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Abstract. In this paper, we study a class of discrete Morse functions,
coming from Discrete Morse Theory, that are equivalent to a class of
simplicial stacks, coming from Mathematical Morphology. We show that,
as in Discrete Morse Theory, we can see the gradient vector field of a
simplicial stack (seen as a discrete Morse function) as the only relevant
information we should consider. Last, but not the least, we also show that
the Minimum Spanning Forest of the dual graph of a simplicial stack is
induced by the gradient vector field of the initial function. This result
allows computing a watershed-cut from a gradient vector field.
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1 Introduction

We present here several results relating Mathematical Morphology [17] (MM) to
Discrete Morse Theory [13] (DMT). This strengthens previous works highlight-
ing links between MM and topology. In [6,7], it is demonstrated that watersheds
are included in skeletons on pseudomanifolds of arbitrary dimension. Recently
(see [1,2,3]), some relations between MM and Topological Data Analysis [20,16]
(TDA) have been exhibited: the dynamics [14], used in MM to compute mark-
ers for watershed-based image-segmentation, is equivalent to the persistence, a
fundamental tool from Persistent Homology [11].

In this paper, the first main result links the spaces used in MM and in
TDA: the main mathematical spaces used in DMT, discrete Morse functions [19]
(DMF), are equivalent, under some constraints, to spaces well-known in MM and
called simplicial stacks [8,6,7]. Simplicial stacks are a class of weighted simplicial
complexes whose upper threshold sets are also complexes. Indeed, in a DMF,
the values locally increase when we increase the dimension of the face we are
observing; in a simplicial stack, it is the opposite. Without surprise, we can then
observe that, under some constraints, any DMF is the opposite of a simplicial
stack, and conversely.
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In TDA, it is a common practice to consider that the main information
conveyed by a DMF is its gradient vector field (GVF), naturally obtained by
pairing neighbor faces with the same value. Two DMFs with the same GVF are
then considered to be equivalent. Using the very same principle on simplicial
stacks, we can go further, and consider that a GVF encodes not only a class of
DMFs, but also the corresponding class of simplicial stacks.

The relation between TDA and MM in the context of DMFs and stacks
is not limited to the previous observations. In [8], the authors proved that a
watershed-cut is a Minimum Spanning Forests (MSF) cut in the dual graph of
a simplicial stack. We prove here that such a MSF can be extracted from the
GVF of the simplicial stack (seen as a DMF). Relations between watersheds and
Morse theory have long been informally known [10], but this is the first time that
a link is presented in the discrete setting, relying on a precise definition of the
watershed. Furthermore, as far as we know, this is the first time that a concept
from Discrete Morse Theory is linked to a classical combinatorial optimization
problem.

The plan of this paper is the following. Section 2 recalls the mathematical
background necessary to our proofs. Section 3 shows the equivalence between
DMF’s and simplicial stacks. Section 4 studies the link between MSFs and GVFs.
Section 5 concludes the paper.

2 Mathematical background

2.1 Simplicial complexes, graphs and pseudomanifolds

We call (abstract) simplex any finite nonempty set of arbitrary elements. The
dimension of a simplex x, denoted by dim(x), is the number of its elements minus
one. In the following, a simplex of dimension d will also be called a d-simplex. If
x is a simplex, we set Clo(x) = {y|y ⊆ x, y 6= ∅}. A finite set X of simplices is a
cell if there exists x ∈ X such that X = Clo(x).

If X is a finite set of simplices, we write Clo(X) = ∪{Clo(x)|x ∈ X}, the set
Clo(X) is called the (simplicial) closure of X. A finite set X of simplices is a
(simplicial) complex if X = Clo(X).

In the sequel of the paper, K denotes a simplicial complex. A subcomplex of
K is a subset of K which is also a complex. Any element in K is a face of K and
we call d-face of K any face of K whose dimension is d. If σ, τ are two faces of K
with τ ⊂ σ, we say that σ is a coface of τ . Any d-face of K that is not included
in any (d+ 1)-face of K is called a (d−)facet of K or a maximal face of K.

The dimension of K, written dim(K), is the largest dimension of its faces:
dim(K) = max{dim(x)|x ∈ K}, with the convention that dim(∅) = −1. If d is
the dimension of K, we say that K is pure whenever the dimension of all its
facets equals d.

Suppose that there is a pair of simplices1 (σ(p−1), τ (p)) of K with σ ⊂ τ such
that the only coface of σ is τ . Then K \ {σ, τ} is a simplicial complex called an
1 The superscripts correspond to the dimensions of the faces.
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elementary collapse of K. For an elementary collapse, such a pair {σ, τ} is called
a free pair, and σ is called a free face. Note that elementary collapses preserve
simple homotopy type [21]. A free pair {σ(d−1), τ (d)} is called a free d-pair, and
K\{σ(d−1), τ (d)} is called an elementary d-collapse. If a complex K′ is the result
of a sequence of elementary d-collapses of K, we say that K′ is a d-collapse of K.
If, furthermore, there is no free d-pair for K′, then K′ is an ultimate d-collapse
of K.

In this paper, a graph G is a pure 1-dimensional simplicial complex. A sub-
graph is a subset of a graph which is also a graph. We denote the vertices (the
0-dimensional elements) of a graph G by V (G), and the edges (the 1-dimensional
elements) by E(G).

Let X be a set of simplices, and let d ∈ N. Let π = 〈x0, . . . , xl〉 be a sequence
of d-simplices in X. The sequence π is a d-path from x0 to xl in X if xi−1 ∩ xi
is a (d − 1)-simplex in X, for any i ∈ {1, . . . , l}. Two d-simplices x and y in X
are said to be d-linked for X if there exists a d-path from x to y in X. We say
that the set X is d-connected if any two d-simplices in X are d-linked for X.
We say that the set Y ⊂ X is a d-connected component (or simply, a connected
component) of X if Y is d-connected and maximal for this property.

Let X be a set of simplices, and let π = 〈x0, . . . , xl〉 be a d-path in X. The
d-path π is said simple if for any two distinct i and j in {0, . . . , l}, xi 6= xj . It
can be easily seen that X is d-connected if and only if, for any two d-simplices
x and y of X, there exists a simple d-path from x to y in X.

A complex K of dimension d is said to be a d−pseudomanifold if

(1) K is pure,
(2) any (d− 1)−face of K is included in exactly two d−faces of K, and
(3) K is d−connected.

In the sequel of the paper, d ≥ 1 is an integer, and M denotes a d-pseudo-
manifold.

Proposition 1 (Ultimate collapses [6]). Let K be a proper subcomplex of the
d-pseudomanifold M. If the dimension of K is equal to d, then necessarily there
exists a free d-pair for K. In other words, the dimension of an ultimate d-collapse
of K is necessarily d− 1.

Following Prop. 1, we say that an ultimate d-collapse of K ⊂M is thin.
Let x ∈M, the star of x (in M), denoted by St(x), is the set of all simplices

of M that include x, i.e., St(x) = {y ∈M | x ⊆ y}. If A is a subset of M, the set
St(A) = ∪x∈ASt(x) is called the star of A (in M). A set A of simplices of M is
a star (in M) if A = star(A).

2.2 Simplicial stacks

Let F be a mapping M → Z. For any face σ of M, the value F (σ) is called the
altitude of F at σ. For k ∈ Z, the k-section of F , denoted by [F ≥ k] is equal to
{σ ∈ M | F (σ) ≥ k}. A simplicial stack F on M is a map from M to Z which
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satisfies that any of its k-section is a (possibly empty) simplicial complex. In
other words, a map F is a simplicial stack if, for any two faces σ and τ of M
such that σ ⊆ τ , F (σ) ≥ F (τ).

We say that a subset A of M is a minimum of F at altitude k ∈ Z when A is a
connected component of [F ≤ k] := {σ ∈M | F (σ) ≤ k} and A∩ [F ≤ k−1] = ∅.
In the following, we denote by M−(F ) the union of all minima of F . We note
that, if F is a simplicial stack, then M−(F ) is a star. The divide of a simplicial
stack F is the set of all faces of M which do not belong to any minimum of F .
Note that since M−(F ), is a star, the divide is a simplicial complex.

Let σ be any face of M. When σ is a free face for [F ≥ F (σ)], we say that
σ is a free face for F . If σ is a free face for F , there exists a unique face τ
in [F ≥ F (σ)] such that (σ, τ) is a free pair for [F ≥ F (σ)], and we say that
(σ, τ) is a free pair for F . Let (σ, τ) be a free pair for F , then it is also a free
pair for [F ≥ F (σ)]. Thus, τ is a face of [F ≥ F (σ)], and we have σ ⊆ τ .
Therefore, we have F (τ) ≥ F (σ) and F (τ) ≤ F (σ) (since F is a stack), which
imply that F (τ) = F (σ). Let N ⊆ M, the indicator function of N, denoted by
1N : M → {0, 1}, is the mapping such that 1N(σ) is equal to 1 when σ belongs
to N and is equal to 0 when σ belongs to M \ N. The lowering of F at N is
the map F − 1N from M into Z. Let (σ(d−1), τ (d)) be a free pair for F . The
map F − 1{σ,τ} is called an elementary d-collapse of F . Thus, this elementary
d-collapse is obtained by subtracting 1 to the values of F at σ and τ . Note that
the obtained mapping is still a simplicial stack. If a simplicial stack F ′ is the
result of a sequence of elementary d-collapses on F , then we say that F ′ is a
d-collapse of F . If, furthermore, there is no free pair (σ(d−1), τd) for F ′, then F ′
is an ultimate d-collapse of F .

2.3 Watersheds of simplicial stacks

Let A and B be two nonempty stars in M. We say that B is an extension of A
if A ⊆ B, and if each connected component of B includes exactly one connected
component of A. We also say that B is an extension of A if A = B = ∅. Let X be
a subcomplex of the pseudomanifold M and let Y be a collapse of X, then the
complement of Y in M is an extension of the complement of X in M. Let A be
a nonempty open set in a pseudomanifold M and let X be a subcomplex of M.
We say that X is a cut for A if the complement of X is an extension of A and if
X is minimal for this property. Observe that there can be several distinct cuts
for a same open set A and, in this case, these distinct cuts do not necessarily
contain the same number of faces.

Let π = 〈x0, . . . , x`〉 be a d-path in M, and let F be a function on M. We say
that the d-path π is descending for F if for any i ∈ {1, . . . , `}, F (xi) ≤ F (xi−1).

Let X be a subcomplex of the pseudomanifold M. We assume that X is a
cut for M−(F ). We say that X is a watershed-cut of F if for any x ∈ X, there
exists two descending paths π1 = 〈x, x0, . . . , x`〉 and π2 = 〈x, y0, . . . , ym〉 such
that (1) x` and ym are simplices of two distinct minima of F ; and (2) xi 6∈ X,
yj 6∈ X, for any i ∈ {0, . . . , `} and j ∈ {0, . . . ,m}.
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Several equivalent definitions of the watershed for pseudo-manifolds are given
in [7,6]. Also, it was shown that a watershed-cut of F is necessarily included in
an ultimate d-collapses of F . Thus, by Prop. 1, a watershed-cut is a thin divide.

In this paper, we focus on a definition relying on combinatorial optimization,
more precisely on the minimum spanning tree. For that, we need a notion of
“dual graph” of a pseudomanifold.

Starting from a d-pseudomanifold M valued by F : M → Z, we define the
dual (edge-weighted) graph of F as the 3-tuple GF = (V,E, FG) whose vertex set
V is composed of the d-simplices of M, whose edge set E is composed of the
pairs {σ, τ} such that σ, τ are d-faces of M and σ ∩ τ is a (d− 1)-face of M, and
whose edge weighting FG is made as follows: for two distinct d-faces σ, τ in M
sharing a (d-1)-face of M, FG({σ, τ}) = F (σ ∩ τ).

Let A and B be two non-empty subgraphs of the dual graph GF of F . We
say that B is a forest relative to A when

(1) B is an extension of A; and
(2) for any extension C ⊆ B of A, we have C = B whenever B and C share the

same vertices.

Informally speaking, the second condition imposes that we cannot remove any
edge from B while keeping an extension of A that has the same vertex set as B.
We say that B is a spanning forest relative to A for GF if B is a forest relative
to A and if B and GF share the same vertices.

The weight of A is defined as: FG(A) :=
∑
u∈E(A) FG(u). We say that B is a

minimum spanning forest (MSF) relative to A for FG if B is a spanning forest
relative to A for FG and if the weight of B is less than or equal to the weight of
any other spanning forest relative to A for FG .

Let A be a subgraph of GF , and let X be a set of edges of GF . We say that
X is an MSF cut for A if there exists an MSF B relative to A such that X is
the set of all edges of GF adjacent to two distinct connected components of B.

In the following, if S is a set of (d − 1)-faces of M, we set Edges(S) =
{{σ, τ} ∈ E(GF ) | σ ∩ τ ∈ S}. The dual graph of the minima of F is the graph
whose vertex set is the set M of d-faces of the minima of F and whose edge set
is composed of the edges of GF linking two elements of M .

Theorem 2 (Theorem 16 p. 10 [6]). Let X be a set of (d− 1)-faces of M, and
let F : M→ Z+ be a simplicial stack. The complex resulting from the closure of
X is a watershed-cut of F if, and only if, Edges(X) is a MSF cut for the dual
graph of the minima of F .

In other words, to compute the watershed of a stack F , it is sufficient to
compute in GF a MSF cut relative to the graph associated with the minima of
F . Different algorithms for computing MSF cuts are detailed in [8,9].

2.4 Basic Discrete Morse functions

We rely here on the formalism presented in [19], with results from Forman and
Benedetti. A function F : A → B is said to be 2 − 1 when, for every b ∈ B,
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there exist at most two values a1, a2 ∈ A such that F (a1) = F (a2) = b. Let K
be a simplicial complex. A function F : K → Z is called weakly increasing if
F (σ) ≤ F (τ) whenever the two faces σ, τ of K satisfy σ ⊆ τ .

A basic discrete Morse function F : K → Z is a weakly increasing function
which is 2 − 1 and satisfies the property that if F (σ) = F (τ), then σ ⊆ τ or
τ ⊆ σ.

Let F : K → Z be a basic discrete Morse function. A simplex σ of K is said
to be critical when F is injective on σ. Otherwise, σ is called regular. When σ is
a critical simplex, F (σ) is called a critical value. If σ is a regular simplex, F (σ)
is called a regular value.

Discrete Morse functions are more general than basic discrete Morse func-
tions. A discrete Morse function (DMF) F on K is a function from F : K → Z
such that for every p-simplex σ ∈ K, we have

|{τ (p−1) ⊂ σ | F (τ) ≥ F (σ)}| ≤ 1 (1)

and
|{τ (p−1) ⊃ σ | F (τ) ≤ F (σ)}| ≤ 1. (2)

However, to each discrete Morse function, there exists a basic discrete Morse
function which is equivalent in the following sense (see Th. 4 and Prop. 5). Two
discrete Morse functions F, F ′ defined on the same simplicial complex K are
said to be Forman-equivalent when for any two faces σ(p), τ (p+1) ∈ K satisfying
σ ⊂ τ , F (σ) < F (τ) if and only if F ′(σ) < F ′(τ). Hence, in this paper, we focus
on basic discrete Morse functions.

Let F be a basic discrete Morse function on K. The (induced) gradient vector
field (GVF)

−−→
grad of F is defined by

−−→
grad(F ) :=

{
(σ(p), τ (p+1)) | σ, τ ∈ K , σ ⊂ τ , F (σ) ≥ F (τ)

}
. (3)

If (σ, τ) belongs to
−−→
grad(F ), then it is called a vector (for F ) whose σ is the tail

and τ is the head. The vector (σ, τ) is sometimes denoted by −→στ .
Let K be a simplicial complex. A discrete vector field V on K is defined by

V := {(σ(p), τ (p+1)) | σ ⊂ τ, each simplex of K is in at most one pair} (4)

Naturally, every GVF is a discrete vector field.
Let V be a discrete vector field on a simplicial complex K. A gradient path is

a sequence of simplices: (τ (p+1)
−1 , )σ

(p)
0 , τ

(p+1)
0 , σ

(p)
1 , τ

(p+1)
1 , . . . , σ

(p)
k−1, τ

(p+1)
k−1 , σ

(p)
k ,

of K, beginning at either a critical simplex τ (p+1)
−1 or a regular simplex σ(p)

0 , such
that (σ

(p)
` , τ

(p+1)
` ) belongs to V and τ (p+1)

`−1 ⊃ σ
(p)
` for 0 ≤ ` ≤ k − 1. If k 6= 0,

then this path is said to be non-trivial. Note that the last simplex does not need
to be in a pair in V . A gradient path is said to be closed if σ(p)

k = σ
(p)
0 .

Theorem 3 (Theorem 2.51 p.61 of [19]). A discrete vector field is the GVF of
a discrete Morse function if, and only if, this discrete vector field contains no
non-trivial closed gradient paths.
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Theorem 4 (Theorem 2.53 p.62 of [19]). Two discrete Morse functions defined
on a same complex K are Forman-equivalent if, and only if, they induce the same
GVF. A consequence is that any two Forman-equivalent discrete Morse functions
defined on a simplicial complex have the same critical simplices.

Proposition 5. If F is a discrete Morse function, there exists F ′ a basic discrete
Morse function that is Forman-equivalent to F .

Proposition 5 is a consequence of [19, Proposition 4.16]. Starting from a DMF
and computing its GVF, it is possible (by correctly ordering all the simplices)
to compute a basic DMF Forman-equivalent to it; such an algorithm preserves
the GVF. A precise algorithm, together with a proof of Prop 5 relying on this
algorithm, will be provided in an extended version of this paper.

3 A class of simplicial stack equivalent to Morse functions

Simplicial stacks are weakly decreasing. We call basic simplicial stack, a simplicial
stack F that is 2− 1 and satisfies the property that if F (σ) = F (τ), then σ ⊆ τ
or τ ⊆ σ. The proof of the following is straightforward.

Proposition 6. Let F be a function defined on M. Then F is a basic simplicial
stack if and only if −F is a basic discrete Morse function.

Hence, all properties of basic discrete Morse functions hold true for basic
simplicial stacks, and conversely. In the sequel of this paper, we exemplify that
fact with gradient vector fields.

Relying on Prop. 6, we define the gradient vector field of a basic simplicial
stack F as the GVF of the DMF −F it corresponds to.

As stated in Th. 4, two basic DMF’s are Forman-equivalent if, and only
if, they induce the same GVF. In other words, at each GVF corresponds a
class of DMF’s. Using Proposition 6, we have a bijection between the space of
basic DMF’s and the space of basic simplicial stacks. This leads to the following
corollary:

Corollary 7. If F is a basic DMF defined on M, there exists a class BD of basic
DMF’s and a class SS of basic simplicial stacks, bijective to BD, such that each
F ′ in one of those classes has the same gradient vector field as the one of F .

4 The minimum spanning forest of a stack and the GVF

4.1 The forest induced by a GVF

Let F a basic simplicial stack. As any k-section of F is a simplicial complex, and
as F is 2-1, we have the following proposition:

Proposition 8. Let F be a basic simplicial stack. We have:

1. M−(F ) is a set of simplices of dimension d.
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2. Each minimum of F is made of a single simplex of M−(F ).
3. The set of edges of the dual graph of the minima is empty.

Let
−−→
grad be the GVF of F . Let

−→
ab be a vector of

−−→
grad such that dim(a) = d−1.

Since M is a pseudomanifold, the face a is included in two d-faces, the face b and
another d-face c. We write [

−→
ab] = {{b}, {c}, {b, c}} and we consider the graph:

G(
−−→
grad) = ∪{[

−→
ab] |

−→
ab ∈

−−→
grad, dim(a) = d− 1}. (5)

Let G+(
−−→
grad) be the union of G(

−−→
grad) and of G(M−(F )), where G(M−(F ))

is the dual graph of the minima of F .

Proposition 9. The graph G+(
−−→
grad) is a spanning forest relative to the dual

graph of the minima of F .

The proof of this proposition relies on the following fact: any critical simplices
of F that is not a minimum of F is of dimension strictly lower than d.

Proof: We first show that G+(
−−→
grad) spans all vertices of the dual graph GF :

as G+(
−−→
grad) contains the dual graph of the minima, we only need to show that

for any d-face σ of M, σ 6∈M−(F ), there is a pair (τ (d−1), σ) of simplices in
−−→
grad.

[19, Remark 2.42] states that, for any simplex τ , exactly one of the following
holds true:

(i) τ is the tail of exactly one vector
(ii) τ is the head of exactly one vector
(iii) τ is neither the tail nor the head of a vector; that is τ is critical

By Prop. 8, item 2, each minimum of F is made of a single simplex ofM−(F ).
By remark [19, Remark 2.42] above, it remains to show that, if σ is not a min-
imum of F , it is regular, and hence the head of exactly one vector. As F is
a simplicial stack, its k-section for k = F (σ) contains all the simplices ν such
that ν ⊂ σ. We have F (ν) ≥ F (σ). Because σ is not a minimum, there exists a
simplex τ (d−1) such that F (τ (d−1)) = F (σ) with τ (d−1) ⊂ σ. This implies that
(τ (d−1), σ) ∈

−−→
grad.

By Th. 3, G(
−−→
grad) does not contain any closed 1-path. Hence, G+(

−−→
grad) is a

forest relative to the dual graph of the minima of F .
Following Prop. 9, we say in the sequel that G+(

−−→
grad) is the forest induced

by the GVF
−−→
grad.

4.2 The forest induced by a GVF is the MSF

Proposition 10. Let F : M→ Z be a basic simplicial stack, and let
−−→
grad be the

GVF of F . Then, any gradient-path π = (π(k))k∈[0,N ] of the GVF is increasing,
that is, for any k ∈ [0, N − 1], F (π(k)) ≤ F (π(k + 1)).
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Proof: Let π some gradient-path of
−−→
grad, and let us assume without loss of

generality, that π(0) is a d-face of M. We know that the (d − 1)-face π(2k + 1)

is paired with the n-face π(2k + 2) in
−−→
grad for any k ∈ [0, (N − 1)/2− 1] (N is

odd), which means that F (π(2k+1)) = F (π(2k+2)). We also know that F is a
stack, and then F decreases when we increase the dimension of the face, so for
any k ∈ [0, (N − 1)/2− 1], F (π(2k)) ≤ F (π(2k + 1)).

Lemma 11 (MST Lemma [15,4]). Let G = (V,E, F ) be some edge-weighted
graph. Let v ∈ V be any vertex in G. A minimum spanning tree for G must
contain an edge vw that is a minimum weighted edge incident on v.

Theorem 12. Let F : M → Z+ be a basic simplicial stack, and let
−−→
grad be the

GVF of F . The forest induced by
−−→
grad is the unique MSF relative to M−(F ) of

the dual graph of F .

Proof: By Prop. 9, G+(
−−→
grad) is a spanning forest relative to M−(F ), the

minima of F . As F is a basic simplicial stack, hence 2-1, all edges of the dual
graph GF = (V,E, FG) of F have a unique weight, and the MSF of the dual
graph GF is unique. It remains to prove that the induced forest is of minimum
cost.

Since gradients do not exist on minima, let us consider a d-simplex σ ∈ V \
M−(F ). Then, by Prop. 9, there exists exactly one vector in

−−→
grad, which can be

written (τ∩σ, σ), with τ ∈ V . By the definition of
−−→
grad, we have F (τ∩σ) = F (σ).

Let θ ∈ V \ {τ} some d-simplex such that {τ, θ} belongs to E. Since F
is a simplicial stack, either the (d − 1)-face τ ∩ θ is critical (and F (τ ∩ θ) >
max(F (τ), F (θ))), or it is regular and τ ∩ θ is paired with θ in

−−→
grad (and F (θ) =

F (τ ∩ θ) > F (τ) by Proposition 10). Therefore, {σ, τ} is the lowest cost edge
incident to τ :

FG({σ, τ}) = F (τ ∩ σ) = F (σ) < min{FG({θ, τ}) ; {θ, τ} ∈ E, θ 6= σ} (6)

and thus belongs to the MST of F by Lemma 11.
As by Prop 9, the induced forest is a spanning forest relative to the dual

graph of the minima of F , it is then the minimum spanning tree of the dual
graph relative to the minima of F , which concludes the proof.

A summary of this result is depicted in Figure 1, which shows a piece of a
pseudomanifold of dimension 2.

Using Th. 2 and Th. 12, we can conclude that the cut of the forest induced
by the GVF is also a watershed-cut. This leads to the following corollary.

Corollary 13. Let F : M→ Z+ be a basic simplicial stack. Then, the watershed-
cut of F is provided equivalently by the MSF of F or by the GVF of F .

Fig. 2 illustrates this corollary: each tree of the induced forest is a connected
component of the dual graph, called a catchment basin of the watershed-cut.
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Fig. 1. Starting from a Morse function, we obtain its equivalent simplicial stack up to
the minus sign. For simplicity, the simplicial stack is valued by 0 on all d-simplices at
the border. Then, we deduce the GVF of the initial Morse function and its MSF. This
illustrates that the MSF is the forest induced by the GVF of both a discrete
Morse function and the corresponding simplicial stack.

5 Conclusion

In this paper, we highlight some links between several notions that exist in
Discrete Topology and in Mathematical Morphology:

– discrete Morse functions are equivalent, under some constraints, to simplicial
stacks;

– gradient vector fields in the Morse sense are applicable to simplicial stacks;
– and the gradient vector field of a simplicial stack induces the Minimum

Spanning Forest of its dual graph, leading to watershed-cuts.

In the extended version of this paper, we will relax the constraints for the equiv-
alence between discrete Morse function and simplicial stacks, and we will show
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Fig. 2. Illustration of the watershed-cut obtained from the GVF of a discrete Morse
function: we have a partition of the pseudo-manifold, such that each tree in the forest is
a basin of the watershed-cut. We also highlight the equality between the forest induced
by the GVF (in blue) and the MSF of the dual graph (in red).

how to use the watershed to define a purely discrete version of the well-known
Morse-Smale complex [12].

In the future, we will continue looking for strong relations linking Discrete
Morse Theory and Mathematical Morphology, with the goal of using morpho-
logical tools for topological data analysis. We also aim at making clearer the
relation between discrete topology and discrete Morse theory, following [18] that
was inspired by [5].
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