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Abstract. Gliomas are brain tumors originating from the neuronal sup-
port tissue called glia, which can be benign or malignant. They are con-
sidered rare tumors, whose prognosis, which is highly fluctuating, is pri-
marily related to several factors, including localization, size, degree of
extension and certain immune factors. We propose an approach using a
Residual 3D U-Net to segment these tumors with localization, a tech-
nique for centering and reducing the size of input images to make more
accurate and faster predictions. We incorporated different training and
post-processing techniques such as cross-validation and minimum pixel
threshold.
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1 Introduction

Gliomas or glial tumors are all brain tumors, benign or malignant, arising from
the neuronal support tissue or glia. They are rare tumors, whose prognosis, which
is extremely variable, is mainly related to several factors, including location, size,
degree of extension and certain immune factors.

The average survival time is from 12 to 18 months. Brain tumor diagnosis
and segmentation are difficult, particularly using manual segmentation.

In addition, medical image annotation experts have to manually annotate
tumor segmentation, which is time consuming and difficult. Automatic segmen-
tation of tumors allows for better diagnosis and treatment planning.

Nowadays, deep learning represents the most effective technology for many
tasks such as segmentation, tracking and classification in medical image analysis.
Many studies for brain tumor segmentation use deep learning techniques, espe-
cially convolutional neural networks (CNN). Recent entries in the Brain Tumor
Segmentation Challenge (BraTS) challenge are mostly based on these convo-
lutional neural networks, specifically on the U-Net architecture [19] or similar,
using an encoder and a decoder with skip-connections. They have shown very
convincing performance in previous iterations of the challenge. [12].
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The BraTS challenge provides the largest fully annotated, openly accessible
database for model development and is the primary competition for objective
comparison of segmentation methods [2–5,17]. The BraTS 2021 dataset includes
1251 training cases and 219 validation cases. Reference annotations for the vali-
dation set are not provided to participants. Instead, participants can utilize the
online evaluation platform to evaluate their models and compare their results
with other teams on the online leaderboard. In parallel to the segmentation task,
the BraTS 2021 competition includes the task of predicting of the MGMT pro-
moter methylation status in mpMRI scans. In this work, we only take part in
the segmentation task.

To segment these tumors, the BraTS dataset contains 5 images in NIfTI
format for each patient. These images come from MRI (Magnetic Resonance
Imaging), each of the first four images coming from different moments of the
MRI. These different modalities are named T1, T1ce, T2 and FLAIR. The last
image corresponds to the ground truth, i.e. the tumor and its different regions.
The pixel values of this image are:

– 4 for the GD-enhancing tumor
– 2 for the peritumoral edematous/invaded tissue
– 1 for the necrotic tumor core
– 0 for everything else

Using these pixel values, we can find the different tumor regions:

– Whole Tumor (WT): 1, 2, 4
– Tumor Core (TC): 1 and 4
– Enhanced Tumor (ET): 4

Fig. 1. Modalities and labels

In this paper, we use a residual 3D U-Net using localization with cross-
validation for each region (WT, TC, ET).
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2 Methods

The implementation used PyTorch. As a result, we describe the models with
PyTorch keywords and methods.

2.1 Pre-processing

Images given in the BraTS dataset are in 240 (Width) × 240 (Height) × 155
(Number of slices) × 4 (FLAIR, T1, T1ce, T2), in the NIfTI format.

The goal in our approach was to keep the images as close as possible to the
original data despite the limitations of GPU memory, that is, without too much
pre-processing on the input images.

We chose to crop the images to 192 x 192 x 155 to remove the empty borders
of the images, then added 5 empty slices to obtain a multiple of 8 on every
dimension (except for the channels).

As a result, the images given as input of the model are left with as little
modification as possible.

2.2 Residual 3D U-Net

The model we are using is a Residual 3D U-Net, based on Superhuman Accuracy
on the SNEMI3D Connectomics Challenge [16]. Residual U-Nets have already
been used for biomedical applications [18, 20]. Our model is a variant of the
U-Net [19] in 3D [7].

The architecture inherits the main elements from U-Net: a contracting path
with convolutions and downsampling, an expansive path with convolutions and
upsampling, and skip connections from the contracting path to the expansive
path.

Our model differs from the 3D U-Net on different aspects, such as the use
of same convolution instead of valid convolution. We also added a residual skip
connection to each convolution block, it helps to solve the vanishing gradient
problem and to preserve information captured in the initial layers. As we are
limited by VRAM, we have to use a small batch size. We used Group Normal-
ization as it performs better than Batch Normalization on a small batch size
and it improves the ability of the network to generalize and allows the model to
converge rapidly.

In a residual block, the first two convolutions are preceded by group nor-
malization and followed by the ReLU activation function. After the last con-
volution layer, there is a concatenation of the residual connection, and then
activation is called to include the residual information.

On the contracting path of the U-Net, we use what we call an encoding
residual block (ERB), which contains a MaxPool3d with a kernel size of 2 and a
residual block.
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Fig. 2. Overview of the Residual 3D U-Net

Fig. 3. Residual 3D U-Net blocks



Residual 3D U-Net with localization for Brain Tumor Segmentation 5

On the expansive path of the U-Net, we use a decoding residual block
(DRB), which contains a ConvTranspose3d layer with a kernel size of 3 and a
scaling factor of size 2 to revert to the size of the encoding residual data from
the same level skip connection. After the concatenation of the skip connection,
the residual block is added.

At the end of this network, a 1×1 convolution is used to reduce the number
of output channels to the number of labels. The number of labels will be 3 for a
multi-class prediction and 1 in the case of a single-class prediction.

We have trained 3 separate single-class prediction models. One for each region
WT, TC and ET which take 4 channels as input, again FLAIR, T1, T1ce and
T2.

As the three models predict one label, a sigmoid has been used as final
activation function.

The architecture of this network is built to recover the original shape of the
data by using padding on heights and widths of the images. (see fig. 2).

As the MRI images are quite heavy, having only 16GB of VRAM on our
GPUs, it was necessary to use 24 filters on the first layer of the network to avoid
saturating the GPU memory. However, we are able to run the model with more
filters using localization which we discuss in the next section.

2.3 Localization

Training the models on TC and ET did not give great results. These regions
are particularly small and the models could not refine the predictions correctly.
That is because the “base” model only uses 24 filters on the first level of the
U-Net.

Increasing the number of filters was not possible because of our VRAM limi-
tations. We thought about an interpolation to reduce the size of our input images
but this technique is too destructive.

In order to make the best out of the VRAM limits, we use localization. It
consists in using the predictions on WT, center the input images around the
segmented tumors and crop the input images around these segmented tumors.

Fig. 4. FLAIR image of a brain with localization
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Using this method, we are able to crop the input images into much smaller
images of size 128 x 128 x 128 instead of 192 x 192 x 160. Whole tumors can
fit inside these cropped images. As a result, the VRAM usage decreased and we
were able to increase the number of filters from 24 to 64 on the first convolutional
layer of the U-Net.

Once we have predicted the area of the tumor, we can run the models on
WT, TC and ET with 64 filters using the cropped images as input. Note: We
run the model on WT again with 64 filters to get the best results.

With a higher number of filters, the model is able to capture more complex
features such as in the TC and ET regions.

Fig. 5. Prediction example (label on the left and prediction on the right)

2.4 Loss function

The hybrid loss function is used to train the models for the WT and TC regions.
This loss combines Dice loss with the standard binary cross-entropy (BCE) loss
that is generally the default for segmentation models. Summing the two methods
allows for some diversity in the loss while benefiting from the stability of BCE.
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Both losses have the same coefficients in the hybrid loss.

BCE_loss =
1

N

N∑
n=1

H(pn, qn) = −
1

N

N∑
n=1

[ynlog(ŷn) + (1− yn)log(1− ŷn)] (1)

Dice_loss =
2|X ∩ Y |
|X|+ |Y |

(2)

For the ET region, the standard binary cross-entropy (BCE) loss was used
as it requires more stability in training.

2.5 Cross validation

Cross-validation is a method used to train multiple models and improve predic-
tive performance. The test set is separated beforehand.

We chose the k-fold method which consists in dividing the dataset in 5 blocks.
The k-fold method allows us to create 5 different models that each have one
different validation block and the 4 remaining blocks as the training set.

In order to maximize our scores, we combined the predictions of all 5 models
by doing an average (Regression Voting Ensemble) of the weights then binarized
the outputs. We also tried a majority vote (Classification Voting Ensemble) after
the binarization.

2.6 Post-processing

The analysis of our results obtained on the validation set of BraTS shows that
our predictions contained a large number of false positives, on the TC and ET
regions.

In order to decrease that number, we defined a threshold for the number of
pixels on an image [12]. Each prediction containing a number of pixels below
this threshold is considered an empty prediction because we know that a tumor
does not necessarily contain an enhanced tumor (ET). Several threshold values
were tested.

3 Experiments and results

3.1 Implementation details

In the BraTS 2021 Segmentation Challenge, the training data is composed of
1251 multimodal MRI cases.
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The network is implemented with PyTorch. The models were trained on 4
NVIDIA Tesla V100 16 GB GPUs. Each model was trained for 40 to 60 epochs
with a batch size of 4, Adam optimizer with a learning rate of 0.0001 (BCE-Dice
loss), 0.00003 (BCE-Dice loss), 0.003 (BCE) respectively for WT, TC and ET.

The model used to crop the input images and center on the tumor has the
same learning rate as the model trained for WT and also uses the BCE-Dice
loss.

We reduced the learning rate with the callback ReduceLROnPlateau by a
factor of 0.4, with a patience and a cooldown of 2 epochs.

3.2 Performance on the validation set of BraTS 2021

The Validation Dataset of BraTS 2021 contains 219 brains MRI. For each brain,
the four modality (T1, T2, T1ce and FLAIR) are used in order to predict the
multi-class prediction. Predictions are evaluated thanks to the Dice coefficient,
the Hausdorff distance (Hausdorff95), the sensitivity (True Positive Rate) score
and a specificity (True Negative Rate) score. They are defined as follows:

Dice =
2TP

FP + 2TP + FN
(3)

Hausdorff(T, P ) = max{supt∈T infp∈P d(t, p), supp∈P inft∈T d(t, p)} (4)

Sensitivity =
TP

TP + FN
(5)

Specificity =
TN

TN + FP
(6)

where TP, FP, TN and FN denote respectively the number of true positive,
false positive, true negative and false negative voxels.

The Hausdorff distance computes the distance between the predicted regions
and the ground truth regions. t and p denote respectively the pixels in the
ground truth regions T and the predicted regions P. d(t,p) is the function that
computes the distance between the points t and p.
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Table 1. Performance comparison using the dice coefficient on the BraTS 2021 Vali-
dation set using the online tool

Methods WT (%) TC (%) ET (%)
Baseline (BCE loss) 90.98 80.24 74.07
Classification Voting Ensemble 1 91.42 80.96 77.07
Regression Voting Ensemble (RVE) 1 91.45 80.98 77.58
BCE-Dice loss (WT & TC) 2 91.34 82.71 77.58
RVE 1 + Localization 4 91.64 82.71 78.26
RVE 1 + ET threshold 100 3 91.45 80.98 78.91
RVE + Localization 4 + ET threshold 400 3 91.64 82.71 78.71
RVE + Localization 4 + ET threshold 600 3 91.64 82.71 80.22

Table 2. Submission result on validation set

Tumor Region WT (%) TC (%) ET (%)
Dice 91.64 82.71 80.22
Hausdorff95 4.35 12.50 25.13
Sensitivity 93.61 85.74 79.14
Specificity 99.90 99.95 99.97

3.3 Performance on the test set of BraTS 2021

Dice_WT (%) Dice_TC (%) Dice_ET (%) HD95_WT HD95_TC HD95_ET
Mean 89.21 81.30 80.64 11.81 26.57 32.18
StdDev 16.87 28.79 26.52 47.15 86.49 98.98
Median 94.42 93.63 90.86 2.24 2.0 1.41
25quantile 89.92 86.17 80.48 1.41 1.0 1.0
75quantile 96.72 96.54 95.03 5.10 4.97 3.0

1 Cross-Validation evaluation method (see 2.5)
2 BCE-Dice loss function (see 2.4)
3 Post processing using thresholding (see 2.6)
4 Second network with reframing around the WT (see 2.3)
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4 Conclusion

In this paper, we propose a segmentation method using the Residual 3D U-Net
as the skeleton of the network, which uses the four modalities on an area where
the tumor has been predicted. The localization method allows us to exploit the
limitations of VRAM to the fullest by cropping and centering on the whole tumor
without any performance loss. The evaluation of our method on the BraTS 2021
test set gives dice scores of 89.21, 81.30, 80.64 for the whole tumor, the tumor
core and enhancing tumor, respectively.
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