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ABSTRACT

The tree of shapes of an image (ToS) is a powerful hierar-
chical representation of image. Being self-dual and contrast
invariant, it is well-suited for several image processing tasks
such as filtering, segmentation or object detection. It is a
must-have tool in the toolbox of image processing practition-
ers, if only as a pre- or post-processing usage. Nevertheless,
the ToS computation is a complex task, so far, limited to CPU.
This is a major bottleneck in any deep-learning or real-time
image processing pipeline that requires GPUs for speed. This
limitation is due to a front propagation algorithm, used in the
ToS construction, that is intrinsically sequential and not well-
suited for massively parallel architectures. In this paper, we
present a new approach to compute, end-to-end, the tree of
shapes on massively parallel architectures that outperforms
the existing algorithms. The parallelization strategies intro-
duced in this paper can further be used to speed up many
propagation-based algorithms such as distance transforms.

Index Terms— Tree of Shapes, Massively Parallel Archi-
tectures, Mathematical Morphology, Distance transforms.

1. INTRODUCTION

Hierarchical representations of image [1] are widely used
tools in image processing. They allow representing objects of
interest with different levels of details based on the inclusion
relationship of the image regions. Among them, the tree of
shapes (ToS) [2] encodes the inclusion relationship of the
connected components of an image, and thus its level lines.
It is used for several tasks such as image simplification [3],
visual saliency [4], feature extraction [J5]], and image classifi-
cation [6]. Fig. [1]|illustrates a simple ToS-based application
where a grain filter serves as a simple pre-filtering to acceler-
ate text detection. Components are selected by their size, and
the residual image contains text characters.

The Fast Level Line Transform (FLLT) [2] was the algo-
rithm that builds the ToS by merging the min-tree and max-
tree [7]]. Latter, the Fast Level Set Transform (FLST) [8] re-
lied on a region-growing approach to flood an image from its
extrema and organize its level sets. In [9], the authors pro-
pose a top-down approach that starts from the border of the

Fig. 1: Illustration of a grain filters with the ToS. Left: origi-
nal image. Middle: image simplified with a grain filter. Right:
residual image after filtering.

image and follows the level lines. Géraud et al. [[10] first sort
the level lines of an image according to their level of inclusion
and then apply a Union-Find procedure to obtain the ToS. [11]
and [12] follow a similar approach : they adapt the algorithm
from [10] by first building an order map and then extract the
ToS from this map using a max-tree. It yielded the first linear
and parallel ToS algorithms.

Nevertheless, none of the approaches discussed above is
well-suited for massively parallel architectures. However, the
latest present some interesting properties. First, they rely on
the max-tree, for which an algorithm has been proposed for
such architectures [[13]. Then, the order map computation is
based on a propagation procedure relying on a priority queue.
This algorithmic scheme is used for several image processing
tasks such as geodesic distance computation by solving the
Eikonal equations in the Fast Marching Methods (FMM) [14].
This scheme is difficult to parallelize as it relies on a particu-
lar order to process the image pixels. To tackle this issue, Fast
Iterative Methods (FIM) [[15] have been proposed, relying on
an iterative procedure so that the order of processing does not
matter but also removing the need for an external data struc-
ture. With these barriers removed, the parallelization of the
algorithm becomes straightforward.

In this paper, we propose the first algorithm to compute
the tree of shapes on massively parallel architectures. To this
aim, we present a novel iterative algorithm to compute the or-
der map of the connected component inclusion in an image.
We also present the parallelization strategy employed to effi-
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Fig. 2: An image and its max-tree and tree of shapes

cient compute this map on such architectures.

This paper is organized as follows: first, we recall the def-
inition of the tree of shapes and its computation algorithm in
section |Zl Then, we present the distance transform as an or-
der map in section 3] and its parallelization in section[d, We
compare the performance of our parallel algorithm with the
sequential one in section[5} We finally conclude in section[6]

2. SEQUENTIAL TREE OF SHAPES COMPUTATION

2.1. Definitions

Let f : 2 — V be an image defined on a domain €2 C Z" and
whose value set V is endowed with an order relationship <.
Let[f > Al = {p € Q] f(p) > A} be the upper thresholds set
and [f < A = {p € Q] f(p) < A} be the lower thresholds
set, with A € V. The set of upper connected components is
denoted by €= = Uycp{X | X € CC([f > A])} and the set
of lower connected components by €< = Uyep{X | X €
CC([f < A])}., with the operator CC(X) returning the set of
connected components in a set X. The max-tree 7> (resp.
the min-tree 7<) encodes the inclusion relationship of the
components in €= (resp. €5).

A shape C is a connected component of f with its holes
filled and belongs to the set €° = {Sat(X) | X € ¢} U
{Sat(X) | X € €=} with Sat(X) the hole-filling operator.
The tree of shapes 7, encodes the inclusion relationship of the
shapes of €°, and thus the level lines of f. Fig.[2illustrates a
max-tree 7> and a tree of shapes 7, computed on an image.

2.2. Construction algorithm

This section describes the different steps to compute the tree
of shapes based on the algorithm presented in [11]]. To ensure
the root of the tree encloses the whole image, the image is
padded with a border whose value is usually set to the median
value of the image bordering pixels.

Immersion. The immersion step consists of embedding
the image in a set-valued map on a Khalimsky grid. The set-
valued map aims at modeling the level lines passing between
the pixels of the image by using intermediate pixels (0 and
1-faces). This step is illustrated in Fig. [3] Original pixels
are represented by blue squares, the 1-faces are represented
by rectangles, and the O-faces by circles. 1-faces and O-faces
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Fig. 3: Illustration of the immersion and level set distances.
The top-left and top-right "one" pixels are not connected in
(a) but they belong the same level set. In the interval-valued
map (b), the level line "One" can be materialized and connects
"physically" the two pixels "One": the distance between these
two pixels is thus null.
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Fig. 4: Order map (a) from algorithm(a) and distance trans-
form images (b,c) from algorithm@ (b) is the result after one
round while (c) is the result obtained after the algorithm has
converged (150 rounds).

have interval to represent all possible level lines passing be-
tween the adjacent original pixels. For instance, considering

the saddle point 8 % , the level lines from O to 3 could pass in

the center (depending on the interpolation), but only the level
lines from 1 to 3 could pass between the two top pixels. The
interval-valued map is the foundation of the ToS algorithm as
it enables to physically follow the level lines in the image.
Propagation. The order map is then computed using the
propagation algorithm displayed in algorithm [T This pro-
cedure traverses the set-valued map F' previously computed,
starting from a root point p,, whose associated value is v,
and creates a mapping from the components in the image and
their level lines to their order of appearance in the ToS in
a top-down traversal. To this aim, it relies on a hierarchi-
cal queue ) with two operations: PUSH(Q, v, p) enqueues



Algorithm 1 Propagation algorithm

Algorithm 2 A pass of the Distance Transform algorithm

function PROPAGATION(F, oo, Voo )
Q<+ o
Ord(p) < —1 forall p
Aold ¢ Voo, d < 0
PUSH(Q, Voo, Poo)
while () not empty do
(\,p) ¢ POP(Q, Aaig)
if )\old 75 A then
d—d+1
Ord(p) « d
for n € N(p),Ord(n) = —1 do
(m, M) + F(n)
N« clamp A in [m, M]
PUSH(Q, N, n)
Ord(n) < 0

>\old — A
return Ord

a point p in the queue at level v and POP(Q, v) returns the
point p at the nearest level A of v. Thus, all the image pix-
els are traversed, and the components are labelled. Each time
a new level is encountered, meaning that the current compo-
nent has been completed, the ordered counter d is increased
by one. The order map ORD computed during the propaga-
tion on the camera image is shown in fig. fa] where values
range from 0 to 5700.

Max-tree computation. Finally, a max-tree is built on the
order image. A linear or quasi-linear algorithm can be used
depending on the maximum value of the order-map. Once the
tree obtained, some post-processing are usually applied: "un-
immersing" to go back to the original domain, and attaching
the nodes to their original grayscale value.

To make this process massively parallel, the only chal-
lenge is to parallelize the propagation algorithm. Indeed,
the immersion algorithm is trivially parallelizable; this is a
min/max interpolation, i.e. a 2x2 stencil pattern operation.
The max-tree computation has been shown to be massively
parallelizable [13]. It remains the propagation algorithm, and
this is going to be discussed in the next section.

3. A DISTANCE TRANSFORM AS AN ORDER MAP

The order map computed during the propagation step of the
ToS is not unique. Any image levelling (that preserves the
ordering relation between any pair of neighboring pixels) can
be used as an order map. Here we propose to use the dis-
tance transform from the border on an interval-valued im-
age. Instead of counting the number of level-lines (as done
in algorithm I)), we instead sum the differences between the
level-lines on the path. This computes the gray-weighted dis-
tance transform [16] on the interval-valued image F'. More
formally, let II(x) be the set of paths from the border to the

1: function ITERATION p4(in F', in out F, in out D)

2: changed < false
3 for each pixel p do > forward or backward
4 (m, M) + F(p)
5 for each neighbor n in mask M do
6: A < clamp F(n) in [m, M]
7 dnew — ‘f(n) - )‘| + D(n)
8 if dpew < D(p) then
9 D(p)  dhew; f(p) — A
10: changed < true
11: return changed

d |/

= ®

Fig. 5: Iterative Distance Transform masks used in forward
(left)and backward (right) scans.

pixel z in the image, the distance of z is defined as:

n—1
> 1 F(mi) = F(miga)]

=1

D(z) = min
F,mell(x)
where 7; is the -th pixel of the path 7 and F is a projec-
tion of the interval-valued image F'.

This distance could be implemented using the Fast March-
ing Method [14] or using an iterative algorithm [17]. The
latter is more suited for parallelization. The basic idea is to
iterate algorithm [2] using two scans (forward and backward)
until no pixel is updated (see fig. [5)). The forward and back-
ward use two 3x3 kernels M to update the distance of a pixel
based on its neighbors. D(p) holds the current distance to the
border, and F(p) holds the value chosen in the interval F'(p)
to reach this distance. Compared to the regular geodesic dis-
tance transform, we only change the update rule. When ob-
serving the neighbor, we project (clamp) its value on the in-
terval F'(p) and compute their difference (this is the distance
between the two level lines). This difference is then added
to the current distance to the border. If the new distance is
smaller than the old one, we update the distance D(p) and the
chosen level line value F(p).

4. PARALLEL DISTANCE TRANSFORM

Parallelizing the distance transform(s) is not a novel idea. . . In
1968, [18] proposed a parallel version of distance transforms,
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Fig. 6: Parallel strategies for the iterative distance transform.
(a) Two blocks of 4 threads during the top-down pass. Each
thread processes a column. Threads of the same block are
synchronized after each line update. (b) Image split in 3x3
blocks colored with a chessboard pattern. This round only
updates the white blocks. Blocks are independent, a block
of threads updates a block of the image by repeating the four
passes until convergence. (c) The priority assigned to each
block of (b) based on the distance to the border. Priorities are
used to schedule blocks in the task-based implementation.

the idea is to iteratively update the distance of each pixel
based on its neighbors until convergence, in parallel. To
avoid data races, the algorithm runs with a double buffer strat-
egy and needs to synchronize after each round. Let n be the
number of pixels in the image, and P the number of proces-
sors. This approach has a maximal parallelism, since with
P = n number of processors, all pixels can be updated in
parallel at each round. In practice, the number of processors
is much less than n, and very few pixels need to be updated at
each round. In other words, very few processors are making
progress at each round.

More recently, [19] 20] have proposed a more efficient
parallelization strategy that augments the work by processor
(or work per thread). Instead of updating a single pixel at each
round, each processor is responsible for processing a whole
column or a whole row of the image. During a pass, each
processor updates the distance based on the distances of its
neighbors from the previous row/column as illustrated in fig.[§]
(a). While the algorithm from [17] requires two passes at
each round, this new approach requires now fours passes: top-
down, left-right, bottom-up, right-left. This strategy has been
shown to be more efficient than the previous one, even if the
level of parallelism is lower.

We adopted this strategy to parallelize our iterative dis-
tance transform algorithm as a baseline. We now explain how
it can be further optimized.

Block-based parallelization (Block). Instead of process-
ing the image row by row or column by column, we propose
to compute the distance transform block by block taking ad-
vantage of the cache hierarchy (fast CUDA shared-memory).
We associate status to each block: active or inactive. An ac-
tive block is a block that is adjacent to a block that has been
updated during the previous round. To avoid data-race be-
tween values that are read/written by adjacent blocks, we use
an odd-even communication strategy. Blocks have colors us-
ing a chessboard pattern. At each round, we update all white
active blocks, then all black active blocks, and so on.. . as il-
lustrated in fig. [6b] The algorithm is then as follows:

procedure BLOCKDISTANCETRANSFORM
color < white
Initialize blocks status to inactive except white border blocks
while Not converged do
for each active color block, in parallel do
Iterate alg. 2 until convergence
if N/E/W/S border has been updated then
Set the N/E/W/S neighboring block to active
Set the block to inactive
Swap current color

Queue-based parallelization (Queue). Using the clas-
sical CUDA programming model, the block-based approach
has two drawbacks. First, at each round, each block is sched-
uled even if inactive (it runs but exits immediately). Second,
blocks are scheduled in any order and if the image is com-
plex, there might be a lot of active blocks at each round. As
we compute a distance transform from the border, we want to
prioritize the blocks close to the border as they are the most
likely to get their final state. On the contrary, the most "in-
ner" blocks are likely to be invalidated more often. We thus
propose to switch to CUDA "task-based" parallelization with
priority queue to schedule the blocks. The priority is based
on the distance of the block to the border as shown on fig.
Each "CUDA block" (worker) retrieves a physical block from
the queue, processes it, and pushes its neighbors to the queue
as previously. The number of workers is set according to the
number of Streaming Multiprocessors (SM) of the GPU, and
each worker will process a maximum predefined number of
blocks (#border blocks / #workers). Thus, it may not process
all active blocks at each round, only the most important ones
that are likely to converge and not be invalidated anymore.
Note that the priority is not "just" the distance of the block
from the border. The value is mapped to [0-63] in order to
get one queue per priority that leverages fast concurrent lock-
free queue updates. Compared to the block-based approach,
the queue-based approach requires more advanced lock-free
programming techniques.

S. PERFORMANCE COMPARISON

We have conducted a performance comparison of the pro-
posed distance transform algorithms and also compared



Method MPixels/s #Rounds Speed-up
CPU 123=+1 1 1
GPU - Naive  1.1£0.5 1130 £480 0.1
GPU - Block 25.7+8.3 1835+£802 1.9
GPU - Queue 859+19.8 2196+843 6.7

Table 1: Performance comparison of the distance transform
with different parallelization strategies.

against the CPU propagation algorithm.

The bench dataset contains 639 grayscale aerial pictures
(with sizes ranging from 2430x3500 to 3289x3500) from the
database of the Netherlands Institute of Military History [7_1
The CPU is an Intel Xeon Silver 4200 @ 2.20GHz and the
GPU is an NVidia Quadro RTX 8000, the timings do not in-
clude memory transfers between host and device memories.

The results are reported in table[T] It shows that the naive
GPU distance transform is much slower than the CPU propa-
gation. This was expected because it requires many rounds to
converge (with 4 passes over the entire image at each). The
block-based parallelization is much faster than the naive one,
due to data locality and cache reuse (processing the blocks in
shared memory). The queue-based is the fastest, even if it re-
quires more rounds to converge, each round is much faster be-
cause it only processes the most important blocks. The speed-
up reaches 84x compared to the naive GPU implementation
and 6.7 compared to the CPU propagation.

However, this benchmark is unfair to the CPU algorithms
for two reasons. First, we did not use the parallel version
from [12]. In their work, the authors did not benchmark the
contribution of the parallelization of each step (they consider
the speed-up of the whole pipeline). In our tests, the paral-
lelization of algorithm [I| with many threads did not scale well
because the work in the queues is unbalanced. The speed-
up, at the level of the propagation, was not significant. The
performance could probably be improved by a better work-
load balancing, but we did not investigate this. Second, the
GPU algorithms and parallelization strategies proposed in this
paper can be implemented on the CPU using a thread-level
parallelism and a data-level parallelism, i.e. using suitable
SIMD instructions. However, the implementation is much
less straightforward, and the compiler auto-vectorization has
failed in issuing the SIMD code required for such implemen-
tation. Nevertheless, even if the CPU version could be im-
proved, the speed-up would be at best the number of cores of
the CPU, so our GPU implementation would still be challeng-
ing to beat.

Table [2] shows the distribution of the computation time
of the ToS algorithm on CPU (sequential) and GPU with the
Queue-based distance transform. We do not want to claim
that the GPU version outperforms the CPU version, even if it

https://beeldbank.nimh.nl/

Method ToS on CPU  ToS on GPU
Immersion 82 (2%) 0.22 (<1%)
Propagation/DT 2921 (56%) 440 (97%)
Max-tree 2186 (42%) 9.32 (2%)

Total 5189 450

Table 2: Distribution of the computation time (in ms) of the
sequential ToS algorithm on CPU and the massively parallel
ToS on GPU.

does in this experiment (it should be benchmarked against an
optimized parallel version). Our GPU distance transform is a
direct replacement of the propagation algorithm, but does not
gain as much as the immersion/max-tree steps. It is now by
far the bottleneck of the ToS algorithm. However, even if we
do not get a 10x speed-up on this step, the overall speed-up is
still significant and the ToS can now be fully computed on the
GPU without any memory movement to the Host. The last
point was our main motivation in this work as the memory
transfer that goes forth and back between the host and the
device in image processing pipelines is often the bottleneck.

6. CONCLUSION

We proposed the first algorithm to compute the tree of shapes
end-to-end on massively parallel architectures. It enables us-
ing advanced morphological filters on GPU pipeline without
any memory transfer to the host.

To this aim, we rely on an iterative algorithm to com-
pute the order map of the shapes of an image instead of the
propagation one. Furthermore, we exposed new paralleliza-
tion strategies of this algorithm that significantly speeds up
the computation by a factor of 84 compared to the classical
ones. We have also shown that our approach outperforms the
state-of-the-art CPU algorithms for the tree of shapes compu-
tation. Even if the CPU algorithms could probably be further
optimized and parallelized, our GPU implementation would
still be challenging to beat.

While this algorithm was designed to compute a distance
transform specific to the tree of shapes, it can actually be
used for any distance transform computation. In particular,
the parallelization strategies proposed in this paper can be
used to compute the geodesic distance transform, the cham-
fer distance transform, or any other distance transform that
can be computed iteratively. As a perspective, we plan to
adapt and benchmark our approach against the state-of-the-
art GPU geodesic distance transforms from the FastGeodis
framework [20].
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