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Abstract

In discrete topology, discrete surfaces are well-known for their strong topological and regularity prop-
erties. Their definition is recursive, and checking if a poset is a discrete surface is tractable. Their
applications are numerous: when domain unicoherence is ensured, they lead access to the tree of
shapes, and then to filtering in the shape space (shapings); they also lead to Laplacian zero-crossing
extraction, to brain tumor segmentation, and many other applications related to mathematical mor-
phology. They have many advantages in digital geometry and digital topology since discrete surfaces
do not have any pinches (and then the underlying polyhedron of their geometric realization can be
parameterized). However, contrary to topological manifolds known in continuous topology, discrete
surfaces do not have any boundary, which is not always realizable in practice (finite hyper-rectangles
cannot be discrete surfaces due to their non-empty boundary). For this reason, we propose the three
following contributions: (1) we introduce a new definition of boundary, called border, based on the
definition of discrete surfaces, and which allows us to delimit any partially ordered set whenever it is
not embedded in a greater ambient space, (2) we introduce P-well-composedness similar to well-com-
posedness in the sense of Alexandrov but based on borders, (3) we propose new (possibly geometrical)
structures called (smooth) n-PCM’s which represent almost the same regularity as discrete surfaces
and that are tractable thanks to their recursive definition, and (4) we prove several fundamental
theorems relative to PCM’s and their relations with discrete surfaces. We deeply believe that these
new n-dimensional structures are promising for the discrete topology and digital geometry fields.
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1 Introduction

In the world of Algebraic Topology [2–5], several
discrete structures related to manifolds exist: n-
pseudo-manifolds [6] are homogeneous connected
n-dimensional simplicial complexes (see Figure 1),
combinatorial (or equivalently stellar [7]) mani-
folds are pure simplicial complexes (see Figure 2)
where the link of every vertex is either a com-
binatorial/stellar (n − 1)-ball (boundary case) or

a combinatorial/stellar (n − 1)-sphere (interior
case). In the context of partially ordered sets (or
posets), a counterpart of this manifolds exists and
is said to be a (discrete) n-surface [8]. In fact,
assuming that we work only with simplicial com-
plexes, there exists a classification theorem [6]
which tells us that every combinatorial n-manifold
is an n-surface, and every n-surface is an n-
pseudo-manifold.
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Fig. 1 The pinched sphere, well-known to be a pseudo-
manifold but not a combinatorial manifold. Indeed, the link
of the vertex S (at the pinch position), made of the closures
of the triangles {a, b, c} and {d, e, f}, is not connected.
Consequently, this link is not a 1-sphere and the studied
structure is not a combinatorial manifold. Note that the
geometrical representation of this structure is 2D and in a
3D ambient space. This figure is extracted from [1].

On these discrete structures, there exist dif-
ferent ways to compute the boundaries. Assuming
that we work with a complex [9, 10] of dimension
n, the boundary is the closure of the (n − 1)-
faces which are faces of only one n-face of the
complex. In Discrete Topology [11], it is common
to work with n-D Khalimsky grids (denoted by
Hn) where Najman and Géraud [12] define the
(combinatorial) boundary of some set X in Hn as
the intersection of the closure of this set and the
closure of its complementary in Hn. For a combi-
natorial manifold, as detailed above, the boundary
is the set of simplices of this manifold whose link
is a combinatorial (n−1)-ball. Now, if we consider
also continuous topology [13–15], the boundary
of a topological manifold [16] is this same space
minus its topological interior.

Many works are related to contours in compu-
tational geometry: see the works of Herman and
Udupa [17] where they introduced the cuberille
and the directed-contour representations, useful
for quick manipulation and display of objects in
3D volumes; these works led to fast surface track-
ing algorithms. We will recall the works of Arcelli
et al. [18] relative to contour tracing, the ones of
Martinez et al. [19] and of Kwok et al. [20] rel-
ative to contour-based thinning, and the ones of
Kerautret and Lachaud [21] where they proceed
to robust curvature estimation. We can also refer
to [6] coming from digital topology where Daragon
et al. develop frontier orders (a Marching Cubes-
like algorithm), based on discrete surfaces and to
barycentric subdivisions to nicely separate sets.
In [22], Alayrangues et al. show the equivalence

between (a subclass of) n-G-maps used in geomet-
ric modeling and computational geometry and the
discrete n-surfaces used in discrete topology. Note
that the term border is not new in discrete topol-
ogy, it has been introduced in [23] for n-G-maps
and its goal is to optimize homology computa-
tion, reason for which it satisfies that ∂∂ = 0.
These structures are routinely used in geometric
modeling and computational geometry [24].

Note that discrete surfaces are well-known in
Mathematical Morphology [25, 26] because they
are strongly related to the tree of shapes [12, 27,
28]: a sufficient condition to obtain a well-defined
tree of shapes is to have a well-composed [29–31]
image (that is, whose boundaries are discrete sur-
faces) defined on a unicoherent domain as input.
This leads then to many applications [32] as
image filtering in the shape-space [33], connected
filtering [34], object segmentation using context-
based energy estimators [35], hierarchical segmen-
tation [36], local feature detection [37], biomedical
image segmentation [38], Laplacian zero-crossing
extraction [39], blood vessels segmentation [40],
and so on.

The provided paper is strongly related to a
sequence of previously published articles [10, 30,
31, 41–48] since discrete surfaces are directly
related to well-composedness. Their goal was to
show the relations between the different flavours of
well-composedness or to provide algorithms able
to make a given set well-composed, always to ben-
efit of nice topological properties (no pinches, no
topological issues, separation properties, equiva-
lence of connectivities, and so on). However, in
all these works, we needed an ambient space to
be able to define well-composedness like Zn or
the Khalimsky grid (both being infinite spaces),
or even a discrete surface (which loop and has
no boundary). In other words, well-composedness
brings very nice topological properties but needs
strong constraints on the ambient space. To get
rid of these limitations, we propose a definition
of border which does not need any ambient space
and the one of well-composedness which follows
from it (P-well-composedness); these two concepts
need only a topology that can be easily obtained
just be choosing the inclusion relationship on the
studied poset, making it an Alexandrov topo-
logical space. Thanks to these new concepts, we
are then able to provide regular structures that
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Fig. 2 Two combinatorial manifolds of dimension 2. On the left side, for any vertex of this structure, the link of a vertex
in the structure is either a 1-sphere (interior), or a 1-ball (boundary). On the right side, for any vertex of this structure,
the link of a vertex in this same structure is a 1-sphere (so this structure has no boundary).

we call poset-based connected manifolds (shortly
n-PCM’s), which show the same regularity prop-
erties as discrete surfaces but which have a border.
Several fundamental theorems follow from these
PCM’s and show that they might become in the
future a powerful tool in discrete topology and
digital geometry.

So, the plan is the following. Section 2 recalls
the necessary material in axiomatic digital topol-
ogy. Section 3 introduces our definitions of borders
in a poset and Section 4 introduces our defini-
tions of P-well-composedness, of n-PCMs, and of
smooth n-PCMs. Section 5 presents our main the-
orems. Section 6 shows that joining PCMs and
surfaces lead to PCMs, Section 8 concludes the
paper, and Section A contains the formal proofs
of our main theorems.

2 Axiomatic digital topology

For a, b two integers, we recall that Ja, bK is defined
as the intersection of [a, b] with Z, that is, it is the
set of integers greater than or equal to a and lower
than or equal to b.

2.1 Basics

For A and B two sets of arbitrary elements, A×B
denotes the Cartesian product of A and B and is
defined as {(a, b) ; a ∈ A, b ∈ B}.

Definition 1 (Binary and order relations [49]) A
binary relation R defined on a set of arbitrary elements
X is a subset of X × X, and we denote by x ∈ R(y)
or equivalently x R y the fact that (x, y) ∈ R. An
order relation is a binary relation R which is reflexive,
antisymmetric, and transitive.

We denote by R� the binary relation on X
defined such that, ∀x, y ∈ X,

{
x R� y

}
⇔

{x R y and x 6= y}. A set X of arbitrary elements
supplied with an order relation R on X is called
a poset and is denoted by (X,R), or shortly |X|
when no ambiguity is possible.

Definition 2 (Topology) Let X be a set of arbitrary
elements, and let U be a set of subsets of X. We say
that U is a topology on X if ∅ and X are elements of
U , if any union of elements of U are elements of U , and
if any finite intersection of elements of U is an element
of U . X supplied with U is denoted (X,U) or shortly
X and is called a topological space.

Definition 3 (Open and closed sets) The elements of
U are then called the open sets of X and any comple-
ment of an open set in X is called a closed set of X.
We say that a subset of X which contains an open set
containing a point x is a neighborhood of x in X.

A topological space X is said (topologically)
connected if it is not the disjoint union of two non-
empty open sets.
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Definition 4 (T0-spaces) A T0-space [50–52], let say
X, is a topological space which satisfies the T0 axiom
of separation: for two distinct elements x, y of X, there
exists a neighborhood of x inX which does not contain
y or a neighborhood of y in X which does not contain
x.

Definition 5 (Discrete T0-spaces [53, 54]) A discrete
T0-space is a T0-space space where any intersection of
open sets is an open set.

Let R : X ×Y → {0, 1}. We define the inverse
relation R−1 of R as the relation R−1 : Y ×X →
{0, 1} satisfying bR−1a iff aRb is true.

Remark 1 (From posets to topological spaces (Th.
6.52, p. 28 [50])) Posets can be considered as topolog-
ical spaces in the sense that we can induce a topology
on any poset based on its order relation: for a poset
(X,R), the corresponding closed sets are the sets
C ⊆ X such that ∀x ∈ C, R(x) is included in C.
Open sets are the sets U such that for any h ∈ U ,
R−1(h) is included into U . Posets can be seen as dis-
crete T0-spaces and are generally called Alexandrov
(topological) spaces [54].

Definition 6 (Combinatorial closures, openings, and
neighborhoods) On an Alexandrov space |X| =
(X,R), for any element h ∈ X, we define respectively
the combinatorial closure of h in X: αX(h) := {h′ ∈
X ; h′ ∈ R(h)}, its inverse operator called the com-
binatorial opening of h in X: βX(h) := {h′ ∈ X ; h ∈
R(h′)}, and the neighborhood of h in X:

θX(h) := {h′ ∈ X ; h′ ∈ R(h) or h ∈ R(h′)},

which leads to θX(h) = αX(h) ∪ βX(h).

Remark 2 (“Adjacency” in T0 spaces.) Let a, b be two
elements of X supplied with the order relation R.
When the property aRb holds with R =⊆, we mean
that “a is included in b”, which is a form of adjacency
(imagine a 0-face {0} contained in the 1-face {0, 1}).
However, it is not symmetrical (the 1-face {0, 1} is
not contained in the 0-face {0}). In other words,“a is
included in b” does not mean that we have “b included
in a”. Indeed, both properties are true only when a
and b are equal. All this is related to the T0 separation

axiom which is true for Alexandrov spaces like posets:
for every two different elements a, b chosen in the poset
X, their neighborhood are different, we say that they
are distinguishable. At the contrary, adjacency is gen-
erally symmetrical. For two elements a, b ∈ Zn, a and
b are said to be 2n-adjacent, shortly c2n, when they
differ from one coordinate only, and that this differ-
ence is equal to one. These same elements are said to
be (3n − 1)-adjacent, shortly c3n−1, when they differ
from at least one coordinate, and that the maximum
of the absolute differences of these two coordinates is
equal to one. In this discrete setting, saying that a and
b are adjacent is equivalent to say that b and a are
adjacent. That is why, in Alexandrov space, we use the
θ operator which satisfies a ∈ θ(b) iff b ∈ θ(a), since
θ = α

⋃
α−1 = α ∪ β. When considering the operator

θ�, then a ∈ θ�X(b) is equivalent to b ∈ θ�X(a), and
this two properties lead to a 6= b. Then, the property
“a ∈ θ�X(b)” can be read “a is adjacent to b in X”.
However, for sake of simplicity, we will use Daragon
notations [1] (α, β and θ).

Remark 3 Thanks to the properties explained before,
for any h ∈ X, αX(h) will be a closed set in X
and each βX(h) will be an open set in X. In other
words, combinatorial and topological definitions are
equivalent in Alexandrov spaces.

The operators α, β and θ are also defined for
sets: ∀S ⊆ X, αX(S) := ∪p∈SαX(p), βX(S) :=
∪p∈SβX(p), and θX(S) := ∪p∈SθX(p), where
αX(S) is closed in X and β(S) is open in X thanks
to the properties exposed before.

Remark 4 Let A,B two subsets of a same poset X.
Due to the symmetry of the operator θ, we obtain
that θX(A) ∩ B 6= ∅ is equivalent to A ∩ θX(B) 6= ∅.
Indeed, if we assume that θX(A) ∩ B is non empty,
there exists a ∈ A such that θX(a) ∩ B 6= ∅. There
exists then b ∈ B∩θX(a). Since b ∈ θX(a), a ∈ θX(b),
and then θX(b)∩A 6= ∅, then θX(B)∩A 6= ∅. For the
inverse implication, let us swap A and B in the initial
formula. We will obtain the converse implication. So,
θX(A) ∩B 6= ∅ is equivalent to A ∩ θX(B) 6= ∅.

Note that the operators α and β are idempo-
tent : α ◦ α = α and β ◦ β = β. However, the
neighborhood operator is not idempotent.
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Definition 7 (Suborder [49]) Assuming that S is a
subset of the domain X of a poset |X| = (X,αX), the
suborder of |X| relative to S is the poset |S| = (S, αS)
with, for any h ∈ S, αS(h) = αX(h) ∩ S, βS(h) =
βX(h) ∩ S, and θS(h) = θX(h) ∩ S.

Definition 8 (Pointed closures, openings, and neigh-
borhoods) Let X be some poset and let h be some

of its elements. Referring to the notation R� detailed
before, we define the pointed closure of h in X:

α�X(h) = αX(h) \ {h},

the pointed opening of h in X:

β�X(h) = βX(h) \ {h},

and the pointed neighborhood of h in X:

θ�X(h) = θX(h) \ {h}.

Definition 9 (Paths [49]) We call path into a set S ⊆
X a finite sequence (p0, . . . , pk) such that for all i ∈
J1, kK, pi ∈ θ�S (pi−1). We say that a digital set S ⊆ X
is path-connected [49] if for any points p, q in S, there
exists a path into S joining them. Path-connectedness
and topological connectedness are equivalent [49, 54]
in |S| like in any Alexandrov space.

Definition 10 (Connected components) The greatest
(path-)connected set in the digital set S ⊂ X con-
taining p ∈ X is called the connected component [50]
of S containing p and we denote it by CC(S, p); by
convention, when p does not belong to S, we write
CC(S, p) = ∅. Any non-empty subset of a poset S
which can be written CC(S, p) for some p ∈ S is called
a connected component of S. The set of connected
components of a poset S is denoted by CC(S).

Definition 11 (Rank) The rank of an element h in
the suborder |S| of X is denoted by rk(h, |S|) and
is defined in a recursive fashion: it is equal to 0 if
α�S (h) = ∅ and to maxx∈α�

S (h)(rk(x, |S|)) + 1 other-

wise. The rank of |S| is denoted by rk(|S|) and is equal
to the maximal rank of its elements.

An element h of S such that rk(h, |S|) = k is
called a k-face [49] of S.

Definition 12 (CF-orders) Let |S| be a suborder of a
poset X, then |S| is said to be countable if S is count-
able. Also, |S| is called locally finite if for any element
h ∈ S, the set θS(h) is finite. When |S| is countable
and locally finite, it is said to be a CF-order [49] in X.

Fig. 3 A poset |S2| = (S2,⊆) is depicted on the left side; it
is made of the set {a, b, c, d, e, f} of faces and supplied with
a relation order⊆: f and e, represented by two half-spheres,
contain both the two half-arcs d and c, which contain both
the points a and b. On the Hasse diagram, showing the
inclusion relationships between the elements of S2 by using
arrows, of |S2| is plotted, we see that the maximal rank
of its elements is 2, thus this is a poset of rank 2. Now,
this poset is connected, and for any element h ∈ S2, the
property “θ�S2

(h) is a 1-surface” is satisfied, so |S2| is a

2-surface. This figure has been extracted from [1].

Definition 13 (Discrete surfaces) Let |S| be a CF-
order in a poset |X|; |S| is said to be a (−1)-surface
if S = ∅, or a 0-surface if S is made of two different
faces x, y ∈ X such that x 6∈ θ�(y), or a k-surface,
k ∈ J1, nK, if |S| is connected and for any h ∈ S,

|θ�S (h)| is a (k − 1)-surface.

Remark 5 (Discrete surfaces examples and coun-
ter-example) Some examples of discrete surfaces are

Fig. 4 The geometric realization of a discrete 2-surface
drawing a 2-torus.
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depicted here: see Figure 3 for a poset of rank 2, and
see Figure 4 for a (geometric) 2-torus in a 3D space.
In both cases, for any face h in the described poset
X, the poset |θ�X(h)| is a 1-surface (a simple closed
curve). An example of poset which is not a 2-surface
in the pinched sphere (see Figure 1), where we obtain

at the pinch p that |θ�X(p)| is made of two separated
1-surfaces, and thus it is not a 1-surface (since it is not
connected).

Definition 14 (Khalimsky grids) Let H1
0 be the set

{{x} ; x ∈ Z}, let H1
1 be the set {{x, x+1} ; x ∈ Z}.

We define as 1D Khalimsky grid the set H1 = H1
0∪H1

1

and as n-D Khalimsky grid:

Hn = {h1 × · · · × hn ; ∀i ∈ [1, n], hi ∈ H1}.

Intuitively, Khalimsky grids are cubical grids
supplied with a topology. For example, in 3D, we
consider all the unitary 3D cubes whose centers
belong to Z3, and we take into account not only
the cubes but also their 2D faces, their 1D edges,
and their 0D corners. This way, we obtain a set of
geometrical objects. Now, if we consider an oper-
ator α which provides for any geometrical object
all the geometrical objects included into it, we
have defined a topological operator called “clo-
sure”. By grouping this set of geometrical objects
and this closure operator, we have built the so
called Khalimsky grid.

According to Evako et al. [55], the n-D Khal-
imsky grid |Hn| is an n-surface. Examples of
2-surfaces are given in Figures 3 and Figure 4.

Fig. 5 Joins of posets: on the top, we can observe that
joining two 0-surfaces lead to a 1-surface, that can be rep-
resented as a circle; on the bottom, we observe that the join
of a 0-surface with a 1-surface leads to a 2-surface, that can
be represented as a sphere. This figure is extracted from [1].

Fig. 6 A plain map from H1 to H1.This figure has been
extracted from [12].

Definition 15 (Joins) Let |X| := (X,RX) and |Y | :=
(Y,RY ) be two posets; it is said that |X| and |Y | can
be joined [49] if X ∩ Y = ∅. If |X| and |Y | can be
joined, the join of |X| and |Y | is denoted |X|∗|Y | and
is equal to:

(X ∪ Y,RX ∪RY ∪X × Y ).

Some examples of join operations are described
in Figure 5.

Proposition 1 ([1]) Let |X| and |Y | be two posets
that can be joined. The poset |X|∗|Y | is an (n + 1)-
surface with n ∈ Z iff there exists some integer p ∈
J−1, n+ 1K such that |X| is a p-surface and |Y | is an
(n− p)-surface.

Proposition 2 (Property 10 in [1]) Let |S| be a sub-
order of an n-surface |X| with n ≥ 0. Then |S| is

an n-surface iff for any h ∈ S, |α�S (h)| is a (k − 1)-

surface and |β�S (h)| is an (n − k − 1)-surface with
k = rk(h, |S|).

Proposition 3 ([47, 48]) When A,B are both n-
surfaces, with n ≥ 0, and satisfy A ⊆ B, then A = B.

Definition 16 (Separated/disjoint unions) Let A,B
be two subsets of a poset X. We call disjoint union of
A and B the set A ∪B, assuming that A ∩B = ∅; we
will denote it by A tB. We call separated union of A
and B the set A∪B, assuming that A∩θX(B) = ∅ (or
equivalently B∩θX(A) = ∅). A separated union is then
a disjoint union, but the converse is not necessarily
true.
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2.2 Plain maps

This subsection is not necessary for the proofs, it
is only devoted to give the intuition of what is
an image called a plain map (in a formal setting,
many definitions are necessary to be able to define
a plain map but it is not the goal of this paper).

Plain maps are discrete functions with continu-
ity properties [12, 56] (see Figure 6). In particular,
they satisfy the intermediate-value theorem. They
can be defined as mappings from any poset to H1

but also to Z since we can easily define a bijection
from H1 to Z.

Plain maps are generally continuous repre-
sentations of discrete images obtained thanks to
interpolations/immersions [12, 31, 46, 57].

Finally, starting from any discrete mapping
defined on discrete (topological or not) space, we
will be able to compute their tree of shapes (when
some particular properties are satisfied).

2.3 Threshold sets and the tree of
shapes

Remark 6 As said before, we can define a bijection
between Z and H1. Let us assume the following order
in H1: · · · < {0} < {0, 1} < {1} < {1, 2} < . . . . Now
we define f : H1 → Z : h → 2 ∗ mean(h). This bijec-
tion preserves the order and then is an isomorphism
between H1 and Z. This means that they are isomor-
phic and we can identify them. In other words, instead
of speaking about H1, we can speak about Z for the
space value of the plain maps.

For any λ ∈ Z, we call open upper/lower
threshold set of a plain map U : X  Z the sets:

[U B λ] = {x ∈ X ; ∀v ∈ U(x), v > λ},

[U C λ] = {x ∈ X ; ∀v ∈ U(x), v < λ}.

In the same manner, for any λ ∈ Z, we call
closed upper/lower threshold set of a plain map
U : X  Z the sets:

[U D λ] = {x ∈ X ; ∃v ∈ U(x), v ≥ λ},

[U E λ] = {x ∈ X ; ∃v ∈ U(x), v ≤ λ}.

Fig. 7 The tree of shapes (on the right side) of the image
drawn on the left side is the fusion of the min-tree (third
column) whose leaves are minima and the max-tree (sec-
ond column) whose leaves are maxima. The tree of shapes
is a natural way to decompose a gray level image into
components named shapes. This figure has been extracted
from [58].

These thresholds sets satisfy the following
property for any λ ∈ Z:

[U B λ] t [U E λ] = X = [U C λ] t [U D λ].

Remark 7 Let X be some poset and let U : X  Z be
a plain map. The closed threshold sets of U are closed
under inclusion. Indeed, for any h ∈ [U E λ], there
exists some value v ∈ Z such that U(h) 3 v ≤ λ. For

any face h′ ∈ α�X(h), U(h′) ⊇ U(h) by property of a
plain map, so U(h′) contains v satisfying v ≤ λ. So,
h′ ∈ [U E λ]. The same reasoning applies for the dual
closed threshold set.

For a given λ ∈ Z, we can then define the
upper/lower shapes of U of level λ:

SBλ = {Sat(Γ, p∞) ; Γ ∈ CC([U B λ])} ,

SCλ = {Sat(Γ, p∞) ; Γ ∈ CC([U C λ])} ,
with Sat(., p∞) the saturation operator (also
called the cavity fill-in operator) defined as:
Sat(Γ, p∞) = X \ CC(X \ Γ, p∞) where p∞ ∈ X is
the exterior point.

Definition 17 (Combinatorial boundary [12]) Let Y
be some poset and let X ⊆ Y be some suborder of Y .
Then we define the combinatorial boundary of X the
term:

∂X = αY (X) ∩ αY (Y \X).

Definition 18 ([12]) Let U : X  Z be an plain
map on X. We say that U is Alexandrov well-composed
(AWC) when its combinatorial boundary is a sepa-
rated union of discrete (n− 1)-surfaces.
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We recall that a tree is a set T of arbitrary sets
where for any A,B ∈ T, A and B are disjoint or
nested.

Theorem 4 ([12]) Let X be a unicoherent discrete
topological space. Let U be an AWC plain map on X,
then the set of shapes T(U) = {SCλ}λ ∪ {SBλ}λ is a
tree.

An example of tree of shape is depicted in the
continuous case in Figure 7 to give the intuition
of how it is built.

3 Borders, P-well-composed-
ness, n-PCMs and smooth
n-PCMs

3.1 Border and interior

Fig. 8 Differentiation between border and interior points
in any poset X of rank 2: the red faces h admit a neighbor-
hood |θ�X(h)| which is not a 1-surface, thus they belong to
the border of the poset. At the contrary, the blue faces h′

admit as neighborhood |θ�X(h′)| a simple closed curve, that
is, a 1-surface. Consequently, they belong to the interior of
the poset.

Let us now propose our definition of border in
partially ordered sets.

Definition 19 (Border and Interior) LetX be a poset
of rank n ≥ 0. We define the border of X as the set:

∆X =
{
h ∈ X ;

∣∣∣θ�X(h)
∣∣∣ is not a (n− 1)-surface

}
.

Let X be a poset of rank n ≥ 0. The interior of X is
defined as the set:

Int(X) := X \∆X.

Fig. 9 Comparison between the boundary of a combinato-
rial manifold and the border of a poset. As depicted on the
2D combinatorial manifold on the left side, the 0-vertices
admit a link which is either a simple closed curve (the blue
points belong then to the interior of the manifold), or a
simple (not closed) path (the red points belong then to the
boundary of the manifold). The principle of border in a 2D
poset is almost the same: on the right side, we have a poset
where the vertices in blue admit as neighborhood a simple
closed curve, that is, a 1-surface (they belong then to the
interior of the poset); however, the vertices in red do not
admit as neighborhood a simple closed curve but a simple
path (they belong then to the border of the poset). As we
will see later, the notion of border concerns not only the
vertices but all the faces of the poset.

We show how to differentiate interior points
from border points in Figure 8. We provide also
a comparison of the computation of a border of
a poset with the boundary of a combinatorial
manifold in Figure 9.

Fig. 10 Different types of boundaries (in red) on a same
poset. In the raster scan order: a poset represented in the
2D Khalimsky grid, its border according to our defini-
tion, its homological boundary α(X′) where X′ is made of
the 1-faces belonging to only one 2-face of the poset, its
combinatorial boundary α(X) ∩ α(H2 \X), its topological
boundary α(X) \ Int(X).

An example of border is depicted in Figure 10.
The detailed computation of the border described
in this paper is given in Figure 11.

Remark 8 When |X| is a suborder of the poset |Y | of
rank n ≥ 0, the border of (respectively the interior of)
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Fig. 11 The different steps used to compute the border
of a given poset of rank 2: when the neighborhood (see the
black little squares) of a face (encircled in red or blue) is
not a 1-surface (i.e. a simple closed curve), then this face
belongs to the border; otherwise, it does not.

Fig. 12 The border of a poset |X| suborder or a greater
poset |Y | is not always closed. The poset |Y | is made of
the nine faces presented above and is supplied with the
inclusion relationship. The poset |X| is depicted in blue,
has a rank of 1, and thus the elements of X which belong
to ∆X are the faces h satisfying that |θ�X(h)| is not a 0-
surface. ∆X is then made of the two 1-faces of Y . ∆X is
not closed under inclusion in Y .

|X| is not necessarily closed (respectively open) in |Y |
(see Figure 12).

Remark 9 When X is an n-surface, then ∆X = ∅.

3.2 Coherence

Definition 20 We say that a poset |X| is coherent
when it is empty (case n = −1) or when for any h ∈ X,
we have the following properties:{

rk
(∣∣∣θ�X(h)

∣∣∣) = rk(|X|)− 1,

and |θ�X(h)| is coherent.

Remark 10 Discrete n-surfaces are coherent posets.

3.3 PWCness

Definition 21 (P-well-composedness) Let |X| be a
poset. We say that this poset is P-well-composed
(PWC) when its border is a separated union of discrete
(n− 1)-surfaces.

Note that this definition is close to the well-
composedness in the sense of Alexandrov (AWC-
ness) [48] (AWC), the difference being that AWC-
ness is related to combinatorial boundaries (which
do need an ambient space) whereas P-well-com-
posedness is related to borders (which do not need
an ambient space).

Proposition 5 Let Y be a discrete n-surface, and X
be a suborder of Y of rank n which is closed under
inclusion. Then, ∆X = ∂X. In other words, X is P-
well-composed iff it is AWC.

Proof: Let h be some element of ∆X, that
is, |θ�X(h)| is not an (n − 1)-surface. Since X is
closed under inclusion, we have |α�X(h)| = |α�Y (h)|,
which is a (dim(h) − 1)-surface. Thus, the fact
that |θ�X(h)| is not an (n− 1)-surface implies that
|β�X(h)| is not an (n− dim(h)− 1)-surface. At the
contrary, |β�Y (h)| is an (n − dim(h) − 1)-surface
since Y is an n-surface. In other words, β�X(h) (
β�Y (h) with X ⊆ Y . This implies that there exists
some y ∈ β�Y (h)\β�X(h) = β�Y \X(h). Consequently,

h belongs at the same time to αY (X) and to
αY (Y \X), and thus belongs to ∂X.

Conversely, when h is an element of ∂X, there
exists x ∈ X and y ∈ Y \ X such that h ∈
αY (x) ∩ αY (y). Thus, x and y belong to β�Y (h),
with y 6∈ β�X(h). Since |β�Y (h)| is an (n−dim(h)−
1)-surface and β�X(h) ( β�Y (h), |β�X(h)| is not an
(n − dim(h) − 1)-surface (by Proposition 3). The
direct consequence is that |θ�X(h)| is not an (n−1)-
surface, that is, h belongs to ∆X. �

Definition 22 Let X be a poset. We say that a plain
map U : X  Z is P-well-composed when all its
(closed) threshold sets are P-well-composed.

Proposition 6 Let X be a discrete n-surface. The
plain map U : X  Z is P-well-composed iff it is
well-composed in the sense of Alexandrov.

Proof: When U is PWC, all its closed thresh-
old sets are PWC, that is, for any λ ∈ Z, ∆[U Dλ]
and ∆[U E λ] are separated unions of discrete
(n−1)-surfaces. Since [UDλ] and [UEλ] are closed
under inclusion, it is equivalent by Proposition 5
to say that ∂[U D λ] and ∂[U E λ] are made of
separated discrete (n− 1)-surfaces. Since we have
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the following properties: ∂[U D λ] = ∂[U C λ] and
∂[U E λ] = ∂[U B λ], AWCness and PWCness are
then equivalent. This concludes the proof. �

As a corollary of Theorem 4, we obtain the
following proposition, which shows that the results
from [12] hold for PWC plain maps.

Proposition 7 Let X be a unicoherent discrete topo-
logical space. Let U be a PWC plain map on X, then
the set of shapes T(U) = {SCλ}λ ∪ {SBλ}λ is a tree.

Furthermore, it has been proven in [48] that
AWCness and digital well-composedness (DWC-
ness)1 are equivalent on n-D cubical grids or
complexes. This leads directly to the following
proposition.

Proposition 8 Let n ≥ 1 be some integer. The plain
map U : Hn  Z is P-well-composed iff it is dig-
itally well-composed. In other words, PWCness and
DWCness are equivalent on cubical grids.

3.4 Remarkable property of the
border

Proposition 9 Let X be a coherent poset of rank
n ≥ 0, and h be an element of ∆X. Then we have the
following remarkable property:

∆θ�X(h) ⊆ θ�∆X(h).

In other words, the border of the neighborhood is
included in the neighborhood of the border.

Proof: Let h be an element of ∆X, and h0

be an element of ∆(θ�X(h)) (and then h0 is an ele-
ment of X). We want to show that h0 belongs

to ∆X. By Definition 19,
∣∣∣θ�
θ�X(h)

(h0)
∣∣∣ is not a(

rk
(∣∣θ�X(h)

∣∣)− 1
)

-surface, that is,
∣∣∣θ�
θ�X(h)

(h0)
∣∣∣ is

not a (rk (X)− 2) -surface, by coherence of X.
Now let us assume that h0 does not belong to
∆X, then

∣∣θ�X(h)
∣∣ is a (rk(X) − 1)-surface. How-

ever, h0 belongs to θ�X(h), then
∣∣∣θ�
θ�X(h)

(h0)
∣∣∣ is a

(rk(X) − 2)-surface. We obtain a contradiction.

1A finite subsetX ⊂ Zn is said to be digitally well-composed
(DWC) when c2n- and c3n−1-connectivities are locally equiv-
alent, that is, X does not contain any primary or secondary
critical configuration (see [43] for more details).

Then h0 ∈ ∆X, h0 ∈ θ�X(h) ∩ ∆X, that is,
h0 ∈ θ�∆X(h). This concludes the proof. �

h

Fig. 13 The neighborhood in the border is not necessarily
equal to the border of the neighborhood, even for n-PCMs.
Here, we have a coherent 2-PCM depicted in gray with
∆X = X, and θ�∆X(h) which is equal to the set of gray

faces contoured in green and red, when ∆θ�X(h) is equal to
the set of the two gray vertices contoured in green.

The converse of Proposition 9 is not true (see
Figure 13). Indeed, the depicted poset X is a 2-
PCM since its is connected and for any h ∈ X,∣∣θ�X(h)

∣∣ is a 1-PCM. Furthermore, ∆X = X,

which leads to ∆θ�X(h) ( θ�∆X(h) for any face h
of X. This leads to the following remark.

Remark 11 Let X be a coherent poset of rank n ≥ 0.
The fact that X is an n-PCM does not imply that
∆θ�X(h) is equal to θ�∆X(h) for any h ∈ ∆X.

3.5 Topology of borders and
interiors

Property 10 Let Y be an n-surface with n ≥ 0, and
let X be a subset of Y of rank n. When X is closed in
Y , then ∆X is closed in Y .

Proof: Let a be an element of ∆X, which
means that |θ�X(a)| is not an (n − 1)-surface.
In other words, |β�X(a)| is not an (n − rk(a) −
1)-surface. Let b be an element of α�X(a). We
assume:

b 6∈ ∆X, (P )

then |θ�X(b)| is an (n−1)-surface, and then |β�X(b)|
is an (n− 1− rk(b))-surface. However, a ∈ β�X(b),

which leads to the fact that
∣∣∣θ�
β�
X(b)

(a)
∣∣∣ is an (n−
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rk(b)− 2)-surface. Also,∣∣∣θ�β�
X(b)

(a)
∣∣∣

=
∣∣∣β�β�

X(b)
(a)
∣∣∣ ∗ ∣∣∣α�β�

X(b)
(a)
∣∣∣

=
∣∣∣β�X(a) ∩ β�X(b)

∣∣∣ ∗ ∣∣∣α�X(a) ∩ β�X(b)
∣∣∣

=
∣∣∣β�X(a)

∣∣∣ ∗ ∣∣∣β�α�
X(a)

(b)
∣∣∣ .

Since
∣∣∣θ�
β�
X(b)

(a)
∣∣∣ is an (n − rk(b) − 2)-surface

and
∣∣∣β�
α�

X(a)
(b)
∣∣∣ is a (rk(a)− rk(b)− 2)-surface, we

obtain by Proposition 2 that
∣∣β�X(a)

∣∣ is a k-surface
satisfying:

(n− rk(b)− 2) = k + (rk(a)− rk(b)− 2) + 1,

then k = n− rk(a)− 1. This contradicts (P ), then
b ∈ ∆X, and then ∆X is closed in Y . �

Property 11 Let Y be an n-surface with n ≥ 0, and
let X be a subset of Y of rank n. The set Int(X) is
open in Y .

Proof: Let h be an element of Int(X). By
definition,

∣∣θ�X(h)
∣∣ is an (n − 1)-surface since the

rank of X is n. Because X ⊆ Y , θ�X(h) ⊆ θ�Y (h).
However,

∣∣θ�X(h)
∣∣ and

∣∣θ�Y (h)
∣∣ are nested (n− 1)-

surfaces, thus they are equal by Proposition 3.
Because

∣∣θ�X(h)
∣∣ =

∣∣θ�Y (h)
∣∣, ∣∣β�X(h)

∣∣ =
∣∣β�Y (h)

∣∣.
Since β�X(h) ⊆ X, then β�Y (h) ⊆ X. This last
property being true for each h ∈ Int(X), Int(X)
is an open set in Y . �

Remark: Int(X) is not always the greatest
open set in Y contained in X. As counter-example,
we can take the set X made of a 2-face h in
Y = H2. At this moment, ∆X = X, because
|θ�X(h)| is a (−1)-surface, and then not a 1-surface.
Then, Int(X) = ∅. However, the set X is open in
H2 since βY (h) = {h} ⊆ X.

4 Introducing n-PCMs and
smooth n-PCMs

Let us now introduce our definition of poset-
based connected n-manifolds (shortly n-PCM),
made possible thanks to the definition of border
presented before.

Fig. 14 An example of 2-PCM whose geometric realiza-
tion draws a Möbius strip. Let us call X this poset, we can
remark that for any face h ∈ X, either h belongs to Int(X)
and |θ�X(h)| is a 1-surface, or h belongs to ∆X and |θ�X(h)|
is a 1-PCM. Additionally, the border of X is a simple closed
curve (a 1-surface), so X is also a smooth 2-PCM.

Definition 23 (n-PCM) Let X be a poset of rank
n ≥ −1. We say that X is a (−1)-PCM when it is
the empty order. We say that X is a 0-PCM when X
can be written {h} with h an arbitrary element; and
we say that X is an n-PCM, with n ≥ 1, when X is

connected, ∆X 6= ∅, and for any h ∈ X, either
∣∣∣θ�X(h)

∣∣∣
is an (n− 1)-surface (and h does not belong to ∆X),
or it is an (n− 1)-PCM (and h belongs to ∆X).

Please see Figure 14 for an example of 2-PCM.

Proposition 12 The only poset being at the same
time a PCM and a discrete surface is the empty order.
In other words, this set is isomorphic to a −1-surface
and to a −1-PCM.

Proof: Let X be a poset which is for some
k ≥ −1 a k-surface and for some k′ ≥ −1 a k′-
PCM. Since the border of any discrete surface is
the empty set, we have the property: ∆X = ∅. As
a k′-PCM, ∆X = ∅ implies that k′ ∈ {−1, 0}, so
either X is a −1-PCM and it is the empty set, or
it contains one element and it is a 0-PCM. It can-
not be a 1-PCM since no discrete surface is made
of only one element (either a discrete surface is
empty, or it contains at least two elements). Con-
sequently, X is a −1-PCM, and it is the empty
order. The proof is done. �

Remark 12 When X is an n-PCM with n ≥ 1, then
∆X is the set of elements h of X satisfying that∣∣∣θ�X(h)

∣∣∣ is an (n− 1)-PCM.
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Proposition 13 A discrete n-surface and an n-PCM
contain at least n+ 1 elements.

Proof: Let us treat the discrete surface case.
We start from the case k = −1 which is naturally
satisfied. Then, we can prove by induction that if
a k-surface contains at least k+1 elements, a k+1-
surface contains at least k + 2 elements: let X be
a k+1-surface, then for any h ∈ X, |θ�X(h)| is a k-
surface and contains at least k+ 1 elements. Since
X contains {h} and θ�X(h) (two terms whose union
is disjoint), X contains at least k+1 elements. The
proof is done for the discrete surfaces. Concerning
the PCM’s, the reasoning is the same. The proof
is done. �

Proposition 14 (n = 0) When X is a poset of rank
0, then X is a 0-PCM when its cardinality is equal
to 1, a 0-surface when its cardinality is equal to 2,
and neither a discrete surface nor a PCM when its
cardinality is greater than 2.

Proof: It is the direct consequence of the defi-
nitions of what are 0-surfaces and 0-PCM’s. �

Proposition 15 (n = 1) A simple open path is a
1-PCM and conversely. Furthermore, a simple closed
curve is a 1-surface and conversely.

Proof: Let us treat the case of 1-PCM’s.
Let π be some simple open path, then it is

connected (by construction), and each end point
e1, e2 ∈ π satisfies that |θ�π (ei)| is a 0-PCM for i ∈
{1, 2}. Also, any element h of π \ {e1, e2} satisfies
that |θ�π (h)| is a 0-surface. So, a simple open path
is a 1-PCM.

Let X be a 1-PCM. It is connected by defini-
tion. Moreover, ∆X 6= ∅. Let h0 be an element of
∆X. By definition of a 1-PCM, θ�X(h0) is made
of one element that we call h1. We also have that
|θ�X(h1)| is either a 1-PCM (in this case, X is
made of two elements and draws a simple open
path) or a 0-surface. When |θ�X(h1)| is a 0-surface,
since h0 ∈ θ�X(h1), there exists one and only one
other element h2 of X which belongs to θ�X(h1),
and h0 and h2 are not neighbors. If |θ�X(h2)| is
a 0-PCM, we reached the other end point h2 of

X = {h0, h1, h2} which is then a simple open
path. If |θ�X(h2)| is a 0-surface, we can re-iterate
as before until we reach the other end point of X.
This point exists since X is finite. Moreover, X is
simple as a path since no self-crossing can occur:
for any h ∈ X, the cardinality of |θ�X(h)| is lower
than or equal to two. Last, X is open as a path
since it owns two end points. We have then proved
that X is a simple open path.

Let us now treat the case of discrete 1-surfaces.
Let π0 be a simple closed curve, then for any

h ∈ π0, we have θ�π0
(h) is made of two elements

of π0 which are not neighbors, so |θ�π0
(h)| is a 0-

surface. Furthermore, π0 is connected, so it is a
1-surface.

When X is a 1-surface, we start from any ele-
ment of h0 ∈ X. Since |θ�X(h0)| is a 0-surface,
it contains two elements h−1 and h1 which are
not neighbors. Thus, either h−1, h1 ∈ αX(h0), or
h−1, h1 ∈ βX(h0). We consider the first case, since
the reasoning for the other case is the same. We
know that |θ�X(h1)| is a 0-surface and that h0 ∈
β�x (h1), thus h2 belongs to β�x (h1). We can remark
that h−1 is different from h2: if h−1 = h2, then
h2 ∈ α�X(h0) so they are neighbors and we obtain
a contradiction. So, h−1 6= h2. Now, two cases
are possible: either the 0-surface |θ�X(h2)| contains
h−1 and we close the loop (we obtain a simple
closed curve), or it does not contain h−1 and there
exists h3 in θ�X(h2) then equal to {h1, h3}. We con-
tinue this “propagation” until we reach h−1, which
necessarily happens since X is finite by hypothe-
sis, leading to a closed curve. This closed curve is
the only component of X since X is connected by
hypothesis. Furthermore, X is simple as a closed
curve since any self-crossing at h ∈ X would lead
to a term θ�X(h) containing more than two ele-
ments, which is impossible since X is a 1-surface.
The proof is done. �

Remark 13 Let Y be a poset. We call the poset |X| :=
|{a, b}| with a and b neighbors in Y a degenerated 1-
PCM. This poset satisfies the relation ∆X = X.

Proposition 16 (Elementary property of the border)
The border of a 0-surface or of a 0-PCM is an empty
set.

Proof: Let |X| = |{a, b}| be a 0-surface, with
a 6∈ θX(b). Then, for any h ∈ X, |θ�X(h)| = |∅|
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h

Fig. 15 Different posets whose interiors are drawn in gray,
and whose borders are drawn in red. On the left side, sev-
eral P-well-composed 2-PCM’s. On the right side, a 2-PCM
X which is not P-well-composed: as we can see, the neigh-
borhood of h in the border is not a 0-surface (four 1-faces),
therefore the border ∆X is not a 1-surface, thus X is not
P-well-composed.

which is a (−1)-surface, which means that h does
not belong to ∆X. Then, ∆X = ∅. When |X| =
{a} is a 0-PCM, then |θ�X(a)| = |∅| and then a 6∈
∆X. Then ∆X = ∅ too. �

Definition 24 (Smooth PCMs) Let X be a poset of
rank n ≥ −1. We say that X is a smooth −1-PCM
when X = ∅, that X is a smooth 0-PCM when X =
{h} with h some arbitrary element, and that X is a
smooth n-PCM, n ≥ 1, when it is connected, its border
∆X 6= ∅ is an (n− 1)-surface or a separated union of

(n−1)-surfaces, and for any h ∈ X, |θ�X(h)| is either a
smooth (n−1)-PCM (border case) or an (n−1)-surface
(interior case).

In Figure 14, we can see an example of smooth
2-PCM. However, there exist PCM’s which are not
smooth: we can observe the example showing a 1-
PCM which is not a smooth 1-PCM is detailed
in Remark 13. Note that this non-equivalence can
be generalized to dimension n ≥ 1 (see Figure 13
for the case n = 2). This leads to the following
remark.

Remark 14 A smooth n-PCM of rank n ≥ 2 is P-
well-composed, but a P-well-composed poset of rank
n ≥ 2 is not necessarily a smooth n-PCM (since X
is not necessarily connected). The question whether a
P-well-composed connected poset is a smooth n-PCM
when n ≥ 2 remains open.

Remark 15 A smooth n-PCM is always an n-PCM,
however an n-PCM is not always a smooth n-PCM:
Figure 13 shows a 2-PCM which is not a smooth 2-
PCM. In other words, a n-PCM is not always P-well-
composed.

Remark 16 Let X be a smooth n-PCM with n ≥ −1,
then:

∆∆X = ∅.

Proposition 17 Let X be a smooth n-PCM, then X
is coherent.

Proof: When n = −1, X is the empty order,
then it is coherent. When n ≥ 0, we assume that
when X ′ is a smooth (n−1)-PCM, it implies that
X ′ is coherent (induction hypothesis). Let us show
that when X is a smooth n-PCM, n ≥ 0, it is
coherent.

Let X be a smooth n-PCM, n ≥ 0. For any
h ∈ X, either h ∈ ∆X and |θ�X(h)| is a smooth
(n − 1)-PCM, thus coherent and of rank (n − 1)
(by the induction hypothesis), or h ∈ Int(X), and
|θ�X(h)| is an (n − 1)-surface and thus coherent
and of rank (n − 1) too. In other words, for any
h ∈ X, |θ�X(h)| is coherent of rank (n−1), thus X
is coherent. �

h

Fig. 16 In a smooth n-PCM, the neighborhood of the
border is equal to the border of the neighborhood. Starting
from h belonging to the border ∆X of X, it leads to the
same results when we compute first the neighborhood in X
of h and then its border, or if we compute first the border
and then the neighborhood of h in ∆X. Intuitively, this
nice property comes from the fact that the border of this
smooth 2-PCM is made of separated 1-surfaces.
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Proposition 18 When X is a smooth n-PCM with
n ≥ 1, for any h ∈ ∆X, we have the relation:

θ�∆X(h) = ∆θ�X(h).

In other words, in smooth n-PCM’s, the neighborhood
of the border and the border of the neighborhood are
equal.

Proof: This property is illustrated in
Figure 16.

When n = 1, the equality is obvious. Let us
treat the case n ≥ 2.

When X is a smooth n-PCM with n ≥ 2, it
follows that ∆X is a separated union of (n − 1)-
surfaces, and also that for any h ∈ ∆X, ∆θ�X(h) is
a separated union of (n−2)-surfaces (since |θ�X(h)|
is a smooth (n− 1)-PCM).

By Proposition 9, ∆θ�X(h) ⊆ θ�∆X(h). Further-
more, ∆X is a separated union of (n−1)-surfaces,
thus |θ�∆X(h)| is an (n − 2)-surface. Besides,
∆θ�X(h) is a separated union of (n− 2)-surfaces.

When n = 2, |θ�∆X(h)| is a 0-surface and
∆θ�X(h) is made of at least one 0-surface. Thanks
to the inclusion ∆θ�X(h) ⊆ θ∆X(h), it follows that
∆θ�X(h) is one 0-surface and it is equal to θ�∆X(h).

When n ≥ 3, each connected component of
∆θ�X(h) is an (n − 2)-surface contained in the
(n− 2)-surface |θ�∆X(h)|. Thus, by Proposition 3,
θ�∆X(h) = ∆θ�X(h). �

Proposition 19 Let X be a smooth n-PCM, n ≥ 0.
For any h ∈ ∆X, we have the relation:

Int(θ�X(h)) ⊆ Int(X).

Proof: Let h be an element of ∆X, and h′

be an element of Int(θ�X(h)) ⊆ θ�X(h). It leads to
h′ ∈ θ�X(h) and h′ 6∈ ∆θ�X(h).

This is equivalent to say that h′ ∈ θ�X(h) and
h′ 6∈ θ�∆X(h) by Proposition 18. Thus, h′ ∈ θ�X(h)
and h′ 6∈ θ�X(h) ∩∆X, that is, h′ 6∈ ∆X.

However, h′ ∈ Int(θ�X(h)) implies that h′

belongs to θ�X(h) and then to X. Thus, h′ belongs
to Int(X). �

5 Our main theorems

In the sequel, we present fundamental theorems,
showing that depending on the hypotheses, a
union of two smooth n-PCM’s can lead to a dis-
crete n-surface or to a n-PCM. We also show that
cutting a discrete n-surface leads to one or two
smooth n-PCM’s. All the proofs are provided in
Section A.

5.1 Unions of PCM’s

Fig. 17 Intuition of Theorem 20. In the 1D case, start-
ing from two simple closed paths π1 and π2 which satisfy
(see the top row made of three cubical complexes): (1) the
interior of π1 (that is, π1 minus its extremities) is not neigh-
bour of the interior of π2, and (2) they have the same start
and end points, then we are ensured that the union π1∪π2

is a simple closed curve. Indeed, we closed the curve in a
way that the result is simple (no self-crossing). A counter-
example is depicted on the bottom row made of the three
other cubical complexes: the intersection of the interiors
lead to a poset which is not a simple closed curve (due to
the two self-crossings). Now, in n-D, the concept is exactly
the same: we need that the interior of each n-PCM is not
neighbor of the interior of the other n-PCM, and that they
share their boundaries. Under these constraints, their union
is a discrete n-surface.

Remark 17 Let A,B be two posets subsets of a poset
X. The relation θX(Int(A))∩ Int(B) = ∅ is symmetri-
cal, that is, {θX(Int(A)) ∩ Int(B) = ∅} is equivalent to
{Int(A) ∩ θX(Int(B)) = ∅}. This symmetry is a direct
consequence of the symmetry of the operator θ.

Theorem 20 Let A,B be two smooth n-PCMs, with
n ≥ 0, such that rk(A ∪B) = n, ∆A = ∆B = A ∩B,
and satisfying θ(Int(A))∩ Int(B) = ∅. Then, A∪B is
an n-surface.
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The intuition of this theorem is given in
Figure 17.

Theorem 21 Let A,B be two smooth n-PCMs with
n ≥ 1. When A ∩B = ∆A ∩∆B is a smooth (n− 1)-
PCM, the rank of A∪B is equal to n, θ(A \B)∩ (B \
A) = ∅, and θ(Int(A)) ∩ Int(B) = ∅, then A ∪B is an
n-PCM, and its border is equal to:

∆(A ∪B) = (∆A \B) ∪∆(A ∩B) ∪ (∆B \A).

A

B

A
B

Fig. 18 Intuition of Theorem 21. If we group together two
2D cubical complexes A and B, both assumed to be smooth
2-PCM’s, so that they only share a vertex, we surely form a
“pinch” that we will call h. At this pinch, the neighborhood
in A∪B is not connected, so θ�A∪B(h) is neither a 1-PCM
nor a 1-surface. So, A ∪B is not a PCM. Now, if we move
a little the set B so that A and B share a 1-PCM, we see
that there is no pinch anymore, and the union of A and B
is a 2-PCM.

An intuition of Theorem 21 is given in
Figure 18.

Note that proving that ∆(A∪B) in the previ-
ous theorem is an (n − 1)-surface or a separated
union of (n− 1)-surfaces, which could allow us to
conclude that the result is not only an n-PCM but
also a smooth n-PCM is an open problem. Indeed,
it means that we need to prove that a union of
three posets with no particular topological prop-
erties can be merged in a way that we obtain
a discrete (n − 1)-surface (when all our previous
proofs refer only to pairs of posets).

5.2 Decomposition of n-surfaces
into smooth PCMs

To complete the previous theorem, we can show
that when we “cut” a discrete surface in a nice
way, we can obtain smooth n-PCMs.

Fig. 19 Intuition of Theorem 22. Starting from a trian-
gulated 2-sphere, we obtain a discrete 2-surface. Now, we
cut this sphere into two pieces following a simple closed
curve N drawn on this surface. We obtain two halves of
spheres whose boundaries is this same N . Since PCM’s and
discrete surfaces satisfy the same properties (except at the
border), we surely obtain two 2-PCM’s : the red and green
pieces. Since the boundary N of each piece is a 1-surface
(by hypothesis), these two pieces are smooth PCM’s.

Theorem 22 Let X be an n-surface with n ≥ 1, and
let N be some suborder of X which is an (n − 1)-
surface. We denote then by {Ci}i∈I the connected
components of CC(X \N). We assume that #(I) ≥ 2.
Then, the components |Ci tN | are smooth n-PCMs.

An intuitive explanation of this theorem is
provided in Figure 19.

Note: The case #(I) ≥ 2 in the previous
theorem is to avoid the case where the (n − 1)-
face cuts a “handle” of the given n-surface, that
is, does not separate the initial n-surface into
several components. Indeed, in the 2-torus case,
the component |C0 t N | is equal to the initial
n-surface.

5.3 Cardinality of cuts of discrete
surfaces

Theorem 23 Let n ≥ 1 be some integer. Let X be a
discrete n-surface and let N ⊂ X be a discrete (n−1)-
surface. Let us denote {Ci}i∈I = CC(X\N). Then, the
cardinality of I is equal to or lower than two. In other
words, the “cut” of a discrete surface using a discrete
surface of lower rank leads to at most two smooth n-
PCM’s.
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The intuition behind this theorem is simple
for the case n = 2: if we start from some dis-
crete 2-surface like a sphere, and that we “cut” it
along an 1-surface N , we will obtain two 2-PCM’s
whose boundary equals N . Starting from a torus,
depending on how we cut it, we will obtain either
one or two pieces with the same boundary N . In
the more general case and for any n ≥ 2, when we
assume that the cut led to three pieces or more, we
know that the boundaries of all these pieces is the
same (n − 1)-surface N . By Theorem 22, we also
know that we can group two of these pieces to form
an n-surface. This means that the n-surface made
of the two pieces in contained in the union of all
the pieces, which is also an n-surface. Then, they
are equal. This leads to the contradiction that we
obtain three pieces at least after the cut. So, each
cut leads to one or two pieces.

6 Joint of PCMs and
n-surfaces

*

*a b c

a b c

a

b c

a b

c

=

=

Fig. 20 The join of one 0-surface S0 with a 0-PCM B0

leads to a 1-PCM. The same applies for the join of B0 and
S0, even if the result is not the same (in fact, it is its dual).

Now, let us present some intuitive propositions
relative to the order joint of PCMs and surfaces
(see Figure 20 for some intuitive examples).

We recall that the mathematical background
relative to joins is placed at the end of Section 2.1.

Proposition 24 Let k, ` be two non negative integers.
The order joint of a k-surface Sk and of a `-PCM
B` is a (k + `+ 1)-PCM. Furthermore, ∆(Sk ∗ B`) =
∆B` ∪ Sk.

Proof: We assume that k and ` are non-
negative integers. Let us proceed to a proof by

induction on (k+ `). We denote by Sk a k-surface
and by B` a `-PCM.

Initialization (k + ` = 0): We have k = ` = 0,
then S0 = |{a, b}| with a and b that are not neigh-
bors and B0 = |{c}|. The joint |S0 ∗ B0| is equal
to |{a, b}| ∗ |{c}| = |{(c, a), (c, b)}| (where (x, y)
means that x is in the closure of y). The border
of |S0 ∗ B0| is {a, b}, and when h belongs to it,∣∣θ�S0∗B0

(h)
∣∣ =

∣∣θ�S0(h) ∗ B0

∣∣ = |B0| which is a 0-
PCM. When h belongs to S0∗B0 minus its border,
then h = c and

∣∣θ�S0∗B0
(h)
∣∣ = |{a, b}| which is a 0-

surface. Since a joint of two non-empty posets is
connected, |S0|∗ |B0| is a 1-PCM and the property
is proved for k = ` = 0.

Heredity (k + ` ≥ 1): We assume that the
property is true for k′ + `′ ∈ [0, k + `− 1] and we
want to prove it for (k+ `). Let Sk be a k-surface,
and B` be a `-PCM. When h ∈ Sk ∗B`, three cases
are possible:

• When h ∈ Sk, then
∣∣θ�Sk∗B`

(h)
∣∣ =

∣∣θ�Sk(h)
∣∣ ∗ |B`|

which is the joint of a (k − 1)-surface and of a
`-PCM, that is, a (k + `)-PCM thanks to the
induction hypothesis.

• When h ∈ ∆B`, then
∣∣θ�Sk∗B`

(h)
∣∣ = |Sk| ∗∣∣θ�B`

(h)
∣∣ which is the joint of a k-surface and of

a (` − 1)-PCM, that is, a (k + `)-PCM thanks
to the induction hypothesis.

• When h ∈ B` \ ∆B`, then
∣∣θ�Sk∗B`

(h)
∣∣ = |Sk| ∗∣∣θ�B`

(h)
∣∣ which is the joint of a k-surface and of

a (`− 1)-surface, that is, a (k + `)-surface.

In other words, ∆(Sk ∗ B`) = ∆B` ∪ Sk and
since Sk ∗B` is the joint of two non-empty posets,
it is connected and it is then a (k + `+ 1)-PCM.

�

Proposition 25 The order joint of a k-PCM Bk and
of a `-surface S` is a (k + `+ 1)-PCM. Furthermore,
∆(Bk ∗ S`) = S` ∪∆Bk.

Proof: This proof is similar to the previous
one and is left to the reader. �

7 Applications

We start by presenting some applications of PWC-
ness related to the tree of shapes and obtained
thanks to the definition of borders. Then, we
follow with some nice properties of n-PCM’s.
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Fig. 21 Summary of the method used by Huyhn et al. [59]
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Fig. 22 An inclusion tree and its corresponding image [59]

7.1 Some applications of the tree of
shapes

Let U be some P-well-composed plain map defined
on a smooth n-PCM X : U : X  Z. Let us
assume that we can embed the poset X into a
greater space X0 of rank n, with X0 an n-surface.
By Proposition 5, we know that PWCness and
AWCness are equivalent in this context, so U is
AWC too, and its tree of shapes is well-defined.
Consequently, all the well-known application of
the tree of shapes become accessible. Let us
describe some of them.

7.1.1 Application to the zero-crossing
of the Laplacian

We present some results of Huyhn et al. [59]
obtained thanks to the computation of the tree of
the sign of the AWC morphological Laplacian in a
self-dual way. It is used here for text detection, but
this approach can easily be extended to treat n-D
signals, such as MR images, videos, or CT-scans.

This approach is part of the connected-
components-based ones and consists in transform-
ing an image into a tree-based hierarchical rep-
resentation (see Figure 21), based on adjacency

Fig. 23 Segmentation results on synthetic data. This
figure has been extracted from [35].

and inclusion relationship between the compo-
nents in the image. To proceed, they compute the
Laplacian of a given image using a morphologi-
cal Laplacian operator [60], whose zero-crossings
are known to be very precise contour estima-
tions of the initial image. After that, a self-dual
well-composed interpolation [46] of this Lapla-
cian is computed; this way, the zero-crossings of
this interpolation are simple closed curves. Using
these separated Jordan curves, we can naturally
induce a hierarchy [45] in the image: saturation
of these curves (whatever the chosen connectivity)
are either nested or disjoint. A component label-
ing of the sign of the Laplacian and the generation
of the inclusion tree are then straightforward and
very fast. Thanks to this representation, they can
extract text candidates: a hole of a character or a
solid character are leafs of the tree (see Figure 22),
and so on. Text grouping is then a subtree, since
characters must be grouped iff they belong to the
same background. Finally, in this context, well-
composedness gave access to a very fast (linear
time) and efficient self-dual text detection algo-
rithm thanks to the hierarchy induced by the
Jordan curves extracted from the well-composed
Laplacian.

7.1.2 Energy minimisation using the
tree of shapes

In [35], the authors propose a framework based on
energy minimisation relative to the context (using
the tree of shapes) to proceed to segmentation.
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Fig. 24 Segmentation results on real data. This figure has
been extracted from [35].

Fig. 25 From left to right, a T2 MR brain image contain-
ing a tumor, the ground truth locating the tumor in the
image space, and the sane brain which matches the most
to the initial tumored brain. This figure has been extracted
from [38].

Fig. 26 The subtree corresponding to the tumor and the
reconstructed tumor area. This figure has been extracted
from [38].

Some results can be observed in Figures 23 and 24
and show the robustness of the approach to noise.
Thanks to the tree structure, the estimator can
be computed incrementally in an efficient fashion.
Experimental results on synthetic and real images
demonstrate the robustness and usefulness of their
method.

7.1.3 Biomedical image segmentation

We recall first that DWCness and PWCness are
equivalent on cubical grids (see Proposition 8).
In [38], they propose to start from an image
of a tumored brain coming from some dataset.
Then, they look for the sane brain which matches
the most in another data set (see Figure 25).
They compute the tree of shapes of these two
images made DWC using some DWC interpola-
tion [45, 46]. By computing the differentiation of

Fig. 27 A pinch of rank 0 in a poset X of rank 2. We
can see that the face h ∈ ∆X satisfies the property that
|θ�X(h)| is disconnected (see its Hasse diagram on the right
side), so it is not a (smooth) 1-PCM. Thus h is a pinch (of
rank 0).

Fig. 28 A pinch of rank 1 in a poset X of rank 2. We
can see that the face h ∈ ∆X satisfies the property that
|θ�X(h)|, even if connected, is not a 1-PCM since it is not an
open simple path (see its Hasse diagram on the right side).
Since |θ�X(h)| is not a 1-PCM, it is not a smooth 1-PCM
neither, so h is a pinch (of rank 1).

these two trees, they are able to extract the sub-
tree (see Figure 26) of the second tree of shapes,
which represents the hierarchical representation of
the tumor in the image space. This results then
in a hierarchical segmentation and not only the
tumor boundary, what represents the originality
of this approach.

7.2 Application in digital geometry

Checking whether a simplicial manifold (like a
triangulation) is a combinatorial manifold is par-
ticularly hard, since we have to check if the links
of the vertices are spheres or balls. However, in
the case of posets, which is an even more gen-
eral case, we are going to show that there exists
a very simple, tractable, and recursive manner,
using n-PCM’s, to detect pinches. That is why
we think that n-PCM’s can be useful in digital
geometry [61].
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Definition 25 (Pinch) Let X be some poset of rank
n ≥ 0. If any face h of ∆X satisfies the property:{

|θ�X(h)| is not a smooth (n− 1)-PCM
}
,

we say that there exists a pinch located at h in X. If
h is a k-face of X, we say that h is a pinch of rank k
in X.

We depict in Figures 27 and 28 two pinches, of
rank 1 and of rank 2 respectively. This is typically
these configurations that we do want in discrete
topology (since these pinches can lead to topolog-
ical issues like sets with one exterior component
but with two interior components), or in digital
geometry (see for example the Marching cubes [62]
where pinches lead to ambiguities [43]) .

8 Conclusion

In this paper, we have introduced a new definition
of border which allows us to define poset-based
connected manifolds, the counterpart of topologi-
cal manifolds with borders in the discrete settings.
These PCMs have several strong properties: under
some constraints, they can be “glued” to make
discrete surfaces, they can result from the cut of
a discrete n-surface, we can glue two smooth n-
PCMs to obtain an n-PCM, and n-PCMs and
discrete surfaces can be joined to make a PCM of
higher dimension. These properties are very desir-
able in discrete topology and in digital geometry.

Still thanks to this definition of border, we
have provided a new flavour of well-composedness
which does not depend on the boundary but on
the border, that is, a poset does not need to lie
in a greater ambient space to be well-composed.
We have also shown that P-well-composedness is
compatible with well-composedness in the sense
of Alexandrov in the sense that when a unicoher-
ent poset lies into a greater ambient space, all the
applications available for AWC sets work for PWC
sets.

As future works, we plan to solve the open
problem detailed above (that is, under which con-
ditions the union of two smooth PCM’s lead to a
smooth PCM), and to generalize the definition of
n-PCMs to more complex structures.

Fig. A1 The union of two smooth 2-PCM’s makes an 2-
surface under some conditions: the green poset A and the
red poset B are both smooth 2-PCM’s, and they share a
1-surface (their respective borders). We can observe that
their union is indeed a 2-surface.

Appendix A Proofs of the
main theorems

A.1 Unions of PCM’s

Theorem 20. Let A,B be two smooth n-PCMs,
with n ≥ 0, such that rk(A∪B) = n, ∆A = ∆B =
A∩B, and satisfying θ(Int(A))∩Int(B) = ∅. Then,
A ∪B is an n-surface.

Proof: We want to show that X := A ∪ B
is an n-surface (see Figure A1). For this aim, we
proceed by induction.

Initialization (n = 0): the case n = 0 is obvious
since X is a set of two arbitrary elements which
are not neighbors.

Heredity (n ≥ 1): We can assume that when A′

and B′ are two smooth (n−1)-PCMs with A′∪B′
or rank (n− 1), and the relations:

θ(Int(A′)) ∩ Int(B′) = ∅,

and
∆A′ = ∆B′ = A′ ∪B′,

then A′ ∪ B′ is an (n − 1)-surface (induction
hypothesis).

Now, let us assume that we have A,B two
smooth n-PCMs with the properties described
above:

• Since A ∩B = ∆A 6= ∅, A ∪B is connected.
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• For any h ∈ A \B = Int(A),

θ�A∪B(h) = θ�A(h) ∪ (θ�(h) ∩B \A).

However, (θ�(h)∩B \A) = ∅ since θ(Int(A))∩
Int(B) = ∅, thus θ�A∪B(h) = θ�A(h)), which is an
(n− 1)-surface.

• For any h ∈ B \ A, the symmetrical reasoning
applies.

• When h belongs to A ∩B,

θ�A∪B(h) = θ�(h) ∩ (A ∪B)

= θ�A(h) ∪ θ�B(h)

= A′ ∪B′,

when we denote θ�A(h) by A′ and θ�B(h) by B′.
However:

– A′ is a smooth (n− 1)-PCM since h ∈ ∆A,
– B′ is a smooth (n− 1)-PCM since h ∈ ∆B,
– A′ ∪B′ = θ�A∪B(h) is at most of rank (n− 1)

since A∪B is of rank n by hypothesis, it is at
least of rank (n − 1) since it contains θ�A(h)
which is of rank (n − 1), thus A′ ∪ B′ is of
rank (n− 1),

– thanks to Proposition 19:

Int(A′)∩θ(Int(B′)) ⊆ Int(A)∩θ(Int(B)) = ∅,

– thanks to Proposition 18, ∆A′ = θ�∆A(h) =
θ�∆B(h) = ∆B′, and θ�∆A(h) = θ�A∩B(h) =
A′ ∩B′, thus ∆A′ = ∆B′ = A′ ∩B′.

Thus, A ∪B is an n-surface.

This concludes the proof. �

A.2 From unions of PCM’s to
PCM’s

Theorem 21. Let A,B be two smooth n-PCMs
with n ≥ 1. When A∩B = ∆A∩∆B is a smooth
(n − 1)-PCM, the rank of A ∪ B is equal to n,
θ(A\B)∩(B\A) = ∅, and θ(Int(A))∩Int(B) = ∅,
then A ∪ B is an n-PCM, and its border is equal
to:

∆(A ∪B) = (∆A \B) ∪∆(A ∩B) ∪ (∆B \A).

Proof: Let us proceed by induction on n.

Initialization (n = 1): Let A,B two smooth
1-PCMs. Since A ∩ B is a smooth 0-PCM by

hypothesis, it is not empty, thus A ∪ B is con-
nected. Furthermore, we can assume that A is an
open simple path from a to h, and B is an open
simple path from h to b, with a, h, b three arbi-
trary elements such that a 6∈ θ(b). We have then
the following cases:

• When z = a,

θ�A∪B(z) = (θ�(a) ∩A) ∪ (θ�(a) ∩ (B \A)),

and (θ�(a)∩ (B \A)) is empty thanks to θ(A \
B) ∩ (B \A) = ∅. Thus,

θ�A∪B(z) = θ�A(a),

which is a (smooth) 0-PCM.
• When z belongs to Int(A),

θ�A∪B(z) = (θ�(z) ∩A) ∪ (θ�(z) ∩ (B \A))

= (θ�(z) ∩A) ∪ (θ�(z) ∩ (B \ {h})),

and (θ�(z) ∩ (B \ {h})) is an empty set since
z ∈ Int(A) ⊆ (A\B) and θ(A\B)∩(B \A) = ∅.
Thus, θ�A∪B(z) = θ�A(z) which is a 0-surface.

• When z belongs to A ∩ B = {h}, there exist
a′ ∈ Int(A) and b′ ∈ Int(B) satisfying:

θ�A∪B(z) = θ�A(h) ∪ θ�B(h) = {a′, b′},
and a′ 6∈ θ(b′) since θ(Int(A)) ∩ Int(B) = ∅.
Thus, θ�A∪B(z) is a 0-surface.

• When z ∈ Int(B), we obtain by symmetry that
θ�A∪B(z) is a 0-surface.

• When z = b, we obtain by symmetry that
θ�A∪B(z) is a (smooth) 0-PCM.

Finally, ∆(A∪B) = {a, b}, which is a 0-surface,
thus A ∪B is a (smooth) 1-PCM.

Heredity (n ≥ 2): we assume that when A′, B′

are two smooth (n − 1)-PCMs, with A′ ∩ B′ =
∆A′∩∆B′ a smooth (n−2)-PCM, and the rank of
A′∪B′ is equal to (n−1), θ(A′\B′)∩(B′\A′) = ∅,
and θ(Int(A′)) ∩ Int(B′) = ∅, then A′ ∪ B′ is an
(n− 1)-PCM (induction hypothesis).

Let A,B be two smooth n-PCMs satisfying
the conditions announced before, we are going to
prove case-by-case that for any z ∈ A∪B, θ�A∪B(z)
is either a smooth (n − 1)-PCM or an (n − 1)-
surface, with ∆(A ∪ B) 6= ∅. So, there are the
different cases:
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• When z ∈ ∆A \B,

θ�A∪B(z) = (θ�(z)∩A)∪(θ�(z)∩(B\A)) = θ�A(z),

which is a smooth (n − 1)-PCM. Additionally,
we obtain that ∆(A ∪B) 6= ∅.

• When z ∈ Int(A),

θ�A∪B(z) = (θ�(z)∩A)∪(θ�(z)∩(B\A)) = θ�A(z),

which is an (n− 1)-surface.
• When z ∈ ∆(A ∩ B) = ∆(∆A ∩ ∆B) ⊆ ∆A ∩

∆B,

θ�A∪B(z) = θ�A(z) ∪ θ�B(z) = A′ ∪B′

when we denote by A′ the term θ�A(z) and by B′

the term θ�B(z). However, we know that A′ and
B′ are smooth (n − 1)-PCMs, that the rank of
A′ ∪B′ is (n− 1) (because if its rank is greater
than (n− 1), the rank of A ∪ B would be (n+
1), which contradicts the hypotheses). We also
know by Proposition 18 that:

A′ ∩B′ = θ�A∩B(z)

= θ�∆A∩∆B(z)

= ∆θ�A(z) ∩∆θ�B(z)

= ∆A′ ∩∆B′,

and

θ(A′ \B′) ∩ (B′ \A′)
⊆ θ(θ�(z) ∩ (A \B)) ∩ (θ�(z) ∩ (B \A))

⊆ θ(A \B) ∩ (B \A)

= ∅,

and by Proposition 19:

θ(Int(θ�A(z))∩ Int(θ�B(z)) ⊆ θ(IntA)∩ IntB = ∅.

Also, A′ ∩ B′ = θ�A∩B(z) with A ∩ B a smooth
(n − 1)-PCM. Since z belongs to ∆(A ∩ B),
θ�A∩B(z) is a smooth (n − 2)-PCM. Thus, the
induction hypothesis applies, and θ�A∪B(z) is a
smooth (n− 1)-PCM.

• When z ∈ Int(A∩B) = Int(∆A∩∆B) ⊆ ∆A∩
∆B,

θ�A∪B(z) = θ�A(z) ∪ θ�B(z) = A′ ∪B′

when we denote by A′ the term θ�A(z) and by B′

the term θ�B(z). We are going to use Theorem 20
on A′ and B′:

– A′ and B′ are smooth (n − 1)-PCMs since
z ∈ ∆A ∩∆B,

– rk(A′ ∪ B′) = (n − 1) (since rk(A′ ∪ B′) ≥ n
implies rk(A ∪B) > n which is impossible),

– ∆A′ = ∆B′ = A′ ∩B′: Since:

θ�∆A∩∆B(z) = θ�∆A(z) ∩ θ�∆B(z),

where:

∗ θ�∆A∩∆B(z) is contained in θ�∆A(z)
which is an (n−2)-surface because ∆A
is an (n− 1)-surface,

∗ θ�∆A∩∆B(z) is contained in θ�∆B(z)
which is an (n−2)-surface because ∆B
is an (n− 1)-surface,

∗ θ�∆A∩∆B(z) is an (n − 2)-surface
because z belongs to Int(∆A∩∆B) =
Int(A∩B) with A∩B a smooth (n−
1)-PCM,

which implies by Proposition 3 that:

θ�∆A∩∆B(z) = θ�∆A(z) = θ�∆B(z),

thus by Proposition 18:

∆A′ = ∆θ�A(z) = ∆θ�B(z) = ∆B′,

and θ�∆A∩∆B(z) = θ�A(z) ∩ θ�B(z) = A′ ∩ B′,
we have then the equality:

A′ ∩B′ = ∆A′ = ∆B′,

or in other words:

A′ ∩B′ = ∆A′ ∩∆B′.

– θ(Int(A′))∩ Int(B′) ⊆ θ(Int(A))∩ Int(B) = ∅
by Proposition 19,

Thus A′ ∪B′ = θ�A∪B(z) is an (n− 1)-surface.
• The case z ∈ IntB is obtained by symmetry and

leads to θ�A∪B(z) is an (n− 1)-surface.
• The case z ∈ ∆B \ A is obtained by symmetry

and leads to θ�A∪B(z) is a smooth (n− 1)-PCM.

Thus, A ∪B is an n-PCM.
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We obtain naturally:

∆(A ∪B) = (∆A \B) ∪∆(A ∩B) ∪ (∆B \A).

The proof is done. �

A.3 Cutting discrete surfaces

Theorem 22. Let X be an n-surface with n ≥
1, and let N be some suborder of X which is an
(n − 1)-surface. We denote then by {Ci}i∈I the
connected components of CC(X \ N). We assume
that #(I) ≥ 2. Then, the components |CitN | are
smooth n-PCMs.

Proof: Let us prove first that for any i ∈ I,
we have the relation:

θ(Ci) ⊆ Ci tN.

If θ(Ci) 6⊆ Ci tN , there exists h ∈ θ(Ci) with h 6∈
CitN , then h ∈ Cj with j ∈ I and i 6= j. Then Ci
and Cj are neighbors, then equal (by definition).
We obtain a contradiction, then θ(Ci) ⊆ Ci t N
for any i ∈ I.

Now let us prove by induction on n ≥ 1 that
when we decompose an n-surface X such that:

X =
⋃
i∈I

Ci tN,

with: ⋂
i∈I

(Ci tN) = N,

with N an (n−1)-surface, each CitN is a smooth
n-PCM. We denote this property by (Pn).

Initialization (n = 1): when X is a 1-surface
and N ⊂ X is a 0-surface, we decompose X into
{C1, C2} = CC(X \N) and they satisfy:

X = (C1 tN) ∪ (C2 tN)

and:
(C1 tN) ∩ (C2 tN) = N.

At this moment, we obtain that each term (CitN)
is a 1-PCM. Thus, (P1) is true.

Heredity (n ≥ 2): we assume that (Pk) is true
for any k ∈ J1, n−1K, let us prove (Pn). We assume
that X is an n-surface. Also, we set:

{Ci}i∈I = CC(X \N),

then we obtain: ⋃
i∈I

Ci tN = X,

and: ⋂
i∈I

Ci tN = N.

Let us prove that for any i ∈ I and for any
h ∈ Ci tN , |θ�CitN (h)| is either an (n− 1)-surface
or a smooth (n− 1)-PCM. Let fix some i ∈ I and
let h be an element of CitN , we have two possible
cases:

• When h ∈ Ci, then θ�X(h) ⊆ Ci t N , then
θ�X(h) = θ�X(h) ∩ (Ci t N), then

∣∣θ�CitN (h)
∣∣ =∣∣θ�X(h)

∣∣ is an (n − 1)-surface since X is an
n-surface.

• When h ∈ N , we remark that:

θ�X(h) = θ�X(h) ∩
⋃
i∈I

(Ci tN)

=
⋃
i∈I

θ�X(h) ∩ (Ci tN)

=
⋃
i∈I

θ�CitN (h),

with:⋂
i∈I

θ�CitN (h) =
⋂
i∈I

θ�X(h) ∩ (Ci tN)

= θ�X(h) ∩
⋂
i∈I

(Ci tN)

= θ�N (h).

In other words, the union of the terms∣∣θ�CitN (h)
∣∣ is an (n− 1)-surface, their intersec-

tion is
∣∣θ�N (h)

∣∣ and is an (n− 2)-surface. Thus,

by (Pn−1), each term
∣∣θ�CitN (h)

∣∣ is a smooth
(n− 1)-PCM.

Adding the fact that Ci tN is connected and
that ∆(Ci t N) = N which is an (n − 1)-surface
by hypothesis, we conclude that each |Ci t N | is
a smooth n-PCM. Consequently, (Pn) is true.

This concludes the proof. �

A.4 Cardinality theorem

Theorem 23. Let n ≥ 1 be some integer. Let
X be a discrete n-surface and let N ⊂ X be a
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discrete (n− 1)-surface. Let us denote {Ci}i∈I =
CC(X \N). Then, the cardinality of I is equal to
or lower than two. In other words, the “cut” of a
discrete surface using a discrete surface of lower
rank leads to at most two smooth n-PCM’s.

Proof: Let us assume that the cardinality of
I is equal to or greater than 3. We can then write
Card (I) ≥ 3. Using Theorem 22, we know that
each CitN is a smooth n-PCM. Now, let us denote
A = C1tN andB = C2tN . We have the following
properties:

• rk(A ∪ B) = n since n = rk(A) = rk(B) ≤
rk(A ∪ B) ≤ rk(X) = n (by increasingness of
the operator rk),

• ∆A = ∆B = N = A ∩B,

• θ(Int(A)) ∩ Int(B) = θ(C1) ∩ C2 = ∅,

from which we can deduce by Theorem 20 that
A∪B is an n-surface. However, A∪B ( X (since
C3 6= ∅ is contained inX but does not intersect A∪
B), which means that we have two nested discrete
n-surfaces which are different, it is a contradiction.
Thus, the cardinality of I belongs to {1, 2}. The
proof is done. �
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généralisation du bien-composé à la dimen-
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