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1 LaBRI, Université de Bordeaux, France, antonio.casares-santos@labri.fr
2 LRDE, EPITA, France, adl@lrde.epita.fr, frenkin@lrde.epita.fr

3 Independent Researcher, email@klarameyer.de
4 School of Computer Science and Engineering, The Hebrew University, Israel,

salomon.sickert@mail.huji.ac.il

Abstract. In 2021, Casares, Colcombet, and Fijalkow introduced the
Alternating Cycle Decomposition (ACD) to study properties and trans-
formations of Muller automata. We present the first practical implemen-
tation of the ACD in two different tools, Owl and Spot, and adapt it
to the framework of Emerson-Lei automata, i.e., ω-automata whose ac-
ceptance conditions are defined by Boolean formulas. The ACD provides
a transformation of Emerson-Lei automata into parity automata with
strong optimality guarantees: the resulting parity automaton is minimal
among those automata that can be obtained by duplication of states.
Our empirical results show that this transformation is usable in practice.
Further, we show how the ACD can generalize many other specialized
constructions such as deciding typeness of automata and degeneraliza-
tion of generalized Büchi automata, providing a framework of practical
algorithms for ω-automata.

1 Introduction

Automata over infinite words have many applications, including verification and
synthesis of reactive systems with specifications given in formalisms such as Lin-
ear Temporal Logic (LTL) [27, 23, 11, 12, 2, 29]. The synthesis problem from
LTL specifications asks, given an LTL formula φ, to build a controller that pro-
cesses an input word letter by letter, producing an output word, such that the
combined input-output-word satisfies φ. The automata-theoretic approach to
this problem (first introduced by Pnueli and Rosner [27]) consists of building a
deterministic ω-automaton A equivalent to the LTL specification φ, then con-
struct a game from A in which the opponent chooses the input letters for the
automaton, and finally solve this game and obtain a controller from a winning
strategy (whenever such a strategy exists). The automaton A can use differ-
ent kinds of acceptance conditions (Rabin, Emerson-Lei, Muller, parity...) and
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thus we obtain games with different winning conditions. Among these games,
parity games are the easiest to solve and there are highly-developed techniques
for parity games solvers. Thus it is common practice to transform the automa-
ton A to a parity one (for which we might need to augment the state space
of the automaton). The top-ranked tools in the SyntComp competitions [17],
Strix [23] (winner in editions 2018, 2019, 2020 and 2021) and ltlsynt [26], use
this approach, producing a transition-based Emerson-Lei automata (TELA) as
an intermediate step before constructing the parity automaton. For this reason,
optimal and efficient procedures to transform Emerson-Lei automata into parity
automata are of great importance.

Emerson-Lei (EL) acceptance conditions (first defined by Emerson and Lei
[10], and reinvented in the HOA format [3]) are arbitrary positive Boolean for-
mulas over the primitives Inf(c) and Fin(c) where c’s are colors from a set Γ . A
run is accepting if the set of colors F ⊆ 2Γ seen infinitely often is a satisfying as-
signment to the EL acceptance condition (see Section 2 for a formal definition).
Note that an explicit representation of all satisfying assignments is comparable
to the Muller condition [15, Section 1.3.2]. Since the Boolean structure of LTL
formulas can be mimicked by the Emerson-Lei acceptance conditions, a transla-
tion of LTL formulas to Emerson-Lei automata is particularly convenient.

Many algorithms to transform Emerson-Lei and Muller automata to parity
have been proposed. In essence they all transform an automaton by turning
each original state q into multiple states of the form (q, r) where r records some
information about the current run, and transitions leaving (q, r) otherwise have a
one-to-one mapping with those leaving q. Definition 3 calls this a locally bijective
morphism, and we like to refer to those as algorithms that duplicate states. For
instance in the Later Appearance Record (LAR) [16], r is a list of all colors
ordered by most recent appearance, producing therefore a blow-up of |Γ |! in the
state-space of the automaton. The State Appearance Record (SAR) [24, 22] is a
variation of this idea for state-based conditions, and the Color Appearance Record
(CAR) [28] is a variation for the Emerson-Lei condition. The Index Appearance
Record (IAR) [24, 22, 20] is a specialized construction for Rabin and Streett
conditions, where r is now an ordering of pair indices. These algorithms have
no particular insights about the input acceptance condition, such as inclusion or
redundancies between colors (or pairs). In the Zielonka-tree transformation [31],
r is a reference to a branch in a tree representation of a Muller condition. That
tree representation is tailored to the condition and allows such simplifications
compared to previous methods (it can be proven to be always better [6, 25]).
While none of these algorithms use the structure of the input automaton to
optimize the produced automata, some heuristics have been proposed [28, 25, 21].

In 2021, inspired by the Zielonka tree, Casares et al. introduced the Alternat-
ing Cycle Decomposition (ACD) of a Muller automaton [6]. Simply put, the ACD
is a forest, i.e., a list of trees, that captures how accepting and rejecting cycles
interleave in the automaton. They use the ACD to transform Muller automata
into parity automata, and they prove a strong optimality result: the resulting
automaton uses an optimal number of colors and has a minimal number of states
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among those parity automata that can be obtained by duplicating states of the
original one (see Theorem 1 for a formal statement). The main novelty of this
transformation is that it does not only take into account the structure of both
the acceptance condition and the automaton, but it exactly captures how they
interact with each other. Moreover, Casares et al. [6] show that we can obtain
some other valuable information about a Muller automaton from its ACD: for
example the ACD can be used to decide typeness, i.e, if we can relabel it with
another acceptance condition (parity, Rabin, Streett...). Their approach is pri-
marily theoretical and puts the emphasis on how the ACD can be useful to
obtain new results concerning Muller automata, but little is said about the costs
of computing the ACD or the applicability of the transformation in practice.

Contributions. In this paper, we show that the ACD is practical. We adapt the
definition of the ACD to Emerson-Lei automata and the HOA format [3]. We
implement the ACD and the associated transformation in two tools: Owl [18]
and Spot [9], providing baselines for efficient implementations of these struc-
tures. We show that the ACD gives a usable and useful method to transform
Emerson-Lei automata into parity ones, improving upon any previous transfor-
mation in terms of the size of the output parity automaton. We extend the ACD
to produce state-based automata, and show that the ACD generally beats tradi-
tional degeneralization-based procedures. Our implementation can also use the
ACD to check typeness of deterministic automata.

Structure of the paper. We begin by providing some common definitions in Sec-
tion 2. In Section 3, we define the Alternating Cycle Decomposition, adapting
the definition of Casares et al. [6] to Emerson-Lei automata, and we provide an
algorithm to compute it. In Section 5, we study the transformation of Emerson-
Lei automata into parity ones using the ACD and we show experimental results
obtained by comparing the ACD-transform implemented in Spot and Owl with
other commonly used transformations. In Section 6 we show experimental re-
sults in the particular case of degeneralization of generalized Büchi automata.
In Section 7 we discuss the utility of the ACD to decide typeness of automata.

2 Preliminaries

We denote by |A| the cardinality of a set A and by 2A its power set. For a
finite alphabet Σ, we write Σ∗ and Σω for the sets of finite and infinite words,
respectively, over Σ. The empty word is denoted by ε. Given v ∈ Σ∗, w ∈ Σω,
we denote their concatenation by v · w and we write v ⊑ w if v is a prefix of w.
We note inf(w) the set of letters that occur infinitely often in w. Given a map
σ : A → B and a subset A′ ⊆ A, we denote σ|A′ the restriction of σ to A′. We
extend σ to A∗ and Aω component-wise and we denote these extensions by σ
whenever no confusion arises.

A (directed, edge-colored) graph is a pair G = (V,E) where V is a finite set
of vertices and E ⊆ V × Γ × V is a finite set of Γ -colored edges. Note that with
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Table 1: Encoding of common acceptance conditions into Emerson-Lei condi-
tions. The variables c, c0, c1, . . . stand for arbitrary colors from the set Γ .

(B) Büchi Inf(c)
(GB) generalized Büchi

∧
i Inf(ci)

(C) co-Büchi Fin(c)
(GC) generalized co-Büchi

∨
i Fin(ci)

(R) Rabin
∨

i (Fin(c2i) ∧ Inf(c2i+1))
(S) Streett

∧
i (Inf(c2i) ∨ Fin(c2i+1))

(P)
parity min even Inf(0) ∨ (Fin(1) ∧ (Inf(2) ∨ (Fin(3) ∧ . . .)))
parity min odd Fin(0) ∧ (Inf(1) ∨ (Fin(2) ∧ (Inf(3) ∨ . . .)))

this definition one can have multiple differently colored edges from a vertex v to
a vertex u. A graph G′ = (V ′, E′) is a subgraph of G (written G′ ⊆ G) if V ′ ⊆ V
and E′ ⊆ E. A graph G = (V,E) is strongly connected if for every pair of vertices
(v, u) ∈ V 2 there is a path from v to u. A strongly connected component (SCC)
of a graph G is a maximal strongly connected subgraph of G.

Emerson-Lei acceptance conditions. Let Γ = {0, . . . , n − 1} be a finite set of n
integers called colors, from now on also written Γ = { 0 , 1 , . . .} in our examples.
We define the set EL(Γ ) of acceptance conditions according to the following
grammar, where c stands for any color in Γ :

α ::= ⊤ | ⊥ | Inf(c) | Fin(c) | (α ∧ α) | (α ∨ α)

Acceptance conditions are interpreted over subsets of Γ . For C ⊆ Γ we define
the satisfaction relation C |= α inductively according to the following semantics:

C |= ⊤ C |= Inf(c) iff c ∈ C C |= α1 ∧ α2 iff C |= α1 and C |= α2

C ̸|= ⊥ C |= Fin(c) iff c /∈ C C |= α1 ∨ α2 iff C |= α1 or C |= α2

We denote by ¬α the negation of the acceptance condition α, i.e., Fin(m) be-
comes Inf(m), and vice-versa, ∧ becomes ∨, etc. We assume that constants are
propagated, i.e., a formula is either ⊤, ⊥, or does not contain ⊤ and ⊥.

Table 1 shows how common acceptance conditions can be encoded into
Emerson-Lei conditions. Note that colors may appear multiple times; for in-
stance (Fin( 0 ) ∧ Inf( 1 )) ∨ (Fin( 1 ) ∧ Inf( 0 )) is a Rabin condition.

Emerson-Lei automata. A transition-based Emerson-Lei automaton (TELA) is
a tuple A = (Q,Σ,Q0, ∆, Γ, α), where Q is a finite set of states, Σ is a finite
input alphabet, Q0 ⊆ Q is a non-empty set of initial states, Γ is a set of colors,
∆ ⊆ Q×Σ×2Γ×Q is a finite set of transitions, and α ∈ EL(Γ ) is an Emerson-Lei
condition. The graph of A is the directed edge-colored graph GA = (Q,E) where
the edges E = {(q, C, q′) : ∃a ∈ Σ. (q, a, C, q′) ∈ ∆} are obtained from ∆ by
removing Σ. We denote the transition (q, a, C, q′) ∈ ∆ and the edge (q, C, q′) ∈ E

by q
a:C−−→ q′ and q

C−→ q′, respectively. Further, we might omit a or C if they are
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clear from the context. We denote by γ the projection of ∆ or E to the set of
colors Γ . Given a word w = a0 · a1 · a2 · · · ∈ Σω, a run over w in A is a sequence
ϱ = (q0, a0, C0, q1) · (q1, a1, C1, q2) · · · ∈ ∆ω such that q0 ∈ Q0. The output of the
run ϱ, is the word γ(ϱ) ∈ (2Γ )ω. A run ϱ is accepting if inf(γ(ϱ)) ⊨ α. A word
w ∈ Σω is accepted (or recognized) by A if there exists an accepting run over
w in A. We denote L(A) the set of words accepted by A. Two automata A, A′

are equivalent if L(A) = L(A′). The size of an automaton, written |A|, is the
cardinality of its set of states. A state q ∈ Q is reachable if there is a path from
some state in Q0 to q in GA.

An automaton A is deterministic if Q0 is a singleton and for every q ∈ Q

and a ∈ Σ there is at most one transition from q labeled with a, q
a:C−−→ q′ ∈ ∆.

We will use automata with acceptance defined over transitions (instead of
stated-based acceptance) by default. However, in Sections 5 and 6 we will also
discuss transformations towards automata with state-based acceptance.

If the acceptance condition of an automaton is represented as a condition of
kind X (cf. Table 1), we call it an X-automaton. We assume that each transition
of a parity-automaton is colored with exactly one color; this can be achieved by

substituting the set C in a transition q
a:C−−→ q′ by minC (if C ̸= ∅) or by {|Γ |+1}

if C = ∅. (If C is a singleton we will omit the brackets in the notation).

Labeled trees. A tree is a non-empty prefix-closed set T ⊆ N∗ whose elements
are called nodes. It is partially ordered by the prefix relation; if x ⊑ y we say
that x is an ancestor of y and y is a descendant of x (we add the adjective
“strict” if moreover x ̸= y). The empty string ε is the root of the tree. The set
of children of a node x ∈ T is ChildrenT (x) = {x · i ∈ T : i ∈ N}. The set of
leaves of T is Leaves(T ) = {x ∈ T : ChildrenT (x) = ∅}. Nodes belonging to a
same set ChildrenT (x) are called siblings, and they are ordered from left to right
by increasing value of their last component. If A is a set of labels, an A-labeled
tree is a pair ⟨T, η⟩ of a tree T and a map η : T → A. The depth of a node x is
Depth(x) = |x|. The height of T is Height(T ) = max

x∈T
Depth(x).

3 The Alternating Cycle Decomposition

The Alternating Cycle Decomposition (ACD), proposed by Casares et al. [6], is
a generalization of the Zielonka tree. The ACD of an automaton A is a forest, a
collection of trees, labeled with accepting and rejecting cycles of the automaton.
For each SCC of A we have a unique tree and the labeling of each tree alternates
between accepting and rejecting cycles. Thus the ACD captures the complexity
of the cycle structure of each SCC. We present now the definition of the ACD
adapted to TELA.

For the rest of this section, let A = (Q,Σ,Q0, ∆, Γ, α) be a TELA and let
GA = (Q,E) be the associated graph with edges colored by γ : E → 2Γ . We lift
γ to sets and define γ(E′) =

⋃
e∈E′

γ(e) for every subset E′ ⊆ E.
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Definition 1. A cycle of A is a subset of edges ℓ ⊆ E forming a closed path in
GA. A cycle ℓ is accepting (resp. rejecting) if γ(ℓ) ⊨ α (resp. γ(ℓ) ⊭ α). The set
of states of a cycle ℓ is States(ℓ) = {q ∈ Q : some e ∈ ℓ passes through q}. The
set of cycles of A is denoted Cycles(A). It is (partially) ordered by set inclusion.

Definition 2 ([6]). Let S1, . . . , Sk be an enumeration of the strongly connected
components of GA. The Alternating Cycle Decomposition of A, denoted ACD(A),
is a collection of k Cycles(A)-labeled trees ⟨T1, . . . , Tk⟩ with Ti = ⟨Ti, ηi⟩ such that:

– ηi(ε) is the set of edges of Si, for i = 1, . . . , k.
– If x ∈ Ti and ηi(x) is an accepting cycle, then x has a child in Ti for each

maximal element in {ℓ ∈ Cycles(A) : ℓ ⊆ ηi(x) and ℓ is rejecting}. In this
case, we say that x is a round node.

– If x ∈ Ti and ηi(x) is a rejecting cycle, then x has a child in Ti for each
maximal element in {ℓ ∈ Cycles(A) : ℓ ⊆ ηi(x) and ℓ is accepting}. In this
case, we say that x is a square node.

If q ∈ Q is a state belonging to the SCC Si in A, we define the tree associated
to q as the subtree Tq = ⟨Tq, ηq⟩ given by:

Tq = {ε} ∪ {x ∈ Ti : q ∈ States(ηi(x))} , ηq = ηi|Tq
.

Remark 1. We provide examples online at https://spot.lrde.epita.fr/ipynb/zlk
tree.html and an executable copy of this notebook is included in the artifact [8].

4 An Efficient Computation of the ACD

In this section we give an algorithm to compute the Alternating Cycle Decom-
position of an Emerson-Lei automaton A, implemented in Owl [18] and Spot [9].
This can be done by first computing an SCC-decomposition of GA which gives us
the labels of the roots of the trees ⟨T1, . . . , Tk⟩, and then recursively computing
the children of the nodes of each tree, following the definition of ACD(A). Algo-
rithm 1 shows how to compute the children of a given node and uses notation
we introduce now.

Let C ⊆ Γ be a subset of colors and let S = (QS , ES) ⊆ GA be a subgraph.
We define the projection of S on C, denoted S↓C = (QS , E

′
S), as the subgraph

of S obtained by removing the edges e ∈ ES such that γ(e) ⊈ C, that is,
E′

S = {(q,D, q′) ∈ ES : D ⊆ C}. We write Colors(S) =
⋃

e∈ES
γ(e). We say

that S ′ ⊆ S is an C-strongly connected component in S (C-SCC) if it is an SCC
of S and Colors(S ′) = C. Further, max⊆ is the set of all maximal elements
according to the partial order defined by ⊆.

Note that Algorithm 1 uses Algorithm 2, which simplifies the Emerson-Lei
conditions before passing the formula to a Max-SAT function (a SAT-solver
that computes maximal satisfying assignments, e.g., by clause blocking) [4]. This
preprocessing ensures that the ACD for Rabin or Streett acceptance conditions
can be constructed without making use of the general purpose algorithm for
computing maximal satisfying assignments.

https://spot.lrde.epita.fr/ipynb/zlktree.html
https://spot.lrde.epita.fr/ipynb/zlktree.html
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Algorithm 1 Computing the children of a node.

1: Input: A cycle S = ηi(x) corresponding to the label of a node x of ACD(A).
2: Output: The set of labels for the children of x, (S1, . . . ,Sk).
3: function Compute-Children(S)
4: children ← ∅, C ← Colors(S)
5: if C ⊨ α then ▷ Maximal subsets D ⊆ C such that D ⊨ α ⇔ C ⊭ α
6: {C1, . . . , Ck} ← Max-Satisfying-Subsets(C,¬α)
7: else
8: {C1, . . . , Ck} ← Max-Satisfying-Subsets(C,α)

9: for D ∈ {C1, . . . , Ck} do
10: for S ′ ∈ SCCs of S↓D do ▷ These might not be D-SCC in S
11: if Colors(S ′) ⊨ α ⇔ D ⊨ α then
12: children ← children ∪ {S ′}
13: else
14: children ← children ∪ Compute-Children(S ′)

15: return max⊆ children ▷ Remove from children non-maximal cycles

Algorithm 2 The subprocedure Max-Satisfying-Subsets.

1: Input: A subset of colors C ⊆ Γ and an EL condition α ∈ EL(Γ ).
2: Output: max⊆{D ⊆ C : D ⊨ α}.
3: function Max-Satisfying-Subsets(C,α)
4: if C ⊨ α then
5: return {C}
6: α← α[if c ∈ C then c else ⊥] ▷ Replace colors not in C by false
7: L← {c ∈ C : ¬c does not occur in α}
8: if L ̸= ∅ then
9: α← α[if c ∈ L then ⊤ else c] ▷ Replace colors in L by true
10: {C1, . . . , Ck} ← Max-Satisfying-Subsets(C \ L,α)
11: return {C1 ∪ L, . . . , Ck ∪ L}
12: if α = ¬c1 ∨ · · · ∨ ¬cn then
13: return {{c1, . . . , cn} \ {ci} : 1 ≤ i ≤ n}}
14: return Max-SAT(α)

Memoization. To optimize the construction of the ACD and to avoid duplicated
recursive calls, we perform two kinds of memoization: First, we memoize the
results of calling Algorithm 2 from Algorithm 1. (Thus we implicitly construct
a Zielonka DAG for α.) Second, we memoize the recursive calls to Algorithm 1:
this is useful, as distinct nodes in the ACD can be labeled by the same cycles.

5 From Emerson-Lei to Parity Automata

In this section we describe the transformation from TELA to parity automata
using the Alternating Cycle Decomposition [6]. This transformation provides
strong optimality guarantees: the resulting parity automaton has minimal size
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among those that can be produced without merging states from the TELA and
it uses an optimal number of colors (Theorem 1). We also show that this trans-
formation can be adapted to produce state-based automata. Note that in this
case we loose the first optimality guarantee.

5.1 The ACD Transformation

Let A = (Q,Σ,Q0, ∆, Γ, α) be a TELA and let ACD(A) = ⟨T1, . . . , Tk⟩. We
introduce the following notation that will allow us to move in the ACD.

Given a transition e = q
a:C−−→ q′ such that both q and q′ belong to the i-th

SCC of A and a node x ∈ Ti, we define Support(x, e) to be the least ancestor z
of x in Ti such that e ∈ ηi(z). If Support(x, e) ̸= x and it is not a leaf in Tq′ , let
z′ be the only child of Support(x, e) that is an ancestor of x, and let y1, . . . , ys
be an enumeration from left to right of the nodes in ChildrenTq′ (Support(x, e)).
We define NextBranch(x, e) as:

Support(x, e), if Support(x, e) = x or if Support(x, e) is a leaf in Tq′ ,
y1, if z′ = ys,

yj+1, if z′ = yj , 1 ≤ j < s.

We define a parity automaton PACD(A) = (P,Σ, P0, ∆P , ΓP , β) (ACD transform
of A) equivalent to A as follows:

States. The states of PACD(A) are of the form (q, x), for q ∈ Q and x a leaf of
the tree associated to q. Initial states are of the form (q0, x) with q0 ∈ Q0 is
an initial state in A and x is the leftmost leaf on its corresponding tree.

P =
⋃
q∈Q

{q}×Leaves(Tq), P0 = {(q0, x) : q0 ∈ Q0, x the leftmost leaf in Tq0}.

Transitions. For each transition e = q
a:C−−→ q′ in ∆ and each state (q, x) ∈ P ,

let us define a transition (q, x)
a:p−−→ (q′, y) in ∆P as follows: first, q′ is the

destination state for the original transition. If q and q′ are not in the same
SCC then y is defined as the leftmost leaf in Tq′ and p = 1 (except if all Ti
have height 1 and a rounded root: in that case p = 0). Otherwise, if both q
and q′ belong to the i-th SCC of A, then the destination leaf y is the leftmost
descendant of NextBranch(x, e) in Tq′ .
We define the color p of the transition as Depth(Support(x, e)), if the root
of Ti is a round node (ηi(ε) ⊨ α), or as Depth(Support(x, e)) + 1 otherwise.
We remark that in this way, p is even if and only if ηi(z) ⊨ α.

Parity condition. The condition β is a parity min even condition (cf. Table 1).

Remark 2. If the color 0 does not appear on any transition then we shift all
colors by −1 and replace β by a parity min odd condition.

Proposition 1 ([6]). The automaton PACD(A) recognizes L(A).
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Remark 3. The ACD transformation preserves many properties (determinism,
completeness, good-for-gameness, unambiguity...) of the automaton A, see [6].

Remark 4. Since the number of colors used by PACD(A) is at most the height of
a tree in ACD(A), we obtain that PACD(A) never uses more colors than |Γ |+1.
Furthermore, since the TELA does not require all transitions to have a color, we
can omit the maximal one and produce an automaton with at most |Γ | colors.

In order to state the optimality of this transformation we introduce the
notion of locally bijective morphisms of automata. Given an automaton A =
(Q,Σ,Q0, ∆, Γ, α) and q ∈ Q, we denote OutA(q) the set of outgoing transitions

of q, i.e., OutA(q) = {q a:C−−→ q′ ∈ ∆ : a ∈ Σ,C ⊆ Γ, q′ ∈ Q}.

Definition 3 ([6]). Let A = (Q,Σ,Q0, ∆, Γ, α) and A′ = (Q′, Σ,Q′
0, ∆

′, Γ ′, α′)
be two EL automata over Σ. A locally bijective morphism from A to A′ (denoted
φ : A → A′) is a pair of maps φQ : Q → Q′, φ∆ : ∆ → ∆′ such that:

– φQ|Q0 is a bijection between Q0 and Q′
0.

– φ∆

(
q1

a:C−−→ q2
)
= φQ(q1)

a:C′

−−−→ φQ(q2) for some C ′ ⊆ Γ ′.
– For every q ∈ Q, φ∆|OutA(q) is a bijection between OutA(q) and OutA′(φQ(q))
– For every run ϱ ∈ ∆ω in A, ϱ is accepting iff φ∆(ϱ) is accepting in A′.

Theorem 1 ([6]). Let A be an Emerson-Lei automaton, and let PACD(A) be
the parity automaton obtained by applying the ACD transformation. Then,

– There is a locally bijective morphism φ : PACD(A) → A.
– If P ′ is a parity automaton admitting a locally bijective morphism to A, then

|PACD(A)| ≤ |P ′|.
– If P ′ is a parity automaton recognizing L(A), P ′ uses at least as many colors

as PACD(A).

Note that all state-duplicating constructions mentioned in the introduction
create locally bijective morphisms. Thus the above theorem shows that the ACD
transformation duplicates the least number of states.

5.2 Experimental Results

Figures 1 and 2 compare four different paritization procedures applied to 1065
TELA generated5 from LTL formulas from the Synthesis Competition. These A fifth option, IAR,

only applies to certain
types of inputs. See
Appendix A.1.

automata have between 2 and 55 colors (mean 5.92, median 5) and between
1 and 245761 states (mean 2023.20, median 20). Automata with fewer than 2
colors have been ignored since they are trivial to paritize.

The procedures are Owl’s and Spot’s implementation of ACD transform, as
well as Spot’s implementation of the Zielonka Tree transform [6], and Spot’s
previous paritization function (called to parity) [28]. We refer the reader to
Section 8 for information about the used versions. Two dotted lines on the sides

5 We used ltl2tgba -G -D from Spot, and ltl2dela from Owl.
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Owl ACD trans. (states)

101
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105
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s) 9 cases

above diag.

14 cases
below diag.

101 103 105

Spot ZlkTree trans. (states)

4 cases
above diag.

877 cases
below diag.

101 103 105

Spot to parity (states)

1 case
above diag.

123 cases
below diag.

Fig. 1: Comparison of the output size of the four paritization procedures.

10−4 10−1 102

Owl ACD trans. (s)

10−3

10−1

101

103

S
p
o
t
A
C
D

tr
a
n
s.

(s
) 180 cases

above diag.

884 cases
below diag.

10−2 101

Spot ZlkTree trans. (s)

552 cases
above diag.

508 cases
below diag.

10−2 101

Spot to parity (s)

37 cases
above diag.

1020 cases
below diag.

Fig. 2: Time spent performing these four paritization procedures.

of the plots hold cases that did not finish within 500 seconds (red, inner line),
or where the tool reported an error6 (orange, outer line). Pink dots represent
input automata that already have parity acceptance: for those, running the ACD
transform still makes sense as it will produce an output with a minimal number
of colors. However, Owl’s implementation, which mostly cares about reducing the
number of states, uses a shortcut and will return the input automaton unmodified
in this case: this explains the pink cloud on the left of Figure 2.

Owl’s and Spot’s implementations of the ACD transform produce automata
with the same size, as expected. The cases that are not on the diagonal all
correspond to timeouts or tool errors. The Zielonka Tree transform, which does
not take the automaton structure into consideration, produces automata that
are on the average 2.11 times bigger (median 1.60), while its runtime is on the
average 6.55 times slower (median 0.97). Lastly, Spot’s to parity function is
not far from the optimal size given by ACD transform: on the average its output
is 3.28 times larger, but the median of that size ratio is 1.00. Similarly, it is on
the average 15.94 times slower, but with a median of 1.04.

6 Either “out-of-memory”, or “too many colors” as Spot is restricted to 32 colors.Cf. Appendix A.2
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5.3 ACD Transformation Towards State-Based Parity Automata

Sometimes it is desired to obtain an automaton with the acceptance defined over
states. A state-based parity automaton is a tuple A = (Q,Σ,Q0, ∆, ϕ : Q → N)
where (Q,Σ,Q0, ∆) is the underlying structure defined as for transition-based
automata in Section 2 (with the only difference that ∆ ⊆ Q×Σ ×Q now), and
ϕ : Q → N is a map associating colors to states. A run over A is accepting if the
minimal color visited infinitely often is even.

Let A be a TELA with ACD(A) = ⟨T1, . . . , Tk⟩. We define an equivalent
state-based parity automaton Psb-ACD(A) = (P,Σ, P0, ∆P , ϕ : P → N) as follows:

States. States are of the form (q, x), for q ∈ Q and x ∈ Tq (now the second
component corresponds to a node of the ACD that is not necessarily a leaf).
The set of initial states is the same as for PACD(A):

P =
⋃
q∈Q

{q} × Tq , P0 = {(q0, x) : q0 ∈ Q0, x the leftmost leaf in Tq0}.

Transitions. For each transition e = q
a:C−−→ q′ ∈ ∆ and (q, x) ∈ P we define

one transition (q, x)
a−→ (q′, y) ∈ ∆P . To specify the destination node y, we

distinguish two cases:

Suppose that x is a leaf in Tq. If NextBranch(x, e) is not the leftmost child
of Support(x, e) in Tq′ , then y is the leftmost leaf below NextBranch(x, e) in
Tq′ (as in the transition-based case). If NextBranch(x, e) is the leftmost child
(a “lap” around Support(x, e) is finished), then we set y = Support(x, e).

If x is not a leaf in Tq, the destination y is determined exactly as if the
transition started in (q, x′) for x′ the leftmost leaf in Tq under x.

Parity condition. ϕ((q, x)) = Depth(x), if the root of Tq is a round node, and
ϕ((q, x)) = Depth(x) + 1 otherwise.

Note that we do not have the same optimality guarantee as in the transition-
based case: If x is not a leaf in its corresponding tree, then the states of the form
(q, x) ∈ P are not necessarily reachable in Psb-ACD(A). We only need to add
those that can be reached from the initial state. However, the set of reachable
states does depend on the ordering of the children in the trees of the ACD, and
therefore the size of the final automaton depends on this ordering.

We propose a heuristic to order the children of nodes in ACD(A). Let Ti be
a tree in ACD(A) and x ∈ Ti. We define:

Di(x) = {q′ ∈ Q : q
a−→ q′ /∈ ηi(x), for some q ∈ States(ηi(x)), a ∈ Σ}.

The heuristic consists in ordering the children of a node Ti by decreasing |Di(x)|.
Experiments involving transformations towards state-based automata and test-
ing this heuristic can be found in Section 6.2.
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6 Degeneralization of Generalized Büchi Automata

The transformation of generalized-Büchi automata with n colors into Büchi au-
tomata (with a single color) is known as “degeneralization” and has been a
very common processing step between algorithms that translate temporal-logic
formulas into generalized-Büchi automata, and model-checking algorithms that
(used to) only work with Büchi automata. While it initially consisted in making
2n copies of the GBA [30, Appendix B] to remember the set of colors that had
yet to be seen, degeneralization to state-based Büchi acceptance can be done us-
ing only n+ 1 copies once an arbitrary order of colors has been selected [13]. A
similar construction to transition-based Büchi acceptance requires only n copies
of the original automaton. Different orders of colors may lead to a different num-
bers of reachable states in the Büchi automaton. Some tools even attempted to
start the degeneralization in different copies to reduce the number of reachable
states [14]. Nowadays, an implementation such as the degeneralization of Spot
implements several SCC-based optimizations [2] to reduce the number of output
states, but is still sensitive to the arbitrary order selected for colors.

6.1 Transition-based Degeneralization

This order-sensitivity of the degeneralization, even in its transition-based vari-
ant, makes a striking difference with ACD. When applied to a generalized Büchi
automaton that has some accepting and rejecting paths, the ACD-transform pro-
duces an automaton with acceptance Inf( 0 )∨Fin( 1 ). Since all transitions are ei-
ther labeled by 0 or 1 , color 1 is superfluous7 and the condition can be reduced
to Inf( 0 ). In this context, ACD-transform therefore gives us a transition-based
Büchi automaton by duplicating the fewest number of states (Theorem 1(2)).

It can be seen that the cycling around the different children of the ACD
(whose ordering is arbitrary) performed during ACD-transform is similar to the
process used in traditional degeneralization. What makes the latter sensitive to
color ordering is that it only “sees” one transition at a time, while the ACD
provides a view of the cycles. For instance a degeneralization would process
the sequence x y z0 1 differently from the sequence x y z1 0
depending on the order in which colors are expected to be encountered. However,
if there is no other transition reaching or leaving y the two colors will always be

seen together so their order should not matter: the two transitions belong to the
same node of the ACD. The propagation of colors [28] is a related preprocessing
step that can improve the degeneralization by propagating all colors common toCf. Appendix A.3

the incoming transitions of a state to its outgoing transitions and vice-versa. It
would turn the previous situation into x y z0 1 0 1 making the color
order selected by the degeneralization irrelevant (in this case).

A comparison of the output size of the traditional degeneralization imple-
mented in Spot (which includes several optimizations learned over the years)

7 In an automaton with “parity min” acceptance where all transitions are colored, the
maximal color can always be omitted and replaced by the empty set.
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570 case
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115 17 2 4

128 6 5 9

18

11 3

570 case
above diag.

235 cases
below diag.

765 cases
on diag.

Fig. 3: Two-dimensional histogram of the sizes of 1000 automata, degeneralized
to transition-based Büchi automata, using Spot’s degeneralization function (with
or without propagation of colors), or using ACD-transform.

against that of ACD-transform is given in the left plot of Figure 3. Unsurpris-
ingly, because of ACD-transform’s optimality, there are no cases where ACD
loses to Spot’s transition-based degeneralization. The use of the propagation of
colors (right of the plot) is an improvement (the non-optimal cases dropped from
419 to 235) but not a cure.

Remark 5. The input automata used in this section and the next one is a set of
1000 randomly generated, minimal, deterministic, transition-based generalized
Büchi automata, with 3 or 4 states and 2 or 3 colors. The reason for using such
small minimal automata is to be able to use a SAT-based minimization [1] on
the degeneralized state-based output in the next section to estimate how large
the gap between an optimal and our procedure is.

6.2 State-based degeneralization

If ACD is used to produce a state-based output, as explained in Subsection 5.3,
the obtained automaton is not guaranteed to be minimal with respect to locally
bijective morphisms. In this case we can obtain a weaker optimality result:

Proposition 2. Let A be a generalized Büchi automaton, and let Bsb−ACD(A)

be the state-based Büchi automaton obtained by applying the ACD state-based
transformation. If B′ be is a state-based Büchi automaton admitting a locally
bijective morphism to A, then |Bsb−ACD(A)| ≤ |B′|+ |A|.

Proof. Let B′ be a state-based Büchi automaton admitting a locally bijective
morphism to A. We can transform it into a transition-based Büchi automaton
B′
trans by setting the transitions leaving accepting states to be accepting. This

automaton has the same size than B′ and it also accepts a locally bijective
morphism to A. Therefore, by Theorem 1, we have that |BACD(A)| ≤ |B′

trans| =



14 A. Casares, A. Duret-Lutz, K.J. Meyer, F. Renkin, S. Sickert

3 4 5 6 7 8 9 10 11 12 13 14 15

SBA.acd (states)

3
4
5
6
7
8
9

10
11
12
13
14
15

S
B
A
.d
eg

en
(s
ta
te
s)

11
3 38 2
3 14 58 5
4 10 31 70 7 1

4 27 39 83 13 1
2 13 23 27 73 13
2 4 15 17 24 79 24 3

1 4 10 19 9 37 10 1
3 7 10 11 6 12 2

2 7 9 3 2 22 2
1 1 3 8 2 2 7 6 4

1 2 4 5 8 2
1 2 3 1 1 4402 cases

above diag.

96 cases
below diag.

502 cases
on diag. 3 4 5 6 7 8 9 10 11 12 13

SBA.acd.heuristic (states)

3
4
5
6
7
8
9

10
11
12
13
14
15

S
B
A
.d
eg

en
(s
ta
te
s)

11
3 38 2
3 14 61 2
4 10 37 71 1

4 36 38 86 3
2 14 25 48 61 1
2 4 18 15 36 93

1 8 11 15 28 28
3 10 14 11 7 6

4 9 8 2 4 20
1 2 10 1 4 1 15

3 6 13
1 1 1 3 6498 cases

above diag.

9 cases
below diag.
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Fig. 4: Comparison of three ways to degeneralize to state-based Büchi: (acd,
acd.heuristic) using the state-based version of ACD-transform with or without
heuristic, and (degen) classical degeneralization.
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Fig. 5: Effect of the heuristic for ordering children of the ACD, and comparison
to the minimal degeneralized automata (when known).

|B′|, where BACD(A) is the transition-based automaton obtained applying the
ACD-transformation. We claim that |Bsb−ACD(A)| ≤ |BACD(A)|+ |A| (therefore
implying that |Bsb−ACD(A)| ≤ |B′|+ |A|). Indeed, the set of states of Bsb−ACD(A)

is the union of the set of states of BACD(A) and a subset of nodes of the form
(q, ε), where ε is the root of Tq. There are at most |A| nodes of this form. ⊓⊔

Figure 4 compares three ways to perform state-based degeneralization. TheCf. Appendix A.4 for a
fourth option. ACD comes in two variants, with or without the heuristic of Section 5.3, and it

is compared against the state-based degeneralization of Spot.

Figure 5 shows how the heuristic variant compares to the one without, and
how it compares with the size of a minimal DBA, when its size could be computed
in reasonable time (in 649 cases). Note that there might not be a local bijective
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morphism between the input automaton and the minimal DBA computed this
way, nonetheless these minimal size automata can serve as a reference point to
estimate the quality of a degeneralization. Compared to this subset of minimal
DBA, the average number of additional states produced by the state-based ACD
is 0.17 with heuristics, and 0.33 without. Comparatively, Spot’s degeneralization
has an average of 1.21 extra states.

7 Deciding Typeness

We highlight now how the ACD can be used to decide typeness of deterministic
TELA. This problem, first introduced by Krishnan and Brayton [19], consists of
deciding whether we can replace the acceptance condition of a given automaton
by another (hopefully simpler) without changing the transition structure and
preserving the language (see Table 1 for a list of common acceptance conditions).

Let A = (Q,Σ,Q0, ∆, Γ, α) be a TELA. We say that A is X-type, for X ∈
{B,C,GB,GC,P,R,S}, if there is an X-automaton over the same structure,
A′ = (Q,Σ,Q0, ∆

′, Γ ′, β) (where ∆ and ∆′ only differ on the coloring of the
transitions), such that L(A) = L(A′) and β belongs to X. We emphasize that
we permit to use a different set of colors Γ ′ in A′. Some conditions can always
be rewritten as conditions of other kinds (for example, Büchi conditions can be
expressed as parity ones, so being B-type implies being P-type). We should not
confuse this notion with the expressive power of deterministic automata using
these conditions. For example, both deterministic parity automata and Rabin
automata recognize all ω-regular languages, but there are Rabin automata that
are not parity-type. Further, we say that an automaton A is weak if for every
SCC S of A, all cycles in S are accepting or all of them are rejecting.

The following result shows that the ACD is a sufficient data structure for
deciding typeness for many common acceptance conditions. We remark that the
second item adds to the results of Casares et al. [7] (this statement only holds if
transitions of automata are labeled with subsets of colors, which is not allowed
in their model). The proof of item 2

of Proposition 3 has
not been provided
previously [7] and
can be found in
Appendix A.5.

Proposition 3 ([7, Section 5.2]). Let A be a deterministic TELA such that
all its states q ∈ Q are reachable and let ACD(A) = ⟨T1, . . . , Tk⟩ be its Alternat-
ing Cycle Decomposition. Then the following statements hold:

1. A is Rabin-type (resp. Streett type) if and only if for every q ∈ Q, every round
node (resp. square node) of Tq has at most one child in Tq. It is parity-type
if and only if it is both Rabin and Streett-type.

2. A is generalized Büchi-type (resp. generalized co-Büchi-type) if and only if
for every 1 ≤ i ≤ k, Height(Ti) ≤ 2 and in case of equality, the root of Ti is
a round node (resp. square node).

3. A is weak if and only if for every 1 ≤ i ≤ k, Height(Ti) = 1.

Also, the least number of colors used by a deterministic parity automaton
recognizing L(A) is max

1≤i≤k
Height(Ti) + ν, where ν = 0 if the root of all trees of

maximal height have the same shape (round or square), and ν = 1 otherwise.
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If one of the previous conditions holds, then ACD(A) also provides an effec-
tive procedure to relabel A with the corresponding acceptance condition.

Remark 6. The ACD gives a typeness result for each SCC of the automaton,
which allows to simplify the acceptance condition of each of them indepen-
dently. Further, implications from right to left in Proposition 3 also hold for
non-deterministic automata.

Proposition 3 provides an effective procedure to check typeness of TELA:
we just have to build the ACD and verify that it has the appropriate shape.
Spot’s implementation of ACD has options to abort the construction as soon
as it detects that the shape is wrong. Moreover, if an automaton is parity-type,
the ACD provides a method to relabel the automaton with a minimal number
of colors. Finally, if the automaton already has parity acceptance, the ACD
transformation boils down to the algorithm of Carton and Maceiras [5].

8 Availability

The ACD and the transformations based on it are currently implemented in two
open-source tools: Spot 2.10 [9] and Owl 21.0 [18]. (The original developments
were independent before the authors met and worked on this joint paper.)

In Spot 2.10, the ACD can be played with using the Python bindings. The acd
class implements the decomposition, and will render it as an interactive forest of
nodes that can be clicked to highlight the relevant cycles in the input automaton.
The acd transform() and acd transform sbacc() implements the transition-
based and state-based variant of the paritization procedure. Additionally, the
acd class has options to heuristically order the children to favor the state-based
construction, or to abort the construction as soon as it is clear that the ACD
does not have Rabin or Street shape (in case one wants to use it to establish
typeness of automata). All these features are illustrated at https://spot.lrde.ep
ita.fr/ipynb/zlktree.html. In the future, ACD will be used more by the rest of
Spot, and will be one option of the ltlsynt tool (for LTL synthesis).

In Owl, the ACD transformation is available through the aut2parity com-
mand. This command reads an automaton in the HOA format [3] using arbi-
trary acceptance, and produces a parity automaton in the same format. The tool
Strix [23], which builds upon Owl, gained in version 21.0.0 the option to use the
ACD-construction as an intermediate step.

Instructions to reproduce all experiments and included in the artifact [8].

9 Conclusion

We have shown that ACD is more than a theoretically-appealing construction:
our two implementations show that the construction is very usable in practice,
and provide a baseline for further improvements. We have also shown that ACD is
a Swiss-army knife for ω-automata in the sense that it can generalize and replace
several specific constructions (paritization, degeneralization, typeness checks).

https://spot.lrde.epita.fr/ipynb/zlktree.html
https://spot.lrde.epita.fr/ipynb/zlktree.html
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Parker, D., Strejček, J.: The hanoi omega-automata format. In: Kroening, D.,
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A Additional Material

Due to the conference page limit, the following material is not part of the pub-
lished version of this article. These appendices were included in the submitted
article to be read by interested reviewers, but have not been explicitly reviewed.

A.1 Comparison to Index-Appearance-Record Construction
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Fig. 6: Comparison of ACD against IAR, when applicable.

Figure 6 shows how Owl’s implementation of the ACD transform compares to
its implementation of “IAR with preorders” [21] on the subset of 312 automata
where IAR is applicable (i.e., only Rabin or Streett inputs). In Owl 21.0, this
IAR implementation is included and can be triggered with the undocumented
owl aut2parity --iar command.

A.2 Encountered Types of Errors

Table 2 shows a count of the three types of errors that occurred during pariti-
zation of our full set of TELA. Table 3 lists the errors in Figure 6.

– Timeouts occur when the process being run takes more than 500 seconds;
this may be due to the algorithm that is benchmarked, but it can also be
caused by preliminary operations such are parsing the input automaton. In
particular, we have found that jhoafparser8, used by Owl, is quite slow, and
requires a lot of stack for its recursive implementation (stack overflow errors
have been avoided by running Owl with a larger stack in this benchmark).

– Out-of-memory errors occur when more than 5GB of memory are used.

8 https://automata.tools/hoa/jhoafparser/

https://automata.tools/hoa/jhoafparser/
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Table 2: Count of the different types of errors occurring in Figures 1–2.

OK timeout out-of-memory too-many-colors

Spot ACD trans. 1055 1 4 5
Spot ZlkTree trans. 1052 7 1 5
Spot to parity 1048 4 13
Owl ACD trans. 1046 13 6

Table 3: Count of the different types of errors occurring in Figure 6.

OK timeout out-of-memory

Owl ACD trans. 307 1 4
Owl IAR 290 1 21

– The “too-many-colors” errors are specific to Spot, which has a hard-coded
limit of 32 colors. This limit is just a default, and it can be enlarged by re-
compiling Spot, however it comes at the cost of extra memory consumption,
and slower operations in general. On this benchmark only 5 input automata
have more than 32 colors. Looking at that “too-many-colors” column, we
can observe one advantage of the ACD and Zielonka tree transformations
mentioned in Remark 4: the paritized automaton never needs more colors
than the input automaton. This is not true for to parity (which relies on
IAR or CAR) that may require more colors, and therefore has more “too-
many-colors” errors.

A.3 Propagation of Colors

Proposition 4. Given a state x, let {(qi, ai, Ci, x)}i be its set of strictly-incoming
transitions (i.e., qi ̸= x) and let {(x, a′i, C ′

i, q
′
i)}i be its set of strictly-outgoing

transitions (q′i ̸= x). Additionally, let C̃ =
⋂
Ci be the sets of colors common to

all incoming transitions, and let C̃ ′ =
⋂

C ′
i be the sets of colors common to all

outgoing transitions.

Then replacing those sets of transitions by {(qi, ai, Ci ∪ C̃ ′, x)}i and {(x, a′i,
C ′

i ∪ C̃, q′i)}i does not change the language of the automaton.

The reason this works is that any run that sees a strictly-incoming transition
infinitely often will also see a strictly-outgoing transition infinitely often, so
propagating the colors common in one set to the other one does not change the
set of colors seen infinitely often by this run.

The propagation of colors procedure discussed in Section 6 repeats the above
transformation for all states of an automaton until a fix point is reached. Figure 7
gives an example. Note that self-loops are not affected.
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Fig. 8: Comparison two state-based ACD transform variants against the state-
based conversion of the output of the transition-based ACD transform.

A.4 Degeneralization vs. State-based Conversion of ACD

While Figure 4 presents a comparison between two state-based versions of the
ACD-transform and a more classical degeneralization procedure, there is a fourth
possibility one might consider. Starting from a generalized-Büchi automaton, we
can use the transition-based version of ACD-transform, to obtain a transition-
based Büchi automaton (TBA), and then apply a classical transformation to
turn this TBA into an SBA by pushing the colors to the destination states. This
last approach is called “sbacc of acd” in Figure 8. We see that constructing a
state-based automaton during the ACD transform is generally better than doing
it afterwards.

Note that what we said below Prop. 2, can be confirmed here: there are no
case where the state-based variants of ACD are worse than “sbacc of acd”.

A.5 Checking Generalized Büchi Typeness

The proof of item 2 of Proposition 3 has not been provided previously [7], so we
provide it here.
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Proposition 3 ([7, Section 5.2]). Let A be a deterministic TELA such that all
its states q ∈ Q are reachable and let ACD(A) = ⟨T1, . . . , Tk⟩ be its Alternating
Cycle Decomposition. Then the following statements hold:

1. A is Rabin-type (resp. Streett type) if and only if for every q ∈ Q, every round
node (resp. square node) of Tq has at most one child in Tq. It is parity-type
if and only if it is both Rabin and Streett-type.

2. A is generalized Büchi-type (resp. generalized co-Büchi-type) if and only if
for every 1 ≤ i ≤ k, Height(Ti) ≤ 2 and in case of equality, the root of Ti is
a round node (resp. square node).

3. A is weak if and only if for every 1 ≤ i ≤ k, Height(Ti) = 1.

Also, the least number of colors used by a deterministic parity automaton
recognizing L(A) is max

1≤i≤k
Height(Ti) + ν, where ν = 0 if the root of all trees of

maximal height have the same shape (round or square), and ν = 1 otherwise.
If one of the previous conditions holds, then ACD(A) also provides an effec-

tive procedure to relabel A with the corresponding acceptance condition.

Proof. Generalized Büchi case: (⇒) First, we can assume that A uses a
generalized Büchi condition over Γ given by {B1, . . . , Bk}. Indeed, since it has
generalized Büchi type, there exists an automaton A′ using a generalized Büchi
acceptance condition such that ACD(A) = ACD(A′). For each SCC Sj of A, let
Cj ⊆ Γ be the set of colors appearing in Sj . If Cj∩Bi ̸= ∅ for every i ∈ {1, . . . , k},
then the cycle visiting the whole Sj is accepting and the root of Tj is a round
node. Its children are the maximal subcycles that do not contain any color of
Bl, for some l ∈ {1, . . . , k}. These cycles do not contain any accepting subcycle,
so Tj has at most height 2. If Cj ∩Bi = ∅ for some i ∈ {1, . . . , k}, then the cycle
visiting the whole Sj is rejecting and it does not contain any accepting subcycle,
so Tj has height 1.

(⇐) We will define a generalized Büchi condition over the alphabet of all
transitions of the automaton, Γ ′ = EA. Let S1 . . . ,Sk be an enumeration of the
SCC of A and let Ei be the set of edges in Si. By hypothesis, if Ti has height
2, then Ei is an accepting set; in that case, let Ai,1, . . . , Ai,si be the labels of
the children of the root of Ti (that are rejecting cycles). Let M be the maximal
number of children of such trees. We define a generalized Büchi condition with
M sets {B1, . . . , BM}, Bj ⊆ Γ ′ as follows: for each 1 ≤ i ≤ k, si is the number
of children of the root in Ti. We add to the sets Bsi+1, . . . , BM all transitions in
Ei (the condition for these sets will be trivially verified in this SCC). Let e ∈ Ei

be a transition from q to q′. If q ∈ States(Ai,j , for some j, and e /∈ Ai,j , let j′

be the next index (in a Round-Robin fashion) such that q′ ∈ States(Ai,j′) (we
set j′ = j if it does not exist). We add e to all sets Bj , . . . , Bj′−1. We claim
that the automaton with the generalized Büchi condition obtained in this way
recognizes L(A). Suppose w ∈ Σω is accepted by A. Then, the run over w in A
ends up in an accepting cycle in some Si that is not contained in any maximal
rejecting subcycle Ai,j , therefore transitions e that “leave behind” Ai,j are visited
infinitely often and colors from all Bj are produced infinitely often. Conversely,
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if w ∈ Σω is rejected, the run over w gets trapped in some rejecting cycle. If the
whole SCC containing this cycle is rejecting, no color in Bj is produced, for any
1 ≤ j ≤ M . If this cycle is contained in some Ai,j , if e ∈ Ai,j has as target q′, no
set Ai,j′ will verify that Ai,j is between Ai,j′ and the next node containing q′,
so colors in Bj are never produced and the generalized Büchi condition rejects
this run.

Generalized co-Büchi case: The implication from right to left is proved
in the same way as before. For the other implication we define a generalized co-
Büchi condition {B1, . . . , BM} as follows (we keep the same notations as before):
for each SCC Si such that Ei is a rejecting cycle, we add Ei \Ai,j to Bj (we set
Ai,j = ∅ for j > si). If the run over w ∈ Σω is accepting in A, it ends up in an
accepting cycle: if the whole SCC corresponding to this cycle is accepting, no
color in any Bj is visited. If not, this run is contained in some Ai,j , and therefore
no color in Bj is produced eventually. In both cases, we accept the run with the
generalized co-Büchi condition. Conversely, if the generalized co-Büchi condition
accepts a run over A, eventually no color in Bj is produced for some 1 ≤ j ≤ M .
The only cycles that do not contain colors in Bj are those contained in some
accepting SCC, or those contained in Ai,j , for some i. In both cases, the run is
accepting in the original automaton.
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