the

same manner, contrary to the min/max inter-

polations of Mazo et al. [13,30] (the min in-

terpolation emphasizes dark components and

the max interpolation emphasizes the bright

components).

This property is crucial for the tree of sha-

pes since it leads to what we call pure self-
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duality : the tree of shape of an image is equal

to the tree of shape of the opposite image.

We will also prove that this interpolation is

integral-translation-invariant and π/2-rotation-

invariant.

10 Appendix

10.1 Proof of the first intrinsic property of

the FPA

Lemma 4 Let U : D′ ⊆ (Z/2)n  R be an n-

D interval-valued map, and let u[ = FP(U) :

D′ → R be the function resulting from the front

propagation algorithm applied on U . Now, let

a,m ∈ D′ be 2n-neighbors in (Z/2)n such that

U(a) ⊆ U(m). Then u[(m) < u[(a) implies

that u[(a) = bUc(a) and u[(m) > u[(a) im-

plies that u[(a) = dUe(a).

Proof: Let us begin with the case t(a) <

t(m), that is, a has been enqueued before m.

Three cases are possible.

The first subcase corresponds to `(a) >

dUe(a). Then u[(a) = dUe(a), Q[u[(a)] ⊇ {a}
at t = t(a), and the current level ` remains

greater than or equal to u[(a) until a has been

processed, because no jump of non-empty qu-

eue level is allowed. Since m is enqueued af-

ter a (by hypothesis) and at the latest dur-

ing the processing of a (because a and m are

2n-neighbors), `(m) ≥ u[(a). Since dUe(m) ≥
dUe(a) ≥ u[(a), we obtain finally the relation

u[(m) ≥ u[(a) (Case 1.1).

The second subcase corresponds to `(a) ∈
U(a). In this subcase, u[(a) = `(a), Q[u[(a)] ⊇
{a} at time t = t(a), and the current level `

stays at the value u[(a) until a is processed (at

least). Since a and m are 2n-neighbors, and

since m is enqueued after a, m is enqueued

after t(a) and at the latest while a is processed.

This way, `(m) = u[(a) and then u[(m) =

u[(a) since U(a) ⊆ U(m) (Case 1.2).

The third subcase corresponds to `(a) <

bUc(a). We reason by symmetry and we obtain

that u[(a) = bUc(a) and u[(m) ≤ u[(a) (Case

1.3).

Let us follow with the case t(a) > t(m).

Then five subcases are possible.

If `(m) > dUe(m), then u[(m) = dUe(m),

Q[u[(m)] ⊇ {m} at t = t(m), and the current

level ` remains greater than or equal to u[(m)

until m has been processed, because no jump

of non-empty queue level is allowed. Since a is

enqueued after m (by hypothesis) and at the

latest during the processing of m (because a

and m are 2n-neighbors), `(a) ≥ u[(m). Then

two subcases are possible:

– either dUe(m) > dUe(a) and then:

u[(a) = dUe(a) < u[(m), (Case 2.1.a)

– or dUe(m) = dUe(a) and then:

u[(a) = dUe(a) = u[(m). (Case 2.1.b)

If `(m) ∈]dUe(a), dUe(m)], assuming that

dUe(a) < dUe(m), u[(m) = `(m), Q[u[(m)] ⊇
{m} at t = t(m), and the current level ` stays

at the value u[(m) until m is processed (at

least). Since a and m are 2n-neighbors, and

since a is enqueued after m, a is enqueued af-

ter t(m) and at the latest while m is processed.

This way, `(a) = u[(m), and then u[(a) =

dUe(a) < u[(m) (Case 2.2).

If `(m) ∈ U(a), u[(m) = `(m) (since we

have U(a) ⊆ U(m)) and Q[u[(m)] ⊇ {m} at

t = t(m). Then the current level ` stays at the

value u[(m) until m is processed (at least).

Since a and m are 2n-neighbors, and since a

is enqueued after m, a is enqueued after t(m)

and at the latest while m is processed. This

way, `(a) = u[(a) and then u[(a) = u[(m)

(Case 2.3).

If `(m) ∈ [bUc(m), bUc(a)[ (assuming that

bUc(m) < bUc(a)), we reason by symmetry

and we obtain that u[(a) = bUc(a) > u[(m)

(Case 2.4).

If `(m) < bUc(m), we reason again by sym-

metry and we obtain that:

– either bUc(m) < bUc(a) and:

u[(a) = bUc(a) > u[(m), (Case 2.5.a)

– or bUc(m) = bUc(a) and:

u[(a) = bUc(a) = u[(m). (Case 2.5.b)

Let us summarize the different cases:
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Case Relation 1 Relation 2 Relation 3

(1.1) t(a) < t(m) u[(a) = dUe(a) u[(m) ≥ u[(a)

(1.2) t(a) < t(m) u[(a) ∈ U(a) u[(m) = u[(a)

(1.3) t(a) < t(m) u[(a) = bUc(a) u[(m) ≤ u[(a)

(2.1.a) t(m) < t(a) u[(a) = dUe(a) u[(m) > u[(a)

(2.1.b) t(m) < t(a) u[(a) = dUe(a) u[(m) = u[(a)

(2.2) t(m) < t(a) u[(a) = dUe(a) u[(m) > u[(a)

(2.3) t(m) < t(a) u[(a) ∈ U(a) u[(m) = u[(a)

(2.4) t(m) < t(a) u[(a) = bUc(a) u[(m) < u[(a)

(2.5.a) t(m) < t(a) u[(a) = bUc(a) u[(m) < u[(a)

(2.5.b) t(m) < t(a) u[(a) = bUc(a) u[(m) = u[(a)

We obtain finally that u[(a) < u[(m) im-

plies that we are in Case 1.1, 2.1.a, or 2.2 and

then u[(a) = dUe(a), and that u[(a) > u[(m)

implies that we are in Case 1.3, 2.4, or 2.5.a,

and then u[(a) = bUc(a). This concludes the

proof. ut

10.2 Proof of the secund intrinsic property of

the FPA

Lemma 5 Let U : D′ ⊆ (Z/2)n  R be an n-

D interval-valued map, and let u[ = FP(U) :

D′ → R be the function resulting from the front

propagation algorithm applied on U . Now, let

r be a point of D′. We can observe the two

following implications:
u[(r) < dUe(r)⇒ `(r) ≤ u[(r) (1)

u[(r) > bUc(r)⇒ `(r) ≥ u[(r) (2)

Proof: By a case-by-case study, we can es-

tablish a correlation between `(r) and u[(r)

for any given point r ∈ D′. The possible cases

are `(r) < bUc(r) (1), `(r) ∈ U(r) (2), and

`(r) > dUe(r) (3):

1. we obtain that `(r) < u[(r) because u[(r) ∈
U(r), and at the same time, u[(r) is equal

to bUc(r) because it is the nearest value to

`(r) in U(r);

2. we obtain that u[(r) = `(r) because the

nearest value to `(r) in U(r) is `(r) itself,

and at the same time we obtain simply

the initial property u[(r) ∈ U(r) (no ad-

ditional assumption is possible);

3. we obtain that `(r) > u[(r) because u[(r) ∈
U(r), and at the same time u[(r) = dUe(r)
because this is the nearest value to `(r) into

U(r).

Finally, we obtain this table:

Case Relation 1 Relation 2

(1) : `(r) < bUc(r) `(r) < u[(r) u[(r) = bUc(r)

(2) : `(r) ∈ U(r) `(r) = u[(r) u[(r) ∈ U(r)

(3) : `(r) > dUe(r) `(r) > u[(r) u[(r) = dUe(r)

Then we can observe that if u[(r) < dUe(r),
that is, if u[(r) 6= dUe(r), we are then either

in the case (1) or in the case (2) and then we

obtain that `(r) ≤ u[(r).

Conversely, if u[(r) > bUc(r), that is, if

u[(r) 6= bUc(r), we are then either in the case

(2) or in the case (3) and then we obtain that

`(r) ≥ u[(r).
ut

Lemma 6 Let U : D′ ⊆ (Z/2)n  R be an n-

D interval-valued map, and let u[ = FP(U) :

D′ → R be the gray-level function resulting

from the front propagation algorithm applied

on U . Let p, q ∈ D′ be two 2n-neighbors in

(Z/2)n and λ ∈ R. Then, it is impossible to

get the following set of properties together:
u[(p) ≤ λ, (H1)

dUe(p) > λ, (H2)

u[(q) > λ, (H3)

bUc(q) ≤ λ. (H4)

Proof: Now, let p, q be two 2n-neighbors

in D′ and let us assume that there exists a

value λ ∈ R verifying (H1), (H2), (H3) and

(H4).

We can observe easily thanks to (H1) and

(H2) that u[(p) < dUe(p) and then using Lem-

ma 5, we obtain:

`(p) ≤ u[(p) (H5).

In addition, thanks to (H3) and (H4), we

obtain u[(q) > bUc(q) and using Lemma 5,

this results in:

`(q) ≥ u[(q) (H6).

Taking into consideration the two 2n-neigh-

bors p and q, we have 4 possible scenarios as

depicted in Figure 29:

1. either p is enqueued before q, then two sub-

cases are possible:
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push(Q,p,U,ℓ') push(Q,q,U,ℓ')

push(Q,q,U,ℓ')
(1.a) (1.b) (2.a) (2.b)

h ← pop(Q,ℓ) = p h ← pop(Q,ℓ) = p h ← pop(Q,ℓ) = q h ← pop(Q,ℓ) = q

push(Q,q,U,ℓ') push(Q,p,U,ℓ') push(Q,p,U,ℓ')

Fig. 29: The 4 possible scenarios when only two 2n-neighbors p and q in D′ are considered.

(a) either q is enqueued when p is the cur-

rent position,

(b) or q is enqueued before p is the current

position.

2. either q is enqueued before p, then two sub-

cases are possible:

(a) either p is enqueued when q is the cur-

rent position,

(b) or p is enqueued before q is the current

position.

Let us notice that since p and q are 2n-

neighbors, q cannot be enqueued after p is the

current position, and similarly p cannot been

enqueued after q is the current position (all the

2n-neighbors of the current position will have

been enqueued when it has been processed).

Now let us show that whatever the scenario

we choose, we always obtain a contradiction.

(1.a): p is enqueued before q, and then q

is enqueued when p is the current position. It

means that `(q) = u[(p). However, we have

seen that u[(p) ≤ λ by (H1), and that `(q) ≥
u[(q) > λ by (H6) and (H3). This leads to a

contradiction.

(1.b): p is enqueued before q, and q is en-

queued before the current position is set at

p. This way, since the current level ` at t(p)

is equal to `(p) ≤ u[(p), it is equal to `(q) ≤
u[(p) at t(q) (no jump of the non-empty queue

level Q[u[(p)] is allowed by the algorithm).

This means by (H1) that `(q) ≤ λ. However,

by (H6) and (H3), `(q) > λ. This leads to a

contradiction.

(2.a) is the symmetrical case of (1.a) and

(2.b) is the one of (1.b) and then they lead also

to contradictions.

The conclusion is that whatever the sce-

nario (and one of these scenarios happens dur-

ing the computation of the interpolation), the

combination of hypotheses (H1), (H2), (H3)

and (H4) leads to a contradiction. These hy-

potheses are then incompatible. ut

10.3 The proof that adding a constant border

preserves DWCNess

Proposition 7 Let us denote by δ the dila-

tion operator and by se the structuring element

defined such that

se :=

{
p ∈

(
Z
2

)n
; ||p||∞ ≤ 1/2

}
.

Let U0 : D ⊂
(Z

2

)n
 Z be a DWC interval-

valued map defined on a bounded hyperrectan-

gle D in
(Z

2

)n
. Now, let U1 : D′  Z be an-

other interval-valued map defined on a bounded

hyperrectangle D′ = δ(D, se), such that U1|D =

U0 and for any p ∈ D′ \D, U ′(p) = {c} (where

c in a given constant in R). Then, U1 is a

DWC interval-valued map.

Proof: First let us introduce some nota-

tions. Let (sek)k∈J1,2nK be a sequence of struc-

turing elements defined s.t. ∀k ∈ J1, 2nK:

sek =

{
0,

1

2
(−1)k eb

(k+1)
2 c

}
,

and let (Dk)k∈J0,2nK be a sequence of domains

s.t. D0 = D and s.t., ∀k ∈ J1, 2nK:

Dk = δ(Dk−1, se
k).

In this manner, D2n = δ(D, se) = D′.
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D
k-1

D
k

ΔD

x
k
2

x
i

Case 2

D
k-1

D
k

ΔD

x
k+1

2

x
i

Case 1

Fig. 30: Two possible configurations when di-

lating the domain Dk−1 into Dk with our

structuring elements.

We want to show that U1 is digitally well-

composed on D′, and for that we are going

to show by an induction process that, ∀k ∈
J0, 2nK, U1

∣∣
Dk

is digitally well-composed.

Initialization (k = 0): U1

∣∣
D0

= U0 which is

DWC by hypothesis.

Heredity (k ∈ J1, 2nK): assuming that the

image U1

∣∣
Dk−1

is DWC, let us show that U1

∣∣
Dk

is DWC too. Two cases are then possible.

– either k is odd, then sek = {0,− 1
2 e

k+1
2 },

and then we obtain the configuration de-

picted in Figure 30 (Case 1),

– or k is even, then sek = {0, 1
2 e

k
2 }, and

then we obtain the configuration depicted

in Figure 30 (Case 2).

Let us now denote ∆D the set equal to

Dk \ Dk−1. Let us remark that this set is also

an hyperrectangle. In addition, let us denote

by u+
k , u−k , u+

k−1 and u−k−1 the images dU1e
∣∣
Dk

,

bU1c
∣∣
Dk

, dU1e
∣∣
Dk−1

, bU1c
∣∣
Dk−1

respectively. We

can say that U1

∣∣
Dk

is DWC iff ∀S ∈ B(Dk,
(Z

2

)n
)

s.t. dim(S) ≥ 2, ∀p, p′ ∈ S s.t. p′ = antagS(p),

we have the following relations:


intvl(u+

k (p), u+
k (p′))

∩ Span{u+
k (q) ; q ∈ S \ {p, p′}} 6= ∅, (A)

intvl(u−k (p), u−k (p′))

∩ Span{u−k (q) ; q ∈ S \ {p, p′}} 6= ∅. (B)

So let S be such a block of Dk into
(Z

2

)n
,

and let pmin and pmax be two elements of S

such that, for any i ∈ J1, nK,
pmin
i = min{pi ; p ∈ S},

pmax
i = max{pi ; p ∈ S}.

In this manner, pmin and pmax are antago-

nists in S. Then, 4 cases are possible:

1. pmin and pmax belong to Dk−1, then S ⊆
Dk−1, and in this way, ∀p ∈ S, u+

k (p) =

u+
k−1(p) and u−k (p) = u−k−1(p), which im-

plies that the intersections in (A) and (B)

are non empty since u+
k−1 and u−k−1 are

DWC and dim(S) ≥ 2,

2. or pmin and pmax belong to ∆D, then S ⊆
∆D, and then ∀p ∈ S, u+

k (p) = u−k (p) =

c, which means that (A) and (B) are true

since dim(S) ≥ 2,

3. or pmin ∈ Dk−1 and pmax ∈ ∆D. Then we

are in the second case in Figure 30. In other

words,


S ∩ Dk−1 = {p ∈ S ; pk/2 = pmin

k/2},

S ∩∆D = {p ∈ S ; pk/2 = pmax
k/2 },

which means that S can decomposed into

two blocks of dimension dim(S) − 1 ≥ 1,

the first being S ∩ Dk−1 and the second

being S∗ := S ∩∆D. Since S∗ verifies that

∀p ∈ S∗, u+
k (p) = u−k (p) = c and that

dim(S∗) ≥ 1, there exist two points p, q ∈
S∗ which are not antagonists into S and

such that u+
k (p) = u+

k (q) and u−k (p) =

u−k (q), then (A) and (B) are both true,

4. or pmax ∈ Dk−1 and pmin ∈ ∆D. Then we

are in the first case in Figure 30. A dual

reasoning leads to the fact that (A) and

(B) are both true.

We can then conclude by induction that U1

is DWC. ut

10.4 Proof that digital well-composedness

implies equivalent connectivities

Let us recall the definition of well-composed-

ness based on the equivalence of connectivi-

ties [8] (EWCness).

Definition 21 Let X be a digital set in Zn.

X is said to be EWC or well-composed based

on the equivalence of its connectivities if the

two following conditions hold:

– any of its 2n-components is also one of its

(3n − 1)-components and vice versa.

– any 2n-component of Xc is also a (3n−1)-

component of Xc and vice versa.

We can underline that this definition is clear-

ly self-dual, and since the connectivity does

not matter for this class of sets, we will some-

times say that their connectivities (and the

ones of their complement in Zn) are equiva-

lent. In addition, this definition is the “natu-

ral” extension of the one of Latecki in [26] for

2D sets.
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Now that we have the definition of EWC-

ness for sets, we can define EWCness for gray-

level images.

Definition 22 A gray-level image u : D ⊆
Zn → Z is said well-composed based on the

equivalence of connectivities (EWC) if all its

threshold sets are well-composed based on the

equivalence of connectivities.

The definitions of EWCness for sets and

images are extended naturally to (Z/2)n: a

subset X of (Z/2)n is said EWC if the con-

nected components of X and of (Z/2)n \X do

not depend on the chosen connectivity, and a

gray-level image u : D ⊆ (Z/2)n → Z is said

EWC if all its threshold sets are EWC.

Let us recall that EWCness is a global prop-

erty, since it is based on connected compo-

nents, and that DWCness is based on local

properties, that is, there is no critical config-

urations. That shows that the link between

DWCness and EWCness is not so obvious. Be-

fore proving that DWCness implies EWCness

in any (finite) dimension n, n ≥ 2, let us an-

nounce some lemmas.

Lemma 7 Let p, p′ ∈ Zn be two points in a

digitally well-composed set X ⊂ Zn. If p and

p′ are (3n−1)-connected into X, they are also

2n-connected into X.

Proof: Let p, p′ be two points in X ⊂
Zn which is digitally well-composed. Assum-

ing that p and p′ are (3n − 1)-connected into

X, there exists a (3n − 1)-path

π = (q0 = p, q1, . . . , qk−1, qk = p′)

of length k ≥ 0 joining them into X. For any

i ∈ J0, k−1K, qi and qi+1 are (3n−1)-adjacent,

and then antagonists in a block S(qi, qi+1).

Since X is digitally well-composed and qi and

qi+1 belong to X, by Theorem 1, there ex-

ists a 2n-path joining qi and qi+1 into X ∩
S(qi, qi+1). Then, p and p′ are 2n-connected

into X. ut

Theorem 5 Let X ⊂ Zn be a digitally well-

composed set. Then, X is well-composed based

on the equivalence of connectivities (EWC). In

other words, we have:

CC2n(X) = CC3n−1(X),

and

CC2n(Xc) = CC3n−1(Xc).

p

p'

π

A

(a) If A is a 2n-component of a DWC set X,
then each point p′ ∈ X which is (3n − 1)-
connected to any point p element of X be-
longs to A since (3n−1)-connectivity implies
2n-connectivity in a DWC set.

q'

π'

q π'

π

B

(b) If B is a (3n− 1)-component of a DWC
set X, each couple of points q, q′ ∈ B are
also 2n-connected into X since (3n − 1)-
connectivity implies 2n-connectivity in a
DWC set.

Fig. 31: DWCness implies EWCness.

Fig. 32: EWCness does not imply DWCness in

n-D (n ≥ 3).

Proof: Let assume that X ⊂ Zn is DWC.

By Lemma 7, each 2n-component of X is also

a (3n− 1)-component of X (see details in Fig-

ure 31a), and each (3n − 1)-component of X

is also a 2n-component of X (see details in

Figure 31b). ut

Recall that the converse of Theorem 5 is

not true in 3D (see Figure 32): a 3D subset of

Zn can be EWC without being DWC, since the

(3n−1)-components and the 2n-components of

this set are equal, but it contains a 2D critical

configuration at the top and then is not DWC

(the reasoning holds for any dimension n ≥ 3).

Corollary 1 Let u : D → Z be a gray-level

image. Then, when u is DWC, u is EWC.

Proof: This follows directly from Theo-

rem 5. ut
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15. Géraud, T., Xu, Y., Carlinet, E., and Boutry,
N. Introducing the Dahu pseudo-distance. In
Angulo, J., Velasco-Forero, S., and Meyer, F.,
editors, Proceedings of the International Sym-
posium on Mathematical Morphology (ISMM),
volume 10225 of Lecture Notes in Com-
puter Science Series (LNCS), pages 55–67,
Fontainebleau, France, May 2017. Springer.
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