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James R. Glass1

1 CSAIL at MIT, Cambridge, MA, USA; 2 DSPG, RLE at MIT, Cambridge, MA, USA;
3 MIT Lincoln Laboratory, Lexington, MA, USA; 4 LRDE, Paris, France

ABSTRACT

The majority of speaker verification systems proposed in the NIST
speaker recognition evaluation are conditioned on the type of data to
be processed: telephone or microphone. In this paper, we propose
a new speaker verification system that can be applied to both types
of data. This system, named blind system, is based on an extension
of the total variability framework. Recognition results with the pro-
posed channel-independent system are comparable to state of the art
systems that require conditioning on the channel type. Another ad-
vantage of our proposed system is that it allows for combining data
from multiple channels in the same visualization in order to explore
the effects of different microphones and collection environments.

Index Terms— Total variability space, PLDA, LDA, WCCN.

1. INTRODUCTION
Over the last five years, several channel compensation approaches
were proposed for speaker verification. Hoverer, Joint Factor Analy-
sis (JFA) [1] became one of the more popular approaches. This tech-
nique was proposed in the context of the Gaussian Mixture Model
(GMM) framework in order to model between speaker variability
and to compensate for channel effects. The basic assumption of the
JFA approach is that a high dimensional GMM supervector for a
given utterance can be decomposed into the addition of two parts:
The first part depends on the speaker, which contains the useful in-
formation, and the second depends on the channel, which models the
information that we need to compensate for.

Recently, in [2], we proposed a new speaker verification system
that uses factor analysis techniques for feature extraction rather than
separate speaker and channel modeling, as is done in JFA [1]. In this
new approach, every speech recording is mapped into a single low-
dimensional total variability vector named total factors. Unlike JFA,
there is no distinction between the speaker and intersession variabil-
ities in the GMM supervector space. The channel compensation in
the new approach is carried out in the low-dimensional total variabil-
ity space instead of the GMM supervector space. It is comprised of
a combination of Linear Discriminant Analysis (LDA) and Within
Class Covariance Normalization (WCCN) [2]. The speaker verifica-
tion decision score is obtained using the cosine similarity computed
between the target and test total factors. The total variability space
was first applied in the context of telephone data of the NIST speaker
recognition evaluation. However, an extension of this approach was
also proposed in the context of the microphone data as well [3]. This
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approach consists of stacking extra total factors estimated on the mi-
crophone data to the original telephone total factors. An extension
of the LDA and WCCN combination was also proposed to handle
the interview condition.

In the context of NIST Speaker Recognition Evaluations (SRE)
[4], all proposed speaker verification systems are conditioned on the
type of data (telephone or interview) to be used. In this paper we
propose a new single total variability system, that can be applied si-
multaneously for both telephone and microphone data without prior
knowledge about the data type being processed. This new system is
also based on the total variability space stacking for both telephone
and interview data as proposed in [3]. However, we will show how
Probabilistic Linear Discriminant Analysis (PLDA) [5] can be used
to project both telephone and interview total factors into a common
space. In this new space, an LDA and WCCN combination was also
applied to further compensate for remaining channel effects.

A data visualization technique, first proposed in the context of
speaker verification in [6], is used as both an exploratory and anal-
ysis tool. The technique uses graph embedding, graph layout and
visualization software [7] to visualize all speech utterances within a
data-set of interest. This is done in a manner that groups similar, as
set by the score of the blind system, utterances together. With this
tool we are able to highlight the efficacy of the blind system, as well
as the crucial role of WCCN/LDA in removing channel variability.

2. TOTAL VARIABILITY SPACE
The total variability space proposed in [2] models both the speaker
and channel variabilities simultaneously. It is defined by the total
variability matrix, which contains the eigenvectors with the largest
eigenvalues of the total variability covariance matrix. In this new
model, we make no distinction between the speaker and the chan-
nel effects in the GMM supervector space, as compared to JFA [1]
which does. For a given speech utterance, the speaker- and channel-
dependent GMM supervector is represented by the following equa-
tion

M = m + Ttelw (1)

where m is the Universal Background Model (UBM) supervector,
the low rank matrix Ttel defines the total variability space estimated
on telephone speech, and the vector w is the speaker- and session-
dependent factors in the total variability space. The w vectors are
random variables distributed according to the Normal distribution
N (0, I).

The large success of this new approach on the telephone data of
the NIST-SRE is mainly due to the large amount of telephone data
used to train the total variability matrix Ttel. An extension of the
total variability space to the interview data of the NIST evaluation
is proposed in [3]. It is based on estimating extra total variability

4536978-1-4577-0539-7/11/$26.00 ©2011 IEEE ICASSP 2011



components on the interview data and stacking them with the origi-
nal telephone components. The new space is composed of the con-
catenation of both telephone and interview matrices. Note that the
total variability components of the interview data are complemen-
tary to the telephone data (the two spaces are not independent). The
stacking approach was proposed in order to solve the problem of im-
balance in the quantity of telephone and microphone data. The new
speaker- and channel-dependent supervector for a given utterance
can be obtained as follows

M = m + Nŵ (2)

whereN = [Ttel, Tint] is the new total variability matrix composed
of the concatenation of both the telephone and microphone data to-
tal variability matrices. The vector ŵ is the speaker- and session-
dependent factor in the new telephone and microphone total variabil-
ity space. An important characteristic of this new modeling is that
the microphone data lives in the full total variability space defined
by both telephone and interview matrices [Ttel, Tint]. However, the
telephone data lives only in the original telephone space obtained
by the telephone total variability matrix Ttel. To project both tele-
phone and microphone data in the same space, we used Probabilistic
Linear Discriminant Analysis (PLDA) [5], which is described in the
next section.

3. PROBABILISTIC LDA
PLDA is similar to the JFA approach but applied in the low-
dimensional total variability space rather than the GMM supervector
space [1]. It was introduced and used in face recognition [5]. The
new total factor ŵ for a given utterance can be generated using the
following process:

ŵ = μ + V y + Ux + ε, (3)

where μ is the mean over all training examples. The matrix V de-
fines the speaker subspace (eigenvoices matrix), and U defines a ses-
sion subspace (eigenchannels matrix). The vectors y and x are the
speaker and session dependent factors in the respective subspace and
each is assumed to be a random variable with a Normal distribution
N (0, I). The term ε models the residual noise not captured with the
matrix U , and is modeled by a full covariance matrix Σ. To apply
PLDA for speaker verification, we first need to estimate the PLDA
hyper-parameters θ = (μ, V, U, Σ) based on a maximum likelihood
approach given appropriate labeled development corpora [5].

3.1. Hyper-Parameter Training

We use a maximum likelihood approach, divided into two steps, to
train the PLDA parameters that is quite different from the approach
in [5]. The first step consists of estimating μ, V and Σ under the as-
sumption that U = 0. In the second step, we estimate separately the
channel matrix U by fixing the parameters μ, V and Σ. This train-
ing regime is similar to JFA training as proposed in [1]. The reason
for this training split is that the first set of parameters (μ, V, Σ) are
trained only on telephone data, while the matrix U is trained on mi-
crophone data.

3.1.1. Training (μ, V, Σ)

To estimate these parameters, we used the same EM algorithm as
proposed in [5]. We started our training with a random initialization
of the three parameters (μ, V, Σ). In the E-step of the EM algorithm,
we need to estimate the posterior distribution of the hidden variable

y for a given speaker i. This distribution has a Gaussian form with
mean vector and covariance matrix defined as follows
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where J corresponds to the number of recordings for a given speaker
i. The M-step consists of updating the values of the three PLDA
parameters based on the means and covariance matrices for all the
speakers’ hidden variables as evaluated in the E-step. The new pa-
rameter values that maximize the likelihood, are given as follows
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where I is the number of speakers in the training corpora and J
corresponds to the number of recordings for each speaker i.

3.1.2. Training U

Training the channel matrix U on the microphone data is quite sim-
ilar to the matrix V training. Before estimating the channel matrix,
we need to remove the telephone variability already captured by the
first set of parameters (μ, V, Σ) from the total factors of the micro-
phone data. For a given speaker’s microphone recordings, we used
the first set of parameters already trained in telephone data to esti-
mate a single speaker factor vector for all these recordings using a
MAP point estimate. This speaker factor vector is then used to cen-
tralize the entire microphone total factors of the same speaker. The
matrix U re-estimation equation corresponds exactly to the equation
(7) except that we modify the term μ corresponding to the mean of
the entire speakers population by yi which is the speaker factor vec-
tor of a given speaker i.

3.2. Score Evaluation

Similar to [2], the decision score is evaluated using a modified ver-
sion of the cosine similarity between the target and test speaker-
dependent factors based on the LDA andWCCN projection matrices.
It is given by the following equation.
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´t
W−1

`
Atytest

´
q
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t
W−1 (Atytarget).

q
(Atytest)

t
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(9)

where A is the LDA projection matrix and W is the within class
covariance matrix. Unlike our previous system configuration [2],
both matrices are trained on both telephone and microphone data.

4. DATA VISUALIZATION
The visualization begins by embedding the speech utterances in a
given data-set in a nearest neighbor (NN) graph. The embedding
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Table 1. Corpora used to estimate the UBM, total variability matrix
(T ), PLDA, LDA and WCCN.

UBM T PLDA LDA WCCN
μ, V , Σ U

Switchboard
II X X X X

Switchboad
Cellular X X X X

Fisher En-
glish X

NIST 04,
05, 06 Tel X X X X X

NIST 05,
06 Mic X X X X

NIST 08
dev, test X X X X

creates a graph of vertices and edges, where the vertices represent
the utterances and undirected edges represent connections, based on
similarity, between a pair of points. The embedding places an edge
between two vertices if they are among the K-NNs of each other,
where the distance is the cosine distance obtained by comparing all
pairs of utterances using the blind system. It is important to note that
the full comparison of all pairs using the blind system is a compu-
tationally cheap step since each comparison corresponds to an inner
product in a 600 dimensional space. In the resulting NN-graph the
location of the vertices is not important, only the existence of the
edges between them does. The graph is then “laid out”; the process
of choosing vertex locations, in a manner that would result in good
visualization, specifically grouping highly connected utterances with
each other. We use the GUESS [7] software package to perform both
the visualization and the layout using the GEM algorithm [8]. Meta
data can then be overlaid on the graph by varying the colors and
shapes of the vertices, e.g. coloring all utterances from the same
speaker in the same manner. This overlaid information allows for
understanding structures that emerge in the visualization.

5. EXPERIMENTS
Our experiments operate on cepstral features, extracted using a
25ms Hamming window. 19 mel frequency cepstral coefficients
together with log energy are calculated every 10 ms. Delta and dou-
ble delta coefficients were then calculated using a 5 frame window
to produce 60-dimensional feature vectors. This 60-dimensional
feature vector was subjected to feature warping using a 3s sliding
window. We used gender dependent UBMs containing 2048 Gaus-
sians. Table 1 summarizes all corpora used to estimate the UBM,
total variability matrix, PLDA, LDA and WCCN.

To compare our new approach (blind system) with condition-
dependent systems in the telephone data, we built two different sys-
tems. The first system is a total variability system trained only on
telephone data similar to [2]. We estimated a total variability ma-
trix of dimension 600. LDA was used to reduce the dimension to
250, and then WCCN is applied to normalize the cosine kernel. The
scores were zt-normalized based on a set of impostors taken from
the telephone data. The blind system is based on 600 total factors
trained on telephone speech and 200 total factors trained on micro-
phone data. PLDA is used to project both telephone and microphone
total factors into the same space of dimension 600. Another dimen-
sion reduction based on classical LDA is applied to reduce the space

Table 2. Comparison of results between conditioned and blind sys-
tem on the core telephone condition of the NIST 2010 SRE (det5).
The results are given on Equal Error Rate (EER) and minimum De-
tection Cost Function (DCF)

Systems Female Male
EER DCF EER DCF

Conditioned 2.56% 0.608 1.73% 0.384
Blind 2.96% 0.481 1.92% 0.352

to 250 dimensions. The WCCN technique is then used to normalize
the cosine kernel in the reduced space (250).

All our experiments were carried out on the extended trials of the
core condition of the NIST 2010 SRE. It is composed by telephone
conversation data of 5 minutes and interview data of 3 minutes. A
comparison of the results between the conditioning and blind system
in the tel-tel condition (det5) is reported in Table 2. These results are
given on the EER and the new MinDCF point [4].

The results reported in Table 2 show that both systems achieved
equivalent results for male trials. However, the blind system ob-
tained better MinDCF compared to the conditioned system. Adding
microphone data to train the blind system did not hurt the perfor-
mance of the system in telephone data. The DET curve given in Fig-
ure 1 presents the performance of the blind system on the interview
data of the core condition of the NIST 2010.
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Fig. 1. The performance of the blind system on the interview data.

5.1. Data Visualization

In this section, A data analysis based on visualization is proposed
in order to study the channel effects in the context of the blind sys-
tem. We will present only male utterances as they paint the clearest
picture, however similar results are observed with female utterances.
The graphs show all male utterances of the core conditions of the
2010 extended NIST SRE, and the number of NNs is set toK = 3.

We will begin by showing the efficacy of the blind system by
using the system in building the NN-graph. Figure 2 shows the re-
sultant visualization with speaker meta-data overlaid such that utter-
ances of the same speaker are colored alike. The clusters of similar
color, representing clusters of utterances of the same speaker, show
that the system is indeed assigning lower distance values to pairs of
utterances of the same speaker.
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Fig. 2. Graph visualization of all Male utterances of the NIST SRE
2010. It is based on using the full blind system with speaker meta
data overlaid.

Next we examine the importance of the channel compensation
performed by the combination of WCCN/LDA. To do this we build
a NN-graph using the blind system without the WCCN/LDA step,
the corresponding visualization is in Figure 3. We notice that the
speaker clustering observed with the full blind system is no longer
visible, however there does seem to be some structure to the graph.

Fig. 3. Graph visualization of all Male utterances of the NIST SRE
2010. It is based on using the blind system without LDA/WCCN
channel compensation with speaker meta data overlaid.

Further exploration, by overlaying channel meta-data, shows
that the structure can be attributed to channel variability. Figure 4
shows the layout of the NN-graph using the blind system without
WCCN/LDA with: colors representing different telephone and mi-
crophone channels, the node shape representing the two different
rooms the interview data was collected in. Upon careful inspection
of the graph, one notices that the room accounted for more variabil-
ity than the interview microphones, specifically for the far talking
microphones: MIC CH 05/07/08/12/13. Another observation is
that the two phone numbers corresponding to the land-line phones
located in each of the rooms (215573qqn and 215573now) cluster
near the interview data, and specifically near the close talking and
desk microphones: MIC CH 02/04.

This ability to visualize and explore the dominant variability
within a data-set may prove to be a useful tool when dealing with
newly collected data-sets, and the relatively low computation cost of

the cosine distance scoring allows for handling large corpora.

Fig. 4. Graph visualization of all Male utterances of the NIST SRE
2010. It is based on using the blind system without LDA/WCCN
channel compensation with channel meta data overlaid.

6. CONCLUSION

This paper presents a new single speaker verification system that can
be applied simultaneously, without conditioning, to both telephone
and interview data of the NIST SRE, and achieves state of the art
performance in both. This system, which is based on the cosine
similarity, allowed us to use data visualization to show the channel
effects in the data and how the LDA and WCCN combination can
compensate for them.
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