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Abstract. The tree of shapes (ToS) is a famous self-dual hierarchical
structure in mathematical morphology, which represents the inclusion
relationship of the shapes (i.e. the interior of the level lines with holes
filled) in a grayscale image. The ToS has already found numerous applica-
tions in image processing tasks, such as grain filtering, contour extraction,
image simplification, and so on. Its structure consistency is bound to
the cleanliness of the level lines, which are themselves deeply affected
by the presence of noise within the image. However, according to our
knowledge, no one has measured before how resistant to (additive) noise
this hierarchical structure is. In this paper, we propose and compare
several measures to evaluate the stability of the ToS structure to noise.
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1 Introduction

The tree of shapes (ToS) is a morphological hierarchical representation which
encodes the inclusion relationship between the shapes (i.e., the interior of the level
lines with holes filled) in a given image. Initially proposed by [20], it has then been
extensively studied, both for its theoretical [1,10,13] and computational [8,14]
properties, as well as its wide range of applications in image processing (such as im-
age segmentation [7] and simplification [26], object detection and extraction [19],
morphological filtering [24], shape-space representations [25,18]), morphological
attribute profiles computation [16], feature extraction for image retrieval [4], and
curve matching [22]).
It is usually considered as the fusion between the max-tree [23] and its dual, the
min-tree. Being a morphological representation, the ToS structure relies on the
existence of a total ordering between the pixel values (to order by inclusion the
level lines of the image), hence its existence for grayscale images (although it has
been successfully adapted to multichannel images [9]). Therefore, the potential
presence of noise within the image appears as a critical question regarding the
cleanliness of the level lines, and thus the stability and the significance of the
ToS representation with respect to the image it is built upon. More specifically,
the fact that level lines would tend to degrade as the signal-to-noise ratio in
the image decreases comes with the intuition that the resulting ToS also loses
relevance (at least for most of the shapes it contains). Measuring 1) how far from
the “clean” ToS lies the “noisy” ToS (i.e., the ToS built on the image corrupted
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by noise) and 2) how much the shapes of the “noisy” ToS have been degraded by
the presence of noise could give some useful insights on the image content as well
as the credibility that should be given to further processing applied on the ToS
(such as image segmentation or object recognition resulting from it).
Unfortunately, the ToS stability has not been really explored yet in the mathemat-
ical morphology community. A study of the robustness of common hierarchical
structures in terms of pixel classification performances of some morphological
attribute profiles has been carried out in [16], leading to the conclusion that the
ToS, the min/max trees and the ω-tree show superior performance compared to
the α-tree depending of the choice of some threshold. In [4], it is shown that the
MSER feature extractor can be significantly improved using the tree of shapes
for some image retrieval tasks, due to an addition estimated to between 20% and
40% of features. This tree-based measure is robust to noise since it is derived
from the MSER methodology, but no ToS robustness measure is given. In [22],
an approach based on curve matching is proposed which is rotation-invariant
and seems to be robust to noise (although this property is not emphasized in the
cited work). Clearly, these three papers are not motivated by the idea of giving a
complementary toolbox of robustness/stability measures as deeply as we do in
the present paper.
When it comes to measuring distances between tree graphs, possible solutions
encompasses tree-edit distances [3], graph distances [6], treelets based on graph
kernels [12], Reeb graphs distances [2], or interleaving distances between merge
trees [21]. However, the ToS structure is richer than a simple graph since all
nodes also bear an image-related meaning that should also be taken into account
to evaluate the similarity between such structures (for instance, two ToS might
contain very different shapes even though their graph structure is the same). In
this paper, the aim is to proceed to a very exploratory research, which concerns
the definition of mathematical tools able to measure how much a ToS is perturbed
when we add noise in the image it comes from (see Figure 1). The plan is the
following: Section 2 recalls the mathematical background necessary to understand
the paper, Sections 3, 4, 5 and 6 present spectral, topological, and geometrical
measures of the stability of a ToS to added noise, and Section 7 concludes the
paper with a summary of the different measures presented in the paper and their
properties (variance, type of convergence, monotonicity, slope around 0, and so
on). In the appendix (Section A), we add material about preliminary results on
natural images, we show elementary measures computed on synthetic/natural
images, and we show the evolution of a tree of shape on natural/synthetic images
when noise amplitude increases.

2 Mathematical background about the tree of shapes

We begin by briefly recalling the way the ToS is computed (see Figure 2). Starting
from a given image I : Ω → R, we can compute for each possible level ` ∈ R
the upper threshold sets: [I ≥ `] = {x ∈ Ω ; I(x) ≥ `}, and the lower threshold
sets: [I < `] = {x ∈ Ω ; I(x) < `}. Using these sets, we compute their connected
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Fig. 1. In the raster scan order, a synthetic image without noise, its tree of shapes, the
noisy version of this image, and its tree of shapes (we used an additive noise). The aim
of this paper is to provide measures of these perturbations at the hierarchical level,
taking account (or not) of the shapes of the respective trees.

Fig. 2. An example of tree of shapes computation from [14]

components in Ω and we saturate them (using the cavity fill-in operator), to
obtain the upper shapes: S≥ = {Sat(Γ ) ; Γ ∈ CC([I ≥ `])}, and the lower shapes:
S< = {Sat(Γ ) ; Γ ∈ CC([I < `])}. By merging the sets S≥ and S<, and assuming
that the image is well-composed [5], we obtain the so-called tree of shapes T of
I. It is known to be self-dual and contrast-invariant, and this way it represents
the inclusion relationship between the shapes in the image.

3 Proposed spectral measures

After a brief recall in matter of Hausdorff and spectral distances, we propose four
candidate spectral distances to measure stability of the ToS to additive noise.

3.1 Mathematical preliminaries

The Hausdorff distance Let N be some positive integer. Let h be a mapping
from R× RN to R such as for any v ∈ R and E ∈ RN : h(v,E) = mine∈E |v − e|.
We can define the Hausdorff distance [15] on two sets E1, E2 of N scalars by:

HA(E1, E2) = max

(
max
e1∈E1

h(e1, E2), max
e2∈E2

h(e2, E1)

)
.
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Fig. 3. The original image (maximum pixel intensity = 100) and noisy versions (ζ = 20,
ζ = 50 and ζ = 100).

Fig. 4. Spectra of a ToS when the adjacency is weighted by zeros/ones (left) and by
the IoU (right). We can see that the spectrum on the right side has more relief thanks
to the IoU.

The co-spectral distance Given two trees T and T ′, let us assume that we
want to measure their difference based on their spectrum, more exactly on the
spectrum of the Laplacian [11] of the adjacency matrix of these trees considered
as graphs. Starting from a tree T , we can compute its adjacency matrix A, which
is defined as Ai,j = Aj,i = 1 if the node j is connected with the node i in T ,
otherwise Ai,j = Aj,i = 0. Using this adjacency matrix, we can compute the
Laplacian of A, denoted L, which is defined by the formula: L = D −A, where
D is the degree matrix [11] of A. Based on these definitions1, the co-spectral
distance between two trees T and T ′ with the same number of nodes N is
defined as

∑
i∈[1,N ] (λi − λ′i)

2
, where Λ = {λi}i∈[1,N ] (resp. Λ′ = {λ′i}i∈[1,N ]) is

the spectrum of the Laplacian matrix L (resp. L′) of T (resp. T ′).

3.2 Proposed spectral-based distances

We start from the ToS T corresponding to a given image I : Ω → N (see
Figure 3). Given some ζ ∈ N, we add an independent noise n which follows a
uniform discrete law on J0, ζK so that I ′ = n+ I, and we compute its ToS T ′. ζ
is said to be the noise amplitude.
In this section, we use the following methodology:

I → T → A → L → Λ .

First approach Let T and T ′ be two ToS computed on images I and I ′,
respectively. We consider the adjacency matrices deduced from these ToS by

1 We recall that the spectrum of the Laplacian of a graph does not depend on the
enumeration of its nodes, which explains why we can establish measures on the
spectra of two graphs to compute a “distance” between them.
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Fig. 5. From left to right, computation of µ1, µ2, µ3 and µ4 as a function of the noise
amplitude ranging from 0 to 100 (the amplitude of the initial image).

setting Ai,j to 1 when Sj is parent of Si (otherwise we write 0), and we compute
the spectra of their respective Laplacians Λ and Λ′ (see Figure 4 (left)). Then, we
compute the Hausdorff distance applied to Λ and Λ′ to define our first measure:

µ1(Λ,Λ′) = HA(Λ,Λ′).

Observation: We can observe in Figure 5 (left) that this distance does not
increase with the amplitude of the additive noise, leading to the conclusion that
this measure does not seem well-suited for stability estimation. Indeed, we expect
the function to be increasing with the noise amplitude to represent that the
higher the noise, the more perturbed (thus the farther away) the “noisy” ToS.

Second approach Due to the failure of µ1, we reconsider the Hausdorff formula
for stability estimation and investigate the following measure:

µ2(Λ,Λ′) = HAmod(Λ,Λ′) = max

(∑
λ∈Λ

h(λ,Λ′),
∑
λ′∈Λ′

h(λ′, Λ)

)
.

The aim of µ2 is to consider all the eigenvalues that have been inserted in the
new spectrum: the more they differ from the initial ones (or the more numerous
they are), the higher their impact. At the same time, we want to ensure that if
no new eigenvalue is introduced, then the stability measure is zero.

Observation: The first thing we can remark (see Figure 5 left middle) is that
it is monotonic (in mean). A second remark is that the slope of µ2 seems to be
high for low noise amplitudes. This is normal since the structure of the ToS is
modified (many new branches are inserted and initial branches are elongated)
even for very small values of ζ, in particular for synthetic images like the one
under study.

Third approach We did not consider in the previous approaches the shapes of
the two trees T and T ′. We propose then to add this information in the adjacency
matrix by setting Ai,j as the intersection over union (IoU) value of Si and Sj
when Sj is parent of Si, otherwise we set it to zero. We then obtain the spectra
depicted in Figure 4 (right). Following, we compute between the two new spectra
ΛIoU and Λ′IoU the formula:

µ3(T , T ′) = HAmod(ΛIoU , Λ′IoU ).
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Fig. 6. Example of matching obtained using the HMA: the (initial) shapes extracted
from T depicted in the first row are associated by the HMA to the (noisy) shapes
extracted from T ′ depicted in the second row.

Observation: We observe in Figure 5 (right) that µ3 increases slower than
µ2 and then is less sensible to the high perturbation that the ToS undergoes.
Furthermore, the monotonic behavior of µ2 is preserved.

Fourth Approach Being in the case where we can have spectra of different
sizes, we propose now to extend the usual definition of co-spectral distance in
the following manner. We start from the discrete spectra ΛIoU and Λ′IoU and
then interpolate them in a linear way. We obtain IIoU and I ′IoU , respectively.
Since they are continuous, we can easily resize them to obtain two signals with a
same support [1,max(N,N ′)] where N is the size of Λ and N ′ is the size of Λ′.
This leads to our new measure:

µ4(T , T ′) =

∫ max(N,N ′)

1

(IIoU (t)−I ′IoU (t))
2
dt.

Observation: The results of this measure can be observed in the rightmost
panel of Figure 5, which shows a much satisfying measure in the sense that it
keeps increasing as long as T is perturbed.

Conclusion about the spectral approaches: Taking into account the IoU
in the coefficients of the adjacency matrix allows us to obtain a more stable
Laplacian spectrum but needs more computations. We recommend then µ2 for
fast computations, and µ3 or µ4 for more stable stability evaluation.

4 Proposed elongation measure

Let us assume that we have as usual our two trees T and T ′ computed from two
images I : Ω → R and I ′ : Ω → R, respectively. We now apply the Hungarian
Matching Algorithm [17] (HMA) on these two tree of shapes based on the IoU
measure computed on their shapes (we do not consider the structure of the trees
but only their shapes since the tree structure can be induced by the set of shapes
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of each image). In this way, the pairing cost between two shapes S ∈ T and
S ′ ∈ T ′ is IoU(S,S ′), and the final optimal matching H is defined as the injective
function f from T to T ′ which maximizes the total cost:

H = arg minf injective
∑
S∈T

(1− IoU(S, f(S))).

Note that usually, we use the HMA on sets of same cardinality, or on squared
matrices. In our case, we use a bipartite graph A with the rows corresponding to
the initial tree T , the columns corresponding to the final (noisy) tree T ′, and
each Ai,j represents the (position-sensitive) pairing cost between the ith shape
of T and the jth shape of T ′ (see Figure 6). Now that we have our matching
between the shapes of T and a subset H(T ) of T ′, we can compute the elongation
measure ` of T ′ relatively to T for any shape in T ′ in the following manner.
When S ′ equals Ω, we define `(S ′) = 0 (since this shape never moves in the ToS).
Then, for any shape S ′ ∈ H(T )\{Ω}, we compute its inverse image H−1(S ′) by
the HMA. Now, we compute its parent ParT (H−1(S ′)). We are ensured that this
parent exists since in the tree of shapes, any shape has a parent (Ω is its own
parent). Then, we compute its image P(S ′) := H(ParT (H−1(S ′))) in T ′. After
having defined:

`0(S ′) = depthT ′(S ′)− depthT ′(P(S ′))− 1,

the value:
`(S ′) = max (0, `0(S ′))

is then a measure of how much the tree has been elongated from a local point of
view for a given shape of H(T ).
Let us remark that it can happen that `0(S ′) is negative. Indeed, the HMA
ensures optimality in matters of costs, but does not guarantee that P(S ′) is a
parent of S ′ by following the procedure described above (even if we observed
experimentally in simple cases that it is almost always the case). Let us recall
however that, even if the HMA is optimal, the given pairing solution is not always
unique, so this measure depends on the matching result. In the case where we
want to obtain a scalar measure of the elongation, we proceed the following way.
First we estimate the number of shapes of H(T ) whose elongation is positive:
N ′ = Card ({S ′ ∈ H(T ) ; `0(S ′) ≥ 0}). Then, if N ′ is equal to zero, we consider
that the total elongation is zero. Otherwise, it is equal to:

`tot(T , T ′) =
1

N ′

∑
S′∈H(T ) s.t. `0(S′)≥0

`0(S ′).

Observation: Despite its high variance as soon as we reach values next to
ζ = 30 (see Figure 7), and then its non effectiveness as measure of the stability
of the tree of shapes for high noise amplitudes, this measure remains the only
proposed topological measure and is thus worthy of existence.
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Fig. 7. Total elongation `tot as a function of the noise amplitude. On the left side, we
show the elongation for noises whose amplitude goes from 0 to 30, and on the right side,
from 0 to 100. We can remark that when the noise amplitude reaches about 30% of the
signal amplitude, the measure converges in mean but its variance increases dramatically.

5 Proposed deformation measure M

Let us assume that we have the same hypotheses as usual on the trees T and
T ′ and that we apply the HMA on their sets of shapes. We have a matching
between T and H(T ) from which we can compute the first part of our measure:

M1(T , T ′) :=
∑
S∈T

dIoU(S,H(S)),

with dIoU(S,S ′) = 1 − IoU(S,S ′) their Jaccard index. The term M1(T , T ′)
measures how much the shapes of T have been deformed due to the added noise.
Now, we have also to consider the intermediary shapes which have been added
in-between the initial shapes. For this aim, we define for A,B ∈ T ′ with A ⊃ B:

IntermT ′(A,B) = {S ∈ T ′ ; A ⊃ S ⊃ B}

Using this last notation, we can define the set of intermediary shapes in T ′:

I = {S ′ ∈ T ′ ; ∃A′, B′ ∈ H(T ), A′ ⊃ S ′ ⊃ B′} =
⋃

A,B∈H(T )

IntermT ′(A,B).

Since the common domain Ω to I and I ′ (parent of every shape S in T and every
shape S ′ in T ′) always belong to H(T ), we can simplify I:

I =
⋃

S′∈H(T )

ParentsT ′(S ′) \ H(T ),

where ParentsT ′(S ′) is the set of strict parents of S ′ in T ′.
Once we have processed the matching shapes in T ′, some shapes remain (the
ones which do not match at all with the initial tree). For them, we consider the
measure:

M2(T , T ′) =
∑

S′∈T ′\H(T )\I

min
S∈T

dIoU(S ′,S).
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Fig. 8. From left to right, M1, M2, and Mtot with α1 and α2 are arbitrarily chosen
equal to one.

This measure shows how much the little shapes perturb the global structure of
the tree. We finally conclude with the total measure of the deformation between
T and T ′:

Mtot(T , T ′) := α1M1(T , T ′) + α2M2(T , T ′),

with {αi}i∈[1,2] a set of non-zero positive parameters. We can remark that when
T = T ′, we obtain Mtot(T , T ′) = 0.

Observation: In Figure 8, we can remark that M1 and M2 seem to have the
same behavior when ζ increases. The main remark on the total measure is that
it does not suffer from the limitation of the elongation measure presented in the
previous section, and then seems to us to be a good candidate to quantify noise
in a hierarchical structure like the ToS.

6 Proposed measure β based on dIoU-matching

Assuming we have the same notations as usual, we propose now to compute
measures based on dIoU (and not anymore using the HMA). In other words, we do
what we call dIoU-matching. Let us first define the following function ξ : T → T ′
as:

ξ(S) := arg minS′∈T ′dIoU(S,S ′)

This mapping represents the closest shape (in the dIoU sense) of S in T ′. For the
sake of simplicity, let us define for any tree T0:

PT0(k) :=
{
S ∈ T0 s.t. depthT0(S) = k

}
Once we have this mapping and this notation, we can define a measure based on
the intersection over union using the same mapping ξ:

β(k) :=
1

Card (PT (k))

∑
S∈PT (k)

dIoU(S, ξ(S)).

Note that we tested also its dual version by switching T and T ′ in this formula
but the results were not relevant as a stability estimator.
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Fig. 9. The measure β∀ as a function of the noise amplitude ζ for ζ ∈ [1, 100].

Fig. 10. Summary of the different properties of each approach on the toy-image. Note
that the representative slowness s in the interval of low noise amplitudes is measured
by the value of ζ at which the curve reaches the 50% of its maximum on the interval
[1, 100] for the first time.

Type Asymp. conv. Monotonic s HMA-based dIoU-based Variance

µ1 Spectral Yes No 1 No No High

µ2 Spectral Yes Yes 3 No No Small

µ3 Spectral Yes Yes 13 No No Small

µ4 Spectral Yes Yes 20 No No Small

`tot Topological No No 46 Yes No High

M1 Geometrical Yes Yes 10 Yes No Small

M2 Geometrical Yes Yes 10 Yes No Small

β∀ Geometrical No Yes 26 No Yes Small

β represents how much the shapes at depth k in T are perturbed, and we effec-
tively observed that the higher the noise amplitude, the more dIoU tends to one,
since the IoU surely tends to zero.
In order to obtain (like in the previous sections) a quantification of the pertur-

bation of the tree of shapes relatively to the noise amplitude, we propose then to
compute the sum of the terms β over the possible depths of the components. We
obtain then:

β∀ =
∑

k∈[0,depth(T )]

β(k)

which is depicted in Figure 9.

Observation: In fact, this is the first measure we found among all our exper-
iments which increases very slowly at the beginning, and furthermore which
increases as long as ζ does so. Nevertheless, at excessively high noise amplitudes
(ζ ≥ 180), the variance of β becomes too high and is not representative anymore.

7 Conclusion

Thanks to our exploratory research, we have been able to propose many measures
of how much a tree of shapes is robust to noise. These measures can be geometrical
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(based on the shapes and the deformation of their contours), topological (based on
the depth of the tree of shapes of an image), or spectral (based on the eigenvalues
of the Laplacian of the tree of shapes). Furthermore, theses experiments are
symptomatic of the difficulty to efficiently measure a phenomenon which can seem
intuitively simple. Indeed, considering the behavior on the interval [1, 100] where
100 is the amplitude of the signal, the only measure which has a low variance, is
monotonic, and which does not converges asymptotically (three quality criteria
according to us), is the last proposed measure β, that we estimate being the
default measure any user should choose in a general context. Table 10 summarizes
the main properties of each of our formulas. As future work, we will investigate
our measures on different types of hierarchical representations and noise models,
on a larger benchmark of natural images to strengthen the provability of our
observations.
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9. Carlinet, E., Géraud, T.: MToS: A tree of shapes for multivariate images. IEEE
Transactions on Image Processing 24(12), 5330–5342 (2015)

10. Caselles, V., Monasse, P.: Geometric description of images as topographic maps.
Springer (2009)

11. Chung, F.R., Graham, F.C.: Spectral graph theory. No. 92, American Mathematical
Soc. (1997)

12. Gaüzere, B., Brun, L., Villemin, D.: Two new graphs kernels in chemoinformatics.
Pattern Recognition Letters 33(15), 2038–2047 (2012)
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A Appendix

A.1 Preservation of the behavior of our measures on natural images

Fig. 11. From left to right, the studied image and the computations of µ1, µ2 , µ3, µ4,
`, M and β on three natural images.

The main difference with synthetic images is that natural images show a
stronger variance (see Figure 11). Conversely, the behavior of our measures are
preserved except for µ1 which becomes relevant on natural images.

A.2 Preservation of the behavior of our measures on natural images

Fig. 12. Images and their depth, number of nodes, and maximal degrees as a function
of the noise amplitude.

Fig. 13. Ramifications appear in the tree of shapes as long as we add noise to the
represented image.

As we can observe in Figures 12 and 13, elementary measures such as depth,
numbers of nodes, and maximal degrees are not sufficient to measure the robust-
ness of the ToS structure to noise.
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