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Abstract

A trustworthy protocole is essential to evaluate a text detection algorithm

in order to, first measure its efficiency and adjust its parameters and, sec-

ond to compare its performances with those of other algorithms. However,

current protocols do not give precise enough evaluations because they use

coarse evaluation metrics, and deal with inconsistent matchings between the

output of detection algorithms and the ground truth, both often limited to

rectangular shapes. In this paper, we propose a new evaluation protocol,

named EvaLTex, that solves some of the current problems associated with

classical metrics and matching strategies. Our system deals with different

kinds of annotations and detection shapes. It also considers different kinds

of granularity between detections and ground truth objects and hence pro-

vides more realistic and accurate evaluation measures. We use this protocol

to evaluate text detection algorithms and highlight some key examples that
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show that the provided scores are more relevant than those of currently used

evaluation protocols.

Keywords: Evaluation protocol, Text detection

1. Introduction

Text detection is an important task in image processing, and many algo-

rithms have been proposed since the last two decades [1]. Hence, text detec-

tion systems require a reliable evaluation scheme that provides a ground truth

(GT) as precise as possible and a protocol that can evaluate the precision

and the accuracy of a text detector with regards to this GT. A solid eval-

uation protocol should also be able to fairly compare different algorithms.

A text detection algorithm can be evaluated differently depending on its

output, that can be either boxes surrounding the detected texts, or masks

of detected texts after their binarization. One can also directly evaluate the

output of an O.C.R.: in such case, the detection algorithm integrates a recog-

nition module and provides as output the text transcription, which is then

compared to the true text.

While the output provided by the O.C.R. seems to be the ultimate way

to evaluate text detection algorithms, the computed scores do not always

correctly reflect the detection accuracy: the transcription can fail because

of the distortions of the detected text or its fonts. Furthermore, text tran-

scription is not always necessary, especially in applications for which only the

text detection is needed (such as text enhancement or license plate blurring).

The evaluation of a text mask is a difficult task as well, mainly because it

requires the true binarization of the text, that can vary depending on the
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text properties (stroke thickness for example). Here again, the evaluation

does not focus on the detection results but evaluates both the detection and

the binarization (in practice, this binarization is also not necessarily needed).

The simplest and most common way to evaluate a text detection algo-

rithm is then to compare its detection bounding boxes to those that have

been manually annotated (i.e. from the GT). This is the common strategy

used in most text detection challenges (ImageEval, ICDAR) to evaluate and

compare algorithms. However, we have noticed that these evaluation proto-

cols are not reliable. This is due, both to the metrics used for the evaluation,

and to the GT annotations [2, 3], that can lead to irrelevant evaluation and

comparison of text detection algorithms.

An annotation is sometimes subjective, and therefore it can be difficult

to choose how text should be annotated [2]. It is yet possible to construct

a dataset only composed of images in which there is no ambiguity for the

annotation. However, there is still the problem of tilted or curved texts for

which a bounding rectangular box is not appropriate because it can contain

a lot of non-text areas. It is then important to define rules for labelling and

defining the granularity, i.e. the minimal text entity to include into a bound-

ing box. Different levels of granularity can be defined for the GT annotation,

depending on the text to detect: the line, word and character levels. The

line level is not well suited for tilted text. The character level provides a te-

dious annotation and promotes connected component approaches. The best

granularity level seems to be the word level, even if it is still not the best

choice for multi-oriented text.

Choosing good metrics to compare detections that do not correctly match
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the GT objects is also a complex task. Most of the metrics can not efficiently

deal with the difference of granularity levels between the GT and the detec-

tions. For example, if the GT is at word level and the detection at line level,

the score will be most of the time over-penalized. Moreover, as pointed by

Wolf and Jolion in [4], a single metric cannot truly describe the complex

behavior of a localization algorithm, namely separating the quantity nature

(“how many GT boxes were detected”) from the quality aspect (“how well

the GT boxes were detected”) of a detection. Although these issues were ad-

dressed in the literature (see Section 2), the proposed solutions are still not

satisfactory.

Because of all these limitations, researchers do not have any robust tool

to get a representative evaluation of their algorithm and a fair comparison

with other algorithms. For example, the authors in [5] claim their scores

are too low because the ICDAR2013 protocol does not correctly evaluate

line level detections. Hence, some other works that provide detections at

line level [6, 7] have proposed to change the GT annotation of ICDAR2005

dataset from word to line level to be less penalized. However, this does

not permit a correct comparison with other scores obtained using the same

database with the word level annotation. Sun et al. [8] manually split their

line level detections in order to use the ICDAR2013 protocol and compare

their results. Manual splitting is also a problem because it makes irrelevant

the comparison with other detectors integrating an automatic splitting step

(or ever no splitting). Du et al. [9] have also split their line level detections

into words, however, no detail about the splitting procedure is given. Due

to the lack of a fair evaluation protocol, many works [10, 11] evaluate their
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algorithm by using others protocols. However, this gives an inconsistent

comparaison to other algorithms.

Only few interest has been given to the evaluation protocol of text detec-

tion algorithms. Some works [12, 13, 14] do not mention at all what protocols

are used for the evaluation, while others [15, 16, 17, 18, 19, 20, 21, 22] limited

their explanations to “standard recall, precision and F -Score” without any

further details concerning their computation or matching strategies. DetE-

val is probably the most frequently used evaluation protocol. Its framework

is tunable and hence its configuration should always be specified when used.

However, only few works [23, 24] specify the used parameters, while many do

not mention them [25, 26, 27, 28, 29, 30]. All these examples prove a need

of revising the current evaluation protocols.

In this article, we propose a new evaluation protocol providing many

advantages compared to the most common used, listed below.

• It can handle different detection granularities. For that, we propose a

two-level rectangular GT annotation, which allows an equitable com-

parison between algorithms having different granularity outputs.

• It provides a clear identification of the matching strategy between a

GT object and a detection (one-to-one, one-to-many, many-to-one and

many-to-many cases) and adapts the two quality metrics (coverage and

accuracy) to each type of matching.

• It computes both quantity and quality recall and precision scores to

give a full comprehension of a detector’s behavior.

• It can be easily adapted to manage any irregular text representation,
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such as polygonal, elliptic or free-form ones.

This article is organized as follows. Section 2 first gives a short survey of

the existing metrics and evaluation protocols for text detection algorithm

evaluation and comparison. Section 3 presents our evaluation procedure

called EvaLTex. We first define our two-level annotation that permits

to deal with different detector’s output granularities (Section 3.1). Then

we detail our matching procedures to avoid over or under penalizations while

matching detections and ground truth objects (Section 3.2). We also propose

a generalization of our protocol to evaluate a set of images and derive qual-

ity and quantity scores for the detection (Section 3.3). Finally, we show how

EvaLTex can also manage free form annotations (Section 3.4). Section 4 is

dedicated to the validation of our evaluation framework in the context of text

detection and its comparison to other evaluation protocols. In particular, we

show that the currently used evaluation protocols can not efficiently manage

many detection scenarios and that our method provides more logical scores.

Finally, concluding remarks and perspectives are given in Section 5.

2. Evaluation protocols: related works

In the past decades, various datasets and performance measures have been

proposed for text localization tasks and some of them are listed in Table 1.

The performance measures that have been mainly used to compare and

evaluate text detectors are the recall scores (i.e. number of correctly detected

texts divided by the total number of GT objects) and precision scores (i.e.

number of correctly detected texts divided by the total number of detected

texts). If an algorithm detects too many text regions, its precision rate
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will decrease, while if it detects too few texts, its recall rate will decrease.

Performing a fair evaluation requires to determine if a detection is correct

and to correctly match it with its corresponding GT object (particularly if

their granularity is different).

2.1. Correct detections

Most of the current evaluation protocols consider a detection as correct

if the overlap area between its region and the corresponding GT object is

sufficiently large [46, 44, 47, 48, 4]. This gives a binary evaluation, whether

this minimum overlap constraint is satisfied or not. Hence, if we compare the

two detections of Figure 1, one that partially covers a text (without satisfying

the overlap constraint) and one that entirely misses it, both will unfairly get

the same score. Despite its irrelevant scoring, this approach was however

used during the latest ICDAR competitions [32, 31, 49, 42].

(a) Text not detected; 171

ICDAR 2013 Inkam method

(b) Partial text detection

(red rectangle); 148 ICDAR

2013 Text detector CASIA

Figure 1: An example of irrelevant score. Both methods got recall and precision scores

equal to 0 during the ICDAR2013 competition evaluation protocol.
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2.2. Matching strategies

Another challenge concerns the matching of detections and GT objects,

particularly if their granularity is different. The matching consists in estab-

lishing the links between the detection and the GT objects. Four types of

matchings can be considered, as it can be seen in Figure 2: (a) one-to-one:

one detection matches exactly one GT object ; (b) one-to-many: multiple

detections match one GT object ; (c) many-to-one: one detection matches

multiple GT objects ; (d) many-to-many: mix of cases (b) and (c).

(a) One-to-one (b) One-to-many (c) Many-to-one (d) Many-to-many

Figure 2: Matching cases (GT is represented by dashed rectangles and detections by plain

line rectangles).

2.3. Existing protocols

Ma et al. [50] proposed a word level evaluation, where GT objects are clus-

tered with respect to a proximity criterion. Hence, single-row and multi-row

merges are equally allowed, but the precision is still penalized when such cases

occur. Also, if a GT text box is detected several times, only the maximum

overlap area is considered, which is a severe penalization for algorithms that

can correctly detect a text through two (or more) detections. The evaluation

framework in [46] uses a multi-level text annotation (pixel, atom, word and

line) but can not handle word and line level texts represented with bounding
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boxes. In the evaluation protocol introduced by Hua et al. [33], the GT an-

notation is done at the line level and then penalizes methods whose detection

outputs are at word or character level. The method proposed by Nascimento

et al. [48] can evaluate the percentage of different types of matchings, includ-

ing splits and merges by generating multiple GT interpretations. However,

no global measurements are proposed, which makes the comparison between

different algorithms difficult to interpret. This problem also occurs in the

protocol presented by Mariano et al. [47], who proposed a set of 7 evaluation

metrics but not a global one. The VACE metric described in [51] consists

in an overall performance measurement, Frame Detection Accuracy (FDA),

between all GT objects and detections. Nevertheless, this metric does not

provide a clear separation between recall and precision. The CLEAR met-

rics, also proposed in [51], compute the accuracy and the precision of a text

detector separately based on the true coverage area between the GT and the

detections but the authors do not explain the evaluation of different match-

ing scenarios. Anthimopoulos et al. suggested in [52] an evaluation method

based on the number of detected characters estimated as their width/height

ratio. The MSRA-TD500 [43] framework is able to handle oriented texts.

The protocol considers a detection as correct if the angle between it and its

corresponding GT object as well as their overlap ratio satisfy two thresholds.

If multiple detections match the same text line, they are considered as false

positives. The evaluation protocol associated to CUTE80 dataset consists

in establishing the minimum intersection area between the GT and the de-

tection polygon points of a curved text line. However, all matching types

are treated equally. In [41], the authors proposed an evaluation protocol
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that can deal with inclined text line but only computes a precision value.

In [53, 54, 55, 56] the authors proposed an evaluation framework at block

level that does not penalize partial text lines.

Wolf et al. [4] proposed a more complex text detection evaluation scheme,

named DetEval, based on performance graphs, which considers the preci-

sion and recall rates as quality scores. It can manage the one-to-many and

many-to-one cases, but uses parameter functions to penalize both cases. The

ZoneMap metric [57] is a generalization of [58] and [4] that computes different

error rates based on the overlapping areas in tables.

The ICDAR [44] Robust Reading Competition is considered as the main

reference for text detection and localization algorithm comparisons. The

evaluation method used during this competition is based on the algorithm

proposed in [4], assumed to be the most efficient one. But this protocol, as

it is used during the ICDAR competition, faces many problems. First, the

overlapping area ratio constraint misclassifies many GT text boxes during

the matching protocol. This results in low scores, even when the detected

boxes substantially overlap the GT ones. Second, the scattering scenarios

are poorly treated. Finally, the annotation is done at the word level which

frequently assigns high penalties to text line detections, as seen in the results

published in [44].

In the next section, we propose a new evaluation procedure, which solves

most of the previously mentioned problems.
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3. Our evaluation protocol: EvaLTex

3.1. Rectangular ground truth annotation

Annotating the GT for text detection is not an obvious task and relies

on the target application as well as on the rules chosen for this annotation.

We indeed have to decide the minimum text size a detector should be able

to deal with, or also if a word such as “COCA-COLA” should be annotated

as a single GT object or as two separate ones. While some of these issues

remain debatable, others, such as the granularity difference between the GT

and detections can be easily overcome, as it will be shown in Sections 3.2.3

and 3.2.4. Many evaluation protocols that do not deal with different granu-

larities can sometimes severely penalize one algorithm but not another, while

these should be scored equally. A solution is to deal with multiple GT anno-

tation levels.

In our approach, we introduce a two-level annotation. Each GT object

is first annotated at the world level using a single rectangular box. Then,

GT word boxes are manually grouped into regions. Here, we consider word

text boxes as part of a same region if they are horizontally (resp. vertically)

aligned and have similar heights (resp. widths), but different region grouping

could also be considered as long as the text area within one region is larger

than the non text area (see Figure 3 for examples of incorrect grouping). A

region is therefore a rectangular box containing several text objects anno-

tated at word level. Figure 4 shows an example of the proposed two-level

annotation of the GT.

We have chosen this two-level annotation for two main reasons. First, we

do not want to reject a detection when its area covers more than one GT word

12



Figure 3: Examples of invalid text region annotations (black rectangles): the non textual

area within these regions is larger than the text area.

(a) (b)

Figure 4: Two examples of ground truth annotation: (a) at word-level; (b) at region-level.

text box (case of many-to-one detections) if these ones belong to the same

GT region. In such case, the precision score will then not be penalized. We

also want to provide a comparable and equivalent evaluation of algorithms

whose outputs are similar, but at different granularity levels (i.e. word and

line-level). The proposed solution is detailed in Section 3.2.4.

3.2. Matching strategies and performance measurements

Let G = (G1, G2, ..., Gm) be the set of GT text boxes (tags) and D =

(D1, D2, ..., Dn) the set of the detections, with m (resp. n) the number of

13



objects in G (resp. in D). Then, for each Gi matched to detection Dj, we

define Covi as their coverage area and Acci as the detection accuracy by:

Covi =
Area(Gi

⋂
Dj)

Area(Gi)
(1)

Acci =
Area(Gi

⋂
Dj)

Area(Dj)
. (2)

We also assign a value matchGi
(resp. matchDj

) to each Gi (resp. Dj),

defined by:

matchGi
=

{
1 if ∃ Dj | Area(Gi

⋂
Dj) > 0

0 otherwise (3)

matchDj
=

{
1 if ∃ Gi | Area(Gi

⋂
Dj) > 0

0 otherwise (4)

3.2.1. Filtering procedure

Before identifying the type of a match (in our case we consider the 4

possible types, see Section 2.2), a filtering procedure is first used to de-

termine, when a detection covers several GT objects, to which of them it

can be matched. Figure 5a illustrates a case of two overlapping GT ob-

jects (in dashed green) because of the tilted text. The word “inside” should

be matched to the blue detection, while “intel” should not. Hence, when

a many-to-one match occurs, we first determine if a detection D intersects

more than one GT object. If so, we match detection D to GT object G and

not to G ′ (we can generalize this reasoning to as many GT objects as needed)

if the following area constraint is satisfied:

Area(G′
⋂

D)− Area(G
⋂

G′) ≤ t · Area(G′), (5)

14



(a) (b)

Figure 5: Filtering procedure: matching detected objects (blue) with GT boxes (dashed

green); (a) the tilted text causes an overlap of GT text boxes, (b) the character height

variation (see the letter “J”) causes the inclusions of GT text boxes.

where t is a threshold that regulates the overlap area rate. In our experi-

ments, t was set to 0.1, to filter GT objects with a small overlap area. By

increasing t , we could reject valid GT objects that are part of a many-to-one

matching. Figure 5b illustrates the case of text inclusion: the GT object for

word “JAVA” includes other GT objects. In this case, we should match the

detection to words “JAVA”, “graphic” and “2”, while the other words should

have been detected separately in order to be correctly matched.

During the next stage, coverage and accuracy scores are computed differ-

ently for each GT object depending on the matching strategy, as described

in the following sections.

3.2.2. One-to-one match

The detection is evaluated using the coverage (Eq. (1)) and accuracy

(Eq. (2)) scores. Assuming that we never get a perfect match, we use a

margin error me to extend or reduce the area of GT object Gi, computed as
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follows:

me =

{
tm · Area(Gi)

height(Gi)
if height(Gi) ≥ width(Gi)

tm · Area(Gi)
width(Gi)

otherwise
(6)

where tm is a parameter that controls the thickness of the margin error.

Let [xGi
, yGi

, wGi
, hGi

] define the GT text box Gi, with xGi
and yGi

its left

upper corner coordinates, and wGi
and hGi

its width and height respectively.

Let Ge i and Gr i be the extended and the reduced text boxes (see example

in Figure 6) of Gi, with:

Ge i : [xGi
−me, yGi

−me, wGi
+ 2 ·me, hGi

+ 2 ·me] (7)

Gr i : [xGi
+ me, yGi

+ me, wGi
− 2 ·me, hGi

− 2 ·me] (8)

(a) enlarged text box (b) reduced text box

Figure 6: Illustration of the extended and reduced boxes (red), obtained from a GT box

(dashed green).

For any one-to-one match between a detected box Dj and a GT box Gi,

the accuracy is computed by considering the enlarged GT text box Ge i:

Acci =
Area(Gei

⋂
Dj)

Area(Dj)
, (9)
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while the coverage is computed using the reduced GT text box Gr i:

Covi =
Area(Gri

⋂
Dj)

Area(Gri)
(10)

Consequently, the higher tm the higher the coverage and accuracy values.

Hence, it is not recommended to give a very high value to this parameter as

it might degrade the detection evaluation. In our experiments, tm is set to

0.1, a reasonable value that allows small imprecisions for detections.

3.2.3. One-to-many match

The one-to-many case is illustrated in Figure 7 where the word “Yarmouth”

is matched to 2 different detection boxes.

Figure 7: One-to-many case for “Yarmouth” word: one object in G (dashed green) is

matched to multiple boxes in D (blue).

This scenario implies a fragmentation level given by the number of de-

tections (si) associated to one GT object Gi. We use the fragmentation to

penalize the coverage of Gi in the following manner:

Covi = Covui · Fi (11)

where Covui represents the union of all intersection areas between Gr i and

all detections Dj, j ∈ [1, si], normalized by the area of Gri, defined as:

Covui =

⋃si
j=1Area(Gri

⋂
Dj)

Area(Gri)
; (12)
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Fi represents the fragmentation index suggested by Mariano et al. [47]:

Fi =
1

1 + ln(si)
(13)

Similarly, the corresponding accuracy Gi is defined as the union of all inter-

section areas between Ge i and detections Dj, j ∈ [1, si], normalized by the

total of detection areas:

Acci =

⋃si
j=1Area(Gei

⋂
Dj)⋃si

j=1Area(Dj).
(14)

3.2.4. Many-to-one match

The many-to-one case implies that several GT objects correspond to one

single detection. This case is illustrated in Figure 8. Our protocol considers

(a) (b)

(c) (d)

Figure 8: Many-to-one case: a detection (blue) matches several GT objects (dashed green);

(a) a detection box close to the GT objects, (b) a detection box close to the GT objects

grouped into a region (yellow), (c) a coarser detection of the GT objects, (d) a coarser

detection of the GT objects grouped into a region (yellow).

a many-to-one match as several one-to-one cases. Hence, the coverage for

each GT objects Gi, i ∈ [1,mj], with mj the merge level of the detection box
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Dj, is:

Covi =
Area(Gri

⋂
Dj)

Area(Gri)
(15)

While the coverage only considers the amount of valid matched GT objects,

the detection accuracy takes into account the quantity of non textual areas

(areas outside the GT) that have been detected. Consequently, if a detection

matches several GT objects, the non textual area coming from the inter-

object spacing contributes to the penalization of the accuracy score. Then, a

fair comparison between a word level detection and, for example, a line level

detection is not possible. Hence, many one-to-one detections would always

outweigh one many-to-one detection. However, in some cases, word level

and sentence level detections should be treated equally. Our two-level GT

annotation solves this problem and provides a better comparison between

different detection granularities. We then assume that the area of a text

region does not contain any non textual area and now consider the spacing

area between GT objects belonging to a same region as valid text areas.

Our protocol computes both the coverage and accuracy for each GT ob-

ject, while traditional approaches assign the coverage to GT objects and

accuracy to detections. To compute the accuracy for each Gi, we first match

it to a detection. Therefore, the detection area is split to be matched to

its corresponding mj GT objects. Figure 8c shows a many-to-one case, with

three GT boxes and one detection whose area is larger than the text one. We

define TextAreaDj
as the union of all GT text areas covered by the detection

box, and nonTextAreaDj
the rest of the detection area, i.e:

TextAreaDj
= Area(

mj⋃
i=1

(Gei
⋂

Dj)) (16)
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nonTextAreaDj
= Area(Dj)− TextAreaDj

. (17)

The accuracy associated to each matched Gi is:

Acci =
Area(Gei

⋂
Dj)

Area(Dj,i)
, (18)

where Area(Dj,i) is the detection area covering each extended box Ge i, de-

fined as:

Area(Dj,i) =
Area(Gei)

TextAreaDj

· nonTextAreaDj
(19)

We now define a text region Reg , as the box bounding a set of GT objects (see

the yellow boxes in Figures 8b and 8d). Then, we redefine the TextAreaDj

as the union of all text regions Regk within the detection box:

TextAreaDj
= Area(

rj⋃
k=1

(Regk
⋂

Dj)), (20)

where rj represents the number of GT regions covered by Dj.

3.2.5. Many-to-many match

Figure 9: Many-to-many case: a mix of one-to-many and many-to-one cases.

The many-to-many occurs when the same GT objects are involved simul-

taneously in a one-to-many and a many-to-one match. This is illustrated
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in Figure 9. There is a many-to-one match because a detection (in blue)

includes the word “HEALTHY” and a part of the word “COLCHESTER”.

The one-to-many match is due to the word “COLCHESTER” that is covered

by 2 detections.

In our approach, the many-to-many match is treated as a one-to-many

followed by a many-to-one match. Therefore, the coverage and accuracy

are computed using the equations defined for the many-to-one case (Sec-

tion 3.2.4) and for the one-to-many case (Section 3.2.3). For example, the

word “HEALTHY” is part of a many-to-one scenario: its coverage is com-

puted using the Equation (15) and its accuracy using the Equation (18). The

coverage and accuracy of word “COLCHESTER”, involved in a one-to-many

match, are computed using Equations (11) and (14) respectively.

3.3. Evaluation protocol on a set of images

The scores presented in the previous sections evaluate the quality nature

of a detection: how well an individual GT text box has been detected and

the precision of each valid detection. However, when dealing with a whole

dataset (i.e. a set of images), it is also necessary to evaluate the quantity

nature of the detections, namely how many GT objects or false positives

were detected on the whole database. The distinction between the quantity

and quality aspects of a detection is useful for a better comprehension of

the detection results. As pointed in [4], “a recall value equal to 50% can

mean that either 50% of the GT text boxes were matched at a 100% rate or

that 100% of the GT boxes were detected at a 50% rate. Similarly, a 50%

precision result can mean that the total GT area covered by the detection

boxes represents 50% of the total detection areas, but it can also mean that
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only 50% of the detection boxes correctly cover the GT, while the other 50%

are false positives”. Consequently, the quality values measure the matching

area rates between the GT and detection boxes, whereas the quantity values

represent the amount of valid matchings between the GT and detections as

well as the amount of false positive.

Then we compute, for the whole set of images, both quality and quantity

overall recall and precision scores and combine them to get two global scores.

Let tp be the number of true positives (i.e. of matched objects in G) and fp

the number of false positives (i.e. of objects in D that have no correspondence

in G), i.e:

tp =
m∑
i=1

(matchGi
= 1), (21)

fp =
n∑

j=1

(matchDj
= 0) (22)

Here m and n are respectively the number of GT objects and detections over

the whole dataset.

Table 2: Quantity, quality and global scores for each image, as well as for the whole set

of images in Figure 10.

Fig. m/tp/fp Rquant Pquant Rqual Pqual RG PG FG

10a 2/2/0 1 1 0.66 0.74 0.66 0.74 0.69
10b 15/11/0 0.73 1 0.86 0.92 0.63 0.92 0.75
10c 4/2/5 0.5 0.28 1 1 0.5 0.28 0.36
10d 1/1/2 1 0.33 1 1 1 0.33 0.5

Set 22/16/7 0.72 0.69 0.86 0.91 0.63 0.64 0.63

For a a many-to-one case (Section 3.2.4), we split the detection into sev-

eral areas, each one covering a GT object. For the one-to-many case (Sec-
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(a) (b)

(c) (d)

Figure 10: A set of four images; GT objects are red rectangles and detection green ones.

tion 3.2.3), we merge the corresponding detection areas and compute a single

precision score (Equation (14)).

Then, we define two metrics, that measure how many GT objects were

detected (quantity recall Rquant) and how many detections have a correspon-

dence in the GT (quantity precision Pquant), given by:

Rquant =
tp

m
, (23)

Pquant =
tp

tp + fp
, (24)

Moreover, we compute a quality recall, Rqual, measuring the overlap area for

all valid matchings between the detections and the GT objects and a quality
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precision, Pqual, estimating the total detection accuracy, defined as:

Rqual =

∑m
i=1Covi
tp

(25)

Pqual =

∑m
i=1Acci
tp

, (26)

Since a good set of metrics should reflect both the quantity and the quality

nature of a detection, we propose the two following global recall and precision

scores:

RG =

∑m
i=1 Covi
m

, (27)

PG =

∑m
i=1 Acci
tp + fp

, (28)

The quality components of these global metrics are given by the numer-

ator values
∑m

i=1Covi and
∑m

i=1Acci (sum of all GT object qualities Covi

and Acci). The quantity nature is given by the mean of the coverage quality

components of the m GT objects, and the accuracy quality components over

the total number of detections tp+ fp. Indeed, RG and PG are equivalent to

the product of the quality and the quantity components:

RG =

∑m
i=1Covi
m

= Rquant ·Rqual, (29)

PG =

∑m
i=1Acci
tp + fp

= Pquant · Pqual, (30)

The F -Score FG is used to measure the overall performance of a detection
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algorithm and is defined as the harmonic mean of the global recall and pre-

cision values:

FG =
2 ·RG · PG

RG + PG

(31)

Figure 10 shows an example for a set of four images and their correspond-

ing GT and detections. The evaluation for each image and for the whole set

using our proposed metrics is summarized in Table 2.

3.4. Extension to any text representation

A rectangular representation of texts can generate errors during the match-

ing process, in cases of inclined, curved of circular texts, as it can be seen

in Figure 11. Although we proposed a procedure in Section 3.2.1 to discard

“unlikely” matched GT objects, this cannot ensure that all matchings will be

correct (see Section 4.2). For texts that are neither horizontal, nor vertical,

typically texts that are encountered in urban scenes, a representation using

a free-form mask is more adapted.

In this section we show how to extend our EvaLTex protocol (matching

strategies and performance metrics) to any irregular text representations

(also called masks), such as polygonal, elliptic or even free-form shapes.

Using a mask representation implies the following changes:

• text objects are represented by irregular masks;

• the extension and reduction of GT object regions (Equations (7) and (8))

are computed using dilation and erosion morphological operations on

text masks;

• we consider only one level of annotation (word or region) but still man-

age different granularities.
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(a) with rectangles (b) with masks

Figure 11: Different shapes for GT annotation (red). (a) The rectangular GT box bound-

ing word “Pago” encloses the ones of “1888” and highly overlaps the ones of “SINCE”,

“PREMIUM” and “FRUIT”. (b) We avoid such problems by using mask annotations.

4. Experimental results and discussions

In this section, we show the efficiency of our proposed method when using

a rectangular representation (see Section 4.1) or a mask representation (see

Section 4.2).

4.1. Experimental results using the rectangular representation

We evaluate the detection results on the Challenge 2 dataset used during

the ICDAR 2013 Robust Reading competition [44]. This dataset contains

233 images of natural scene texts and an associated GT annotated at the

word level. We use the same word level annotation, but also our region

labels (Section 3.1), to introduce another level of granularity.
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To illustrate the advantages of EvaLTex we compare it to three com-

monly used evaluation protocols in the text detection field (ICDAR2003,

ICDAR2013 and DetEval). A detailed comparison of matching strategies

and detection scores is given in Section 4.1.1, and the interest of using our

two-level annotation in Section 4.1.2.

4.1.1. Comparison to other evaluation methods

ICDAR2013 evaluation protocol. We compare our evaluation protocol

with the one used during the ICDAR 2013 Robust reading competition [44]

for two reasons: (i) it is up-to-date and represents what is commonly done

and admitted in text detection evaluation, and (ii) all results are publicly

available, making the comparison easy.

The ICDAR2013 protocol relies on the evaluation framework introduced

in [4]. It uses the proposed area precision and recall thresholds, which are

set to 0.8 and 0.4 respectively, and which control the matching between GT

objects and detections. Moreover, a lower weight is assigned to one-to-many

matches, since the output is at the word level, while text-line level detections

(many-to-one matches) are supposed not to be penalized [44]. However, we

will show that this is not always true, and that many scores are erroneous.

Next, we give some scores provided by our matching algorithm (Fig-

ure 12), on the detector TextDetection [2] that participated to ICDAR 2013

challenges. We compare our matching method with the one of ICDAR2013.

The corresponding scores are given Table 3.

Figures 12a and 12b illustrate a one-to-one case for which the recall and

precision scores are over-estimated by ICDAR metrics. First, although the

detection missed the first letter of the word “AUSTRALIA”, the recall rate
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Table 3: Scores obtained for cases in Figure 12 using ICDAR and our proposed metrics.

Image Method Recall Precision F -Score

Fig. 12a
ICDAR2013 1 1 1
EvaLTex 0.9186 1 0.9575

Fig. 12b
ICDAR 2013 0.5 1 0.6667
EvaLTex 0.5 0.5919 0.5421

Fig. 12c
ICDAR2013 0.625 0.7143 0.6667
EvaLTex 0.8102 1 0.8952

Fig. 12d
ICDAR2013 0.90 0.8667 0.883
EvaLTex 0.7806 1 0.8768

Fig. 12e
ICDAR2013 0.6667 1 0.8
EvaLTex 1 1 1

Fig. 12f
ICDAR2013 0.3333 1 0.5
EvaLTex 1 0.6245 0.7688

Fig. 12g
ICDAR2013 0.6667 0.6667 0.6667
EvaLTex 0.8404 1 0.9132

Fig. 12h
ICDAR2013 0.6 1 0.75
EvaLTex 0.9032 1 0.9491

is set to 1 (Fig. 12a). Similarly, even if the area of the detection box for the

word “moto” is considerably larger than the GT object, its precision rate is

1. The ICDAR2013 approach scores a GT object with a binary recall (1

or 0), depending on whether the overlapping area between GT and detection

respects or not a threshold. However, in many cases, this does not provide

a fair comparison between algorithms. For example, if an algorithm detects

the whole word “AUSTRALIA”, it will get the same score as the detection

shown in Figure 12a. Conversely, our metrics give a more precise and realistic

evaluation because they take into account the real overlap match area, and

then provide a better comparison between algorithms.

As shown in Figures 12c and 12d, ICDAR2013 metrics can consider the

one-to-many match in different ways. In Figure 12d, the word “POSTPAK”

is detected by two boxes, both considered as correct. In Figure 12c we
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Figure 12: Matching examples; left: GT (red rectangle) and detections (solid purple rect-

angles); center (ICDAR2013) and right (EvaLTex): mismatched GT objects (solid red

rectangles), one-to-one matched GT areas (solid green rectangles), many-to-one matched

GT areas (solid yellow rectangles), one-to-many matched GT areas (solid blue rectangles).
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have a similar scenario for the word “Yarmouth”, but here none of the two

detected boxes is considered as valid because in both cases the overlap area

is too small. Moreover, the two detections are counted as false positives,

which unfairly penalizes the final scores. Firstly, it decreases significantly

the precision rate because the two detected boxes are erroneously counted

as false positives, and secondly, it decreases the recall rate by not matching

the two detected boxes to the GT. On the contrary, our method correctly

recognizes the one-to-many cases and matches the two detected boxes in both

cases, but punishes the fragmented detection by penalizing the recall score,

as seen in Section 3.2.

Figures 12e and 12f show a problem of inconsistency during the many-

to-one matching. In Figure 12e, the detection is at a line level. Only the

second and last lines are correctly matched, while the other detected text lines

are associated to the GT text box having the largest area within that line

(“unauthorized” in the first line, “Permit” in the third one and “operation”

in the fourth one). The unmatched GT text objects (“No”, “to”, “work”,

“system”, “in”) are considered as false positives. ICDAR2013 metrics then

over punish the many-to-one cases by frequently considering them as one-

to-one. On the contrary, our protocol correctly matches all text lines and

leads to a recall equal to 1. We have a similar problem when detections

cover multiple text lines (Figure 12f). The word “Roland” is matched by

ICDAR2013 protocol, while the two other words are discarded. Hence,

their recall is penalized, while their precision is not. Our method considers

all words as detected, hence the recall rate is set to 1. Nevertheless, we assign

a low precision rate, due to the presence of the logo in the left part of the
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detected box.

Finally, the many-to-many case is illustrated in Figures 12g and 12h.

The word “COLCHESTER” in Figure 12g corresponds to both a many-to-

one and a one-to-many match. Nevertheless, the ICDAR2013 matching

protocol rejects it and matches only the word “HEALTHY”, whereas our

algorithm validates both text boxes, but penalizes the recall due to its split

detection. If we look at the second line in Figure 12h we observe that the

word “family” is covered by two detections (one-to-many). Both detections

involve a many-to-one case, the first one corresponding to the words “Life-

lines” and “family”, while the second one to the words “family” and “Sup-

port”. The ICDAR2013 matching algorithm considers GT text boxes as

matched those containing the words “Lifelines” and “Support”, and classi-

fies the word “Family” as missed. This leads again to an unfair comparison:

if another localization algorithm would have completely missed the word

“Family”, then, both algorithms would have got the same scores, although

the first one detected only 87% of the area of the “Family” GT text box.

DetEval evaluation protocol. DetEval [59] is a tool, based on the

method of Wolf et al. [4], that is the core evaluation protocol used during

the ICDAR 2011 and 2013 Robust reading competitions.

The system’s object matching criteria can be configurable through eight

parameters: six of them representing the minimum recall and precision over-

lap area between detections and GT objects for one-to-one, one-to-many and

many-to-one cases, one parameter to add a border verification or not, and

a threshold on the center distance between two matched boxes. We first

evaluate the text detection results using a “relaxed” version of DetEval by
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(a) (b)

(c) (d)

(e) (f)

Figure 13: Examples of detections; GT (red rectangles) and the detections (solid green

rectangles); (a)-(c) one-to-one partial detections; (d)-(e) many-to-one detections. Corre-

sponding scores are given in Table 4.
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disabling the minimum area coverage constraints:

• the recall and precision area thresholds are set to 0;

• the center difference threshold is set to 1.

We have chosen this parametrization because it is in spirit the closer to our

evaluation protocol, which is more permissive.

Next, we will describe the behavior of the “relaxed” DetEval protocol

when dealing with one-to-one and many-to-one cases. Figure 13 shows some

examples of partial one-to-one detections which got maximum recall scores,

as seen in Table 4. However, the many-to-one detections from Figure 13,

although they match entirely all GT text objects, are penalized, as seen in

Table 4. Moreover, both recall and precision values are penalized and set

to value 0.8 independently of the number of matched GT text boxes. Our

method correctly penalizes the recall of one-to-one detections, and does not

penalize the many-to-one cases. Hence, even when using the most permissive

configuration of DetEval, our method is able to give better results in the

evaluation of detections.

DetEval also integrates a set of new metrics to characterize both the

quality and the quantity natures of a detector’s output. Recall and precision

are computed over a range of 20 different area threshold values to produce two

curves. Then, two overall metrics are derived by computing their area under

the curve (AUC). While these metrics solve the problem of partial matchings

of the “relaxed” and default DetEval, the precision tends to even out the

recall values when dealing with one-to-one cases (see Table 4), failing to

differentiate the two characteristics of a detection. We have a similar problem
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Table 4: Detection scores obtained with DetEval, ICDAR2003 and EvaLTex metrics

for cases of Figure 13.

Image Method Recall Precision F -Score

Fig. 13a
DetEval (Relaxed) 1 1 1
DetEval (AUC) 0.27 0.27 0.27
ICDAR2003 0.74 0.74 0.74
EvaLTex 0.61 1 0.75

Fig. 13b
DetEval (Relaxed) 1 1 1
DetEval (AUC) 0.51 0.51 0.51
ICDAR2003 0.64 0.64 0.64
EvaLTex 0.63 1 0.77

Fig. 13c
DetEval (Relaxed) 1 1 1
DetEval (AUC) 0.25 0.25 0.25
ICDAR2003 0.7 0.7 0.7
EvaLTex 0.55 1 0.7

Fig. 13d
DetEval (Relaxed) 0.8 0.8 0.8
DetEval (AUC) 0.65 0.66 0.65
ICDAR2003 0.35 0.39 0.36
EvaLTex 1 1 1

Fig. 13e
DetEval (Relaxed) 0.8 0.8 0.8
DetEval (AUC) 0.73 0.74 0.73
ICDAR2003 0.54 0.77 0.63
EvaLTex 1 1 1

Fig. 13f
DetEval (Relaxed) 0.8 0.8 0.8
DetEval (AUC) 0.72 0.72 0.72
ICDAR2003 0.61 0.65 0.62
EvaLTex 1 1 1

for the many-to-one matches (see Table 4): the small difference between

the recall and precision values does not give a clear distinction between the

number of GT boxes that were detected and how well these detections were

covering them.

ICDAR2003 evaluation protocol. The ICDAR2003 protocol, also used

during the ICDAR 2005 competition, is still widely used for evaluating text

localization methods [60, 61, 62, 63, 64, 65]. The advantage of this method is

that the recall for partial one-to-one matches is scored accordingly to the true

ratio between the intersection and the GT surface. On the other hand, the
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precision is not computed with respect to the detection surface and, similarly

to DetEval protocol, seems to always be equal to the recall rate, as it can

be seen in Table 4.

Another main drawback is due to the choice of the best match approach

used to solve the many-to-one cases, illustrated in Figure 13, whose corre-

sponding scores are given in Table 4.

Evaluating the one-to-one detection. As previously said, one-to-one

detections are treated differently from one protocol to another one. We pro-

pose a simple experiment which consists in gradually decreasing the quality

(coverage area) of a one-to-one detection (see Figure 14a) and analyze the

recall and precision evolution depending on this.

(a) A sequence of one-to-one detections.

(b) (c) (d)

Figure 14: Recall and precision plots for one-to-one detection cases using different evalu-

ation protocols; (a) the covering area between the detection (in green) and the GT object

(word “ROUTE”) is reduced; (b) DetEval (default and relaxed); (c) DetEval (AUC);

(d) EvaLTex.

Figure 14b shows the evolution of recall and precision scores given by

the default and “relaxed” configuration of DetEval when dealing with par-

35



tial one-to-one matchings. For the “relaxed” DetEval recall and precision

values are constant and equal 1, because of area thresholds set to 0. On

the other hand, for the default DetEval, there is an irregular decreasing of

recall and precision values. This reflects the binary evaluation of one-to-one

matchings, which depends on the recall and precision area parameters and

which can not correctly differentiate total and partial detections.

Figure 14c illustrates the behavior of DetEval AUC metrics. One can

observe that we have similar plots for recall and precision. However, since the

intersection area always remains within the boundaries of the GT, the metrics

should have a different behavior. Our method (Figure 14d), evaluates the

precision to a fix value of 1, which is a logical because the detection correctly

fits the GT object. On the contrary, the recall score decreases linearly with

the progressive shrinkage of the detection box.

ICDAR 2013 Robust Reading competition results. We now consider

the detection results of ten participants at the ICDAR 2013 Robust Reading

competition (Challenge 2 ) [44]. Our goal is to compare scores given by

different evaluation protocols on the same dataset as in this competition.

Table 5 gives the scores obtained for the ten participants with the ICDAR

2003 protocol [31], DetEval [44], DetEval AUC and EvaLTex. The

results of these methods are publicly available on the competition website

page [44].

Among the four protocols, the DetEval AUC metrics seem to be the

strictest. But, even if the ICDAR evaluation protocol is less penalizing than

the AUC metrics, in the case of the Inkam participant, it gives lower scores.

This is because a high number of partial one-to-one detections are rejected

36



T
ab

le
5:

D
et

ec
ti

on
sc

or
es

an
d

ra
n

k
in

gs
of

al
l

p
a
rt

ic
ip

a
n
ts

d
u

ri
n

g
th

e
IC

D
A
R

2
0
1
3

R
o
b

u
st

R
ea

d
in

g
C

o
m

p
et

it
io

n
(C

h
a
ll

en
g
e

2)
u

si
n

g
th

e
IC

D
A
R
2
0
0
3

[3
1]

,
D
e
t
E
v
a
l

[4
4]

an
d
E
v
a
L
T
e
x

ev
a
lu

a
ti

o
n

p
ro

to
co

ls
.
↑,
↓

a
n

d
∼

sy
m

b
o
ls

a
re

u
se

d
to

d
ep

ic
t

th
e

te
n

d
en

cy
of

sc
or

es
p

ro
d

u
ce

d
w

it
h

th
e

fo
u

r
m

et
h
o
d

s
(D

e
t
E
v
a
l

sc
o
re

s
w

it
h

re
sp

ec
t

to
IC

D
A
R
2
0
0
3
,
D
e
t
E
v
a
l
A
U
C

sc
o
re

s

w
it

h
re

sp
ec

t
to

D
e
t
E
v
a
l
,

an
d
E
v
a
L
T
e
x

sc
or

es
w

it
h

re
sp

ec
t

to
D
e
t
E
v
a
l
A
U
C

).

R
e
c
a
l
l

P
r
e
c
is
io
n

F
S
c
o
r
e

(R
a

n
ki

n
g)

M
e
th

o
d

IC
D
A
R

2
0
0
3

D
e
t
E
v
a
lD

e
t
E
v
a
l

(A
U
C
)

E
v
a
L
T
e
x

IC
D
A
R

2
0
0
3

D
e
t
E
v
a
lD

e
t
E
v
a
l

(A
U
C
)

E
v
a
L
T
e
x

IC
D
A
R

2
0
0
3

D
e
t
E
v
a
l

D
e
t
E
v
a
l

(A
U
C
)

E
v
a
L
T
e
x

U
S
T
B

T
e
x
S
ta

r
0
.5
8

0
.6
6
↑

0
.6
9
↑

0
.7
2
↑

0
.8
0

0
.8
8
↑

0
.8
9
↑

0
.9
3
↑

0
.6
7
(1
)

0
.7
6
(1
)

0
.7
8
(1
)

0
.8
2
(1
)

T
e
x
tS

p
o
tt
e
r

0
.4
9

0
.6
5
↑

0
.6
5
∼

0
.6
6
↑

0
.6
9

0
.8
8
↑

0
.8
7
↓

0
.7
7
↓

0
.5
7
(6
)

0
.7
4
(2
)

0
.7
5
(2
)

0
.7
1
(8
)

C
A
S
IA

N
L
P
R

0
.5
5

0
.6
8
↑

0
.6
9
↑

0
.7
3
↑

0
.6
7

0
.7
9
↑

0
.7
9
∼

0
.8
7
↑

0
.6
1
(5
)

0
.7
3
(3
)

0
.7
4
(4
)

0
.8
0
(4
)

T
e
x
t
d
e
te

c
to

r
C
A
S
IA

0
.5
4

0
.6
3
↑

0
.6
7
↑

0
.7
2
↑

0
.7
5

0
.8
5
↑

0
.8
5
∼

0
.9
1
↑

0
.6
3
(4
)

0
.7
2
(4
)

0
.7
5
(2
)

0
.8
0
(4
)

I2
R

N
U
S

F
A
R

0
.6
2

0
.6
9
↑

0
.7
1
↑

0
.7
6
↑

0
.7
1

0
.7
5
↑

0
.7
6
↑

0
.8
8
↑

0
.6
6
(2
)

0
.7
2
(4
)

0
.7
3
(6
)

0
.8
2
(1
)

I2
R

N
U
S

0
.6
1

0
.6
6
↑

0
.7
0
↑

0
.7
5
↑

0
.6
9

0
.7
3
↑

0
.7
3
∼

0
.8
6
↑

0
.6
5
(3
)

0
.6
9
(6
)

0
.7
2
(6
)

0
.8
1
(3
)

T
H
-T

e
x
tL

o
c

0
.5
3

0
.6
5
↑

0
.7
0
↑

0
.7
4
↑

0
.5
8

0
.7
0
↑

0
.7
0
∼

0
.7
4
↑

0
.5
5
(7
)

0
.6
7
(7
)

0
.7
0
(7
)

0
.7
4
(7
)

T
e
x
t
D
e
te

c
ti
o
n

0
.4
9

0
.5
3
↑

0
.6
6
↑

0
.7
4
↑

0
.6
2

0
.7
4
↑

0
.7
4
∼

0
.8
7
↑

0
.5
5
(7
)

0
.6
2
(8
)

0
.7
0
(7
)

0
.8
0
(4
)

B
a
se

li
n
e

0
.3
0

0
.3
5
↑

0
.3
5
∼

0
.3
6
↑

0
.5
6

0
.6
1
↑

0
.6
1
∼

0
.6
3
↑

0
.3
9
(9
)

0
.4
4
(9
)

0
.4
5
(9
)

0
.4
6
(1
0
)

In
k
a
m

0
.3
7

0
.3
5
↓

0
.4
3
↑

0
.5
5
↑

0
.3
2

0
.3
1
↓

0
.3
2
↑

0
.5
7
↑

0
.3
4
(1
0
)

0
.3
3
(1
0
)

0
.3
6
(1
0
)

0
.5
6
(9
)

37



by ICDAR, due to its covering area constraint. On the contrary, AUC

metrics, by varying this constraint, can better handle partial matchings. An

interesting point is the similarity of the ranking produced by AUC metrics

and EvaLTex, despite of their high score variations.

While DetEval recall scores are 13% higher compared to ICDAR scores

(see the Text Detection participant), their precision score is similar. This high

recall difference can be explained by the large number of GT objects involved

in many-to-one matchings, that are rejected by the ICDAR protocol but not

by DetEval. Furthermore, EvaLTex recall scores tend to be higher than

those of ICDAR and DetEval protocols, because the former fairly vali-

dates more partial one-to-one matchings. Moreover, EvaLTex relaxes the

unfair precision penalties applied by the other two methods. On the contrary,

it penalizes algorithms that produce detection areas significantly larger than

the GT objects (Figure 15), as in the case of TextSpotter participant, which

gets a precision score 10% lower compared to DetEval score. On the other

Figure 15: TextSpotter detection examples.

hand, it gives higher precision scores to algorithms I2R NUS FAR, I2R NUS

and Inkam for which a high number of partial one-to-one detections were
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mismatched by DetEval and ICDAR protocols. To finish, we note that

ICDAR and DetEval rankings are relatively similar, while EvaLTex pro-

poses substantial changes in it.

4.1.2. Region annotation: impact on global scores

Figure 16 shows the impact of the GT annotation on the precision and

recall scores (computed in Section 3.3). One can observe that the precision

value increases proportionally to the surface of the text region. This is logical

because the more GT objects a region contains, the smaller the non textual

area becomes and therefore the less the precision is penalized.

(a) (b) R = 1, P = 0.60 (c) R = 1, P = 0.62 (d) R = 1, P = 0.65

Figure 16: The impact of the region GT (yellow rectangles) annotation on precision and

recall scores; (a) 3 GT objects (red rectangles), 1 detection (green filled rectangle); (b) 3

GT objects grouped into 3 text regions; (c) 3 GT objects grouped into 2 text regions; (d)

3 GT objects grouped in one text region.

Table 6 shows the interest of using the two-level annotation on some key

examples in Figure 17. Most of the detections correspond to many-to-one

matchings. Here, the region labeling is done at line level. As it can be seen,

by enabling this region annotation (and then having a two-level annotation),

we get higher precision scores. On the contrary, recall scores are not changed.

39



Figure 17: Left: detections (green filled rectangles); right: object GT annotation (red

rectangles) and region annotation (yellow rectangles).
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4.2. Experimental results using the mask annotation

In this subsection we compare the evaluation given by EvaLTex to de-

tection cases depending on the type of annotation (rectangles or masks).

Figure 18 shows most of the problems that may be encountered when using

a rectangular annotation: GT rectangles that contain more non-textual areas

(Figure 18b, 18c, 18d, 18e, 18g), intersection of boxes in the GT (Figure 18d,

18f, 18g), inclusions of GT boxes (Figure 18f).

The corresponding evaluation scores are presented in Table 7. One can

observe that, when using a rectangular representation, the matching is dis-

turbed by the text objects that intersect in the GT. Namely, text objects

such as “ALBACORE” in Figure 18d, are matched two times: with their

corresponding detection and with detections targeting objects that intersect

them in the GT. Hence, the coverage scores of such GT objects are penalized

by the fragmentation parameter invoked during the one-to-many matching,

which can furthermore impact the global recall score. This can however be

avoided for similar cases, such as “GRAS” and “ANISETTE” (Figure 18f),

by using the filtering procedure described in Section 3.2.1.

Table 6: Global scores, recall and precision, when enabling and disabling the region GT

annotation.

No GT region GT region
Fig. 17 Recall Precision Recall Precision

Top 1 0.96 1 1
Middle 1 0.89 1 1
Bottom 1 0.92 1 1

Recall values of Figure 18e show another example of difference when using

these two representations in the case of a tilted and perspective deformed
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(a)

(b)

(c)

(d)

(e)

(f)

(g)

Figure 18: Examples of text areas (inclined, curved, in perspective, circular); left: mask

GT annotation (red); center: rectangular GT annotation (red); right: GT masks (red)

overlapped by detection masks (green). The rectangular detections are not represented

but correspond to boxes surrounding the detection masks in the last column which are

matched with the GT rectangles shown in the second column.
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text (“ALAINAFFLELOU”), only partially matched. The coverage ratio

computed with rectangles is smaller than the one computed with masks and

consequently leads to a significant recall difference.

Another difference between these two annotation types comes from the

precision variations that are higher when dealing with many-to-one detec-

tions. Such situations can be seen in Figures 18b and 18c that illustrate

many-to-one detections covering curved text strings (“KEMA-KEUR”, “3G0.75”

and “VDE” in Figure 18b, respectively GT objects “Enjoy” and “yours” in

Figure 18c). For Figure 18b, the precision values vary from 0.48, when us-

ing the rectangular representation to 0.81, in the case of mask annotation.

Similarly, the precision scores for the two text representations in Figure 18c

range from 0.73 to 0.98. Once again, the rectangle representation shows its

limitation and that it can significantly penalize the evaluation of a detector.

5. Conclusions

Today, no accurate protocol allows a reliable evaluation and comparison

of text detection algorithm outputs. The few existing protocols used in sev-

eral challenges have many problems. We claim that it is of crucial importance

for the researchers to evaluate and compare their detection algorithms using

a strong and reliable protocol so that they can better evaluate the pros and

cons of their algorithms and improve them.

That is why, in this paper, we have introduced a novel approach to eval-

uate and compare text localization algorithms, that overcomes some of the

existing drawbacks of current evaluation systems. We can cite several sys-

tems: the best match approach, which assigns a many-to-one detection to
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Table 7: Object (Cov and Acc) and global (Recall, Precision and F -Score) performance

scores corresponding to detections in Figure 18 computed using the rectangular and the

mask representations.

Rectangular representation Mask representation
Figure GT text object Cov Acc Recall Precision F -Score Cov Acc Recall Precision F -Score

18a MICROFIBRE 1 1 1 1 1 1 1 1 1 1

18b KEMA-KEUR 1 0.32

1 0.48 0.65

0.97 0.76

0.96 0.81 0.88
3G0.75 1 0.3 0.97 0.76
VDE 1 0.32 1 0.75
H03VV-F 1 1 0.9 0.98

18c Enjoy 1 0.6
1 0.73 0.85

0.98 0.96
0.94 0.98 0.96your 1 0.6 0.9 0.96

Coffee 1 1 0.93 1

18d THON 1 1

0.97 0.88 0.92

1 1

1 0.9 0.94

ENTIER 1 0.98 1 0.95
AU 1 0.98 0.99 0.95
NATUREL 1 1 1 1
ALBACORE 0.59 1 1 0.92
PETIT 1 1 1 1
NAVIRE 1 1 1 1
Le 1 0.72 1 0.78
bon 1 0.73 1 0.78
gout 1 0.72 1 0.78
du 1 0.71 1 0.78
large 1 0.73 1 0.8

18e ALAINAFFLELOU 0.58 1 0.58 1 0.73 0.63 1 0.63 1 0.77

18f FLORANIS 1 1

1 0.93 0.96

0.96 1

0.97 0.91 0.94
ANISETTE 1 1 0.97 1
GRAS 1 0.85 0.97 0.83
FRERES 1 0.86 0.96 0.83

18g COMPUTATIONAL 0.34 1
0.28 1 0.44

0.46 0.99
0.45 0.99 0.63COMPLEXITY 0.31 1 0.45 0.99
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only one GT object and rejects other valid matched GT text boxes ; the min-

imum overlap area constraint which assigns to a detection box a GT object

if and only if their intersection area is large enough ; the use of inappropriate

GT annotations, or also the lack of distinction between recall and precision

scores when dealing with partial detections. Even if it would seem reasonable

for many object detection purposes, for text detection these constraints are

rather restrictive and usually lead to severe penalties. The purpose of our

evaluation is not to provide detections with higher scores, but more precise

ones that reflect more accurately the reality.

The novelty consists in the definition of a set of new rules and the re-

interpretation of standard metrics at object level, coverage and accuracy, to

improve the evaluation quality. When using a rectangular text representa-

tion we introduce a new GT granularity level, the region tag, to relax the

precision penalizations and to allow an evaluation of word and line-level out-

puts. Moreover, our evaluation protocol identifies and treats independently

the one-to-one, one-to-many, many-to-one and many-to-many matches. The

protocol penalizes the recall in cases of fragmented detections, and penal-

izes the precision if the detections are not accurate enough. Furthermore,

we proposed quality and quantity performance measures that can capture

the whole complexity of a detection. Global recall and precision metrics

are then obtained by combining the quality and quantity values. Finally,

we proved that our evaluation framework can handle different GT annota-

tion and detection representations, such as polygonal, elliptical or free-form

shapes. Consequently, our procedure provides a more realistic and repre-

sentative evaluation comparison between different text detection algorithms.
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Notice that our evaluation protocol can be seen as a first step of an truthful

end-to-end evaluation protocol because, in order to compare the text tran-

scriptions with the GT, a reliable matching strategy is required. Without

a matching procedure, robust to granularity differences, systems would be

under evaluated, and hence many transcriptions would not be compared to

the correct GT objects.

Further work will consist in adapting the two-level option used for rect-

angle GT annotation to mask representation. This task requires a precise

annotation algorithm and the definition of a procedure that permits to link

and group GT objects into mask regions. An additional work will focus

on evaluating the results of text detection algorithms on more challenging

datasets, such as the Street View Text, iTowns and MSRA-TD500.
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