
Modeling of Sensor Networks Using XRM
Akim Demaille Sylvain Peyronnet Benoı̂t Sigoure

EPITA Research and Development Laboratory (LRDE)
14-16 rue Voltaire

94276 Le Kremlin-Bicêtre
France

akim@lrde.epita.fr syp@lrde.epita.fr Benoit.Sigoure@lrde.epita.fr

Abstract—Wireless sensor networks are composed of small
electronic devices that embed processors, sensors, batteries,
memory and communication capabilities. One of the main goals
in the design of such systems is the handling of the inherent
complexity of the nodes, exarcerbated by the huge number of
nodes in the network. For these reasons, it becomes very difficult
to model and verify such systems. In this paper, we investigate
the main characteristics of sensor nodes, discuss the use of a
language derived from Reactive Modules for their modeling, and
propose a language (and a tool set) that facilitate the modeling
of this kind of system.

I. INTRODUCTION

Wireless Sensor Networks (WSNs) are composed of very
large numbers of small electronic devices that embed pro-
cessors, sensors, batteries, memory and communication capa-
bilities. Since such networks are conceptually very different
from classical networks, new algorithms that can handle their
specificities are required.

Several methods can be used to analyze the correctness and
performance of such distributed algorithms. One of them is
probabilistic model checking, an algorithmic method for the
verification of probabilistic systems with respect to quantita-
tive properties. The method is based on the construction of
a mathematical model of the system and on the expression
of the specification in some temporal language. The model
represents all the possible states of the system, and the
probabilities of the transitions that can occur between these
states. More precisely, evaluating the satisfaction probability
of a temporal property is reduced to the resolution of a system
of linear equations over the state space. However, due to
the state space explosion phenomenon during the modeling
step, the representation of the transition matrix can be so
large that the verification becomes intractable. To overcome
this phenomenon, symbolic and numerical methods have been
introduced in tools such as PRobabilistic symbolIc Model
Checker (PRISM) [1]. Recently, a different model checking
technique emerged implemented in Approximate Probabilistic
Model Checker (APMC) [2]. Using this technique one can
approximately compute the probability that a model meets
its specifications. The computation time is not necessarily
lowered, but the memory consumption drops considerably.
These two approaches are complementary and a good way
of using both methods is to verify a small but accurate system
with a tool such as PRISM and then run APMC on bigger

models but with less accuracy (APMC gives approximate
results and does not handle nondeterminism).

Luckily, PRISM and APMC use the same input language:
the PRISM input language, which is a variant of the Reactive
Modules (RM) language for concurrent systems [3]. However,
WSNs are so complex that it is mostly impossible for a human
to write clear modeling of sensor nodes and their interactions.
As a result it could be of interest to use pre-processing tools
for modeling large and complex systems.

The main contribution of this paper is to present eXtended
Reactive Modules (XRM), a syntactic pre-processor, particu-
larly adapted for WSN, that can generate RM models. This
tool set is available for download [4], and can be tested on
line.

The structure of the paper is as follows. In Section II
we present the specifics of WSNs that result in making the
modeling of such systems difficult. In Section III we present
eXtended Reactive Modules (XRM), a language suitable for
the modeling of WSNs, and more generally very large systems.
Finally, in Section IV we show, through an example, the
interest of using XRM.

II. WIRELESS SENSOR NETWORKS

In this section we review the specificities of WSNs that
result in making the modeling of such systems difficult, and
present existing approaches.

A. Main characteristics of wireless sensor networks
More information can be found in [5], [6].
1) Network topology and scalability: The main issue with

WSN is the size of the network (ranging from hundreds to
millions of nodes) and the fact that the topology is complex.
Indeed, sensor nodes are generally spread randomly, thus
leading to a random communication topology. Moreover, due
to the fact that nodes have a limited amount of energy, nodes
can leave the network at any moment. This has a direct impact
on the modeling: it is no longer possible to have the same
behavior for each sensor node (it becomes dependent on the
topology which is no longer uniform).

2) Fault tolerance: Distributed algorithms for WSNs must
be fault tolerant. In order to verify such a property, it is
mandatory to model failures. This is usually done by applying
a Poisson distribution of not having a failure. It is not a
problem in itself, but it adds transitions in the Continuous-
Time Markov Chain (CTMC) underlying the system.

akim@lrde.epita.fr
syp@lrde.epita.fr
Benoit.Sigoure@lrde.epita.fr

3) Environment: Sensors are supposed to be deployed
directly into some extreme environment. Thus they may be
modified directly by interactions with the environment: the
modeling must take it into account.

4) Power consumption: Sensor node up-time is dependent
on the battery lifetime. Power management is one of the main
difficulties in the design of sensor nodes. From a modeling
point of view, it is necessary to be able to model the power
consumption. This adds again to the complexity of the mod-
eling.

B. Existing Approaches to Model Generation

Approximate probabilistic model checking has already been
applied to large systems such as WSNs. Because this paper
focuses on an extension of RM, we will focus particularly on
APMC.

In [?], in order to verify a WSN Media Access Control
(MAC) layer, the authors wrote 306 lines of shell script and
287 lines of RM. The scripts generate C preprocessor (cpp)
macros. These macros are run to model the WSN topology (a
graph).

In an ongoing study of an atomic broadcast protocol [7],
389 lines of shell script driving cpp and 543 lines of RM are
used. The use of a preprocessor was prompted, again, by the
topology, but also by the lack of features such as lists.

In [8], as a simple approximation, the WSN topology
is represented as a regular grid with holes. To handle the
repetition, M4 [?], a powerful macro processor, is used. It
is particularly well suited to extend language since it was
designed and implemented to implement Rational Fortran
(RATFOR) [9], an extension of Fortran. In order to generate
various models, the authors drove M4 using a shell script. The
whole implementation comprises almost 2,000 lines of M4,
and 246 of script. In Section IV we investigate the suitability
of XRM to generate similar models.

The common problems with these approaches are:
• total lack of verification, invalid code can easily be

generated, eventually resulting in error messages about
generated code;

• need to learn auxiliary tools;
• need to develop a whole framework, which may distract

the practitioner from her true objective.

III. EXTENDED REACTIVE MODULES LANGUAGES

RM does not allow one to program large models, which
penalizes tools based on it such as PRISM and APMC. To
overcome these problems, one may extend either tool (and its
language), in which case specific optimizations tailored to this
tool are possible. Nevertheless we consider the limitation of
the extension to a single tool as a shortcoming. In addition,
working directly on production tools written in Java (PRISM
and APMC) is inconvenient. So we are working toward
designing an extended language, and its preprocessor.

eXtended Reactive Modules (XRM) provides a set of ex-
tensions that make RM suitable for WSN modeling. XRM
addresses the issues raised in Section II-B: allowing the

practitioners to focus on their modeling (instead of on the
tools they need), to be more productive (by providing high-
level easy-to-use constructs and informative error reporting),
and to produce better modeling implementations (thanks to
dedicated optimizations).

Optimizing is not just a feature, it is a requirement. Indeed,
it is well known that factored implementations are less efficient
than highly specialized hand-tuned implementations, a fact
referred to as the “abstraction penalty”. In model checking,
where the model size can exceed the capacity of our tools, we
cannot afford to pay the abstraction penalty: to be usable in
practice, the generated models must be as well crafted as if it
were hand-written.

A. Features

The XRM language is an extension to RM to ease the
implementation of large scale models. In addition to syntactic
details (e.g., one may write end instead of endmodule), it
provides features to program large systems, in a structured
manner. Specific optimizations are provided, including partial
evaluation. Property specifications also benefit from these
features.

The XRM preprocessor is implemented using the Strat-
ego/XT tool set [10], a complete set of language-generic
tools for program transformation. It features most prominently
generalized parsing, capturing any context-free language, and
the Stratego programming language, which provides powerful
term-rewriting rules driven by strategies. This environment
proved to be immensely useful to prototype and develop XRM.

We discuss the aspects of XRM that are of particular benefit
when modeling WSNs. For a more thorough presentation of
XRM and its implementation, see [11].

1) Scalability: The most troublesome drawback of RM for
WSNs, and more generally for large modelings, is its lack of
features to instantiate entities automatically. To work around
that issue, most practitioners use auxiliary tools to generate a
large number of modules from a template.

Although RM does provide means to instantiate a new
module from another through variable renaming, this feature
is rarely used for a number of reasons. First, the “generator”
is an existing module that will be part of the resulting model,
which prevents using pseudo variables names. As an example,
consider a single chain of modules transmitting input from
their “left” to their “right”. One must write

module m1
s1 : bool init false;
[] s0 -> 1: s1 ’= true;

endmodule
module m2 = module m1 [s0 = s1, s1 = s2];
module m3 = module m1 [s0 = s2, s1 = s3];

whereas it is much easier to use a template, a generator of
modules:

module gen
this : bool init false;
[] prev -> 1: this ’= true;

endmodule
module m1 = module gen [prev = s0, this = s1];

module m2 = module gen [prev = s1, this = s2];
module m3 = module gen [prev = s2, this = s3];

Unfortunately this implementation is incorrect in RM: gen
will be part of the verification, it is a module, not a module
template.

Private variables add complexity, since, they too, should
be renamed. To address both issues of scalability and auto-
matic generation, XRM features (multidimensional) arrays and
loops. The above example can be written as

for i from 1 to 3 do
module m[i]

s[i] : bool init false;
[] s[i-1] -> 1: s[i]’ = true;

end
end

2) Functions: Functions provide the most primitive form of
factoring in programming languages. Because RM is not meant
for large and repetitive models, it provides only a simple form
of functions: non-recursive formulas. In XRM formulas may
also contain “statements” such as updates:

formula tick = t’ = t + 1;

RM formulas cannot have arguments, whereas XRM formu-
las accept any number of typed arguments. Besides expected
types — int, double, and bool — XRM provides the exp
type which enables passing arbitrary (well-formed) code. For
instance

formula incr (exp var) = var’ = var + 1;

XRM formulas can be recursive, a feature heavily used to
specify large model properties (see Figure 5 for instance).

formula fact (int n) = n <= 1 ? 0 : n * fact (n - 1);

XRM provides additional built-in operators and functions,
such as the generation of random values: rand (42..51)
returns a different random integer at each invocation, while
each occurrence of static_rand (42..51) will be sub-
stituted by a “constant” random integer.

Formulas, or rather functions, prove to be extremely handy
to develop large models, see Figure 3 for a real case use
of extended functions. Actually, none of these functions is
a standard RM formula.

3) Specialization: In some cases modules represent similar
components but cannot be obtained from each other by simply
making name changes. In the previous chain example, consider
the leftmost and rightmost modules. One may implement them
specifically, but if the modules were actually on a grid there
would be many more special cases. What if they were on a
free form graph? XRM provides control structures that allow
the user to specify points of variation in the implementation
of modules, for instance

const int first = 1, last = 5;
for i from first to last do

module m[i]
s[i] : bool init false;
if i = first then

[] event -> 1: s[i] ’= true;
else if i = last then

[] s[i-1] -> 1: alarm ’= true;
else // i != last

[] s[i-1] -> 1: s[i] ’= true;
end

end
end

or better (also valid when first = last)
module m[i]

s[i] : bool init false;
if i != last

[] i = first ? event : s[i-1] -> 1: s[i] ’= true;
else // i = last

[] i = first ? event : s[i-1] -> 1: alarm ’= true;
end

end

Note that in either case the code expansion requires intelligent
evaluation of code. Consider an extreme case where first
= last = 1, the expansion of the loop gives
module m[1]

s[1] : bool init false;
[] i = first ? event : s[1-1] -> 1: alarm ’= true;

end

where the underlined expression must not be computed: it
results in an out-of-bound access. In this case, the XRM
compiler will properly generate three classes of different
modules: leftmost, center, and rightmost. As a full scale use
of this feature, see the formula ears in Figure 3: it has
24 = 16 possible expansions, representing all the possible
neighborhoods for a cell in a grid (including the extreme cases
where a dimension is reduced to one or zero cells).

To account for less regular topologies while keeping the
model as simple as possible, there are no constraints on “array”
indexes. For instance you may declare and use only s[i][i]
with i ∈ [1..100] (100 slots). In most other programming
languages, this requires declaring 100× 100 slots.

4) Properties: Not surprisingly, every feature useful to
model a large system helps to write its specifications. It
was also noted in existing approaches (Section II-B) that the
properties were also built using not only the same parameters,
but also common formulas. Taking this common use into
account, XRM features properties ... end sections
into which the user can write its specifications (see Figure 5).
The XRM compiler produces a separate file.

IV. CASE STUDY

In [8] APMC is used to verify WSNs. The authors re-
ported APMC suits WSN verification, although it exhibits
a few shortcomings. Since then, these limitations have been
addressed, most notably the addition of support for CTMC
[12]. Overcoming the limitations of the input language, RM,
prompted the development of XRM.

As a case study of XRM, we consider the re-implementation
of the simple WSN verification proposed in [8]. For instance,
consider a forest gridded by sensors whose purpose is to
carry fire alerts to the edge. The modeling is presented in
the following section, then its implementation in XRM, and
finally a comparison with the ad-hoc approach from [8].

LISTEN

BROADCAST

SENSE

SLEEP

0.5

!ears

ears

0.5

!senses

senses

First the sensor is sensing its environment (state sense).
If it detects fire, it goes directly to the state broadcast
and stays in it forever (that is, it sends without interruption
a signal to its neighbors). Otherwise it goes to state
listen, where the sensor is listening to its neighborhood.
If it catches a broadcast, it goes to broadcast in order to
forward the information, otherwise it sleeps (state sleep)
for a while: with equiprobability it goes back to sense
or listen.

Fig. 1. Sensor node behavior taken from [8]

A. A Modeling

The topology of the WSN is modeled as a rectangular
grid. If a sensor detects an event in its cell, it broadcasts
the information to its four neighbors (see Figure 1). This
simplistic definition of the neighboring of each sensor provides
a realistic approach to wireless connectivity. Any sensor in
any cell could be down, thus this grid topology is only
used by our simulation mechanism to emulate a realistic
geographic distribution. Related work on WSNs makes the
same assumption, and these logical grids may be built using
distributed algorithms [13], [14], or physically realized using
a GPS and an election algorithm to ensure that at most one
sensor is present in each logical cell of the grid.

With this grid model, it is semantically equivalent to model
the sensor or the cell, but the latter is much easier. Each
cell can be active (there is a live sensor) or inactive (there is
none or it ran out of energy). Each cell has a simple behavior
(Figure 1).

Real field experiments have demonstrated that wireless
broadcast communication from small and low-cost units are
usually unreliable. Often, messages fail to reach direct neigh-
bors, and may communicate with more remote components
of the field. This unreliable communication media is modeled
here in the LISTEN state. Since each sensor independently
may not be in LISTEN state when a neighbor broadcasts, a
message may be lost. The probability law of the LISTEN state
encompasses the algorithm’s behavior and the medium losses.

To model power consumption, a simple model was chosen:
each time a sensor leaves a state, a state-dependent amount

// Grid (even) dimensions.
const int X = 10, Y = 10;

// Initial energy, percentage of lost cells.
const int POWER = 15, LOSS = 50;

// States.
const int OFF = 0, SLEEP = 1, SENSE = 2,

LISTEN = 3, BROADCAST = 4;

// Energy consumption for each state.
const int COST_SLEEP = 1, COST_SENSE = 1,

COST_LISTEN = 3, COST_BROADCAST = 3;

Fig. 2. Parameters of the modeling

// Whether (x, y) are valid sensor coordinates.
formula valid (int x, int y) =

0 <= x & x < X & 0 <= y & y < Y;

// Whether (x, y) is valid, and broadcasting.
formula broadcasts (int x, int y) =

valid (x, y) & s[x][y] = BROADCASTS;

// Whether a neighbor of (x, y) is broadcasting.
formula ears (int x, int y) =

broadcasts (x - 1, y) | broadcasts (x + 1, y)
| broadcasts (x, y - 1) | broadcasts (x, y + 1);

// Whether the event (middle cell) is detected.
formula senses (int x, int y) =

x = X / 2 & y = Y / 2;

// Consume c units of power.
formula consume (int x, int y, int c) =

b[x][y]’ = b[x][y] < c ? 0 : b[x][y] - c;

// Reach state st if energy allows it.
formula set_state (int x, int y, int st) =

s[x][y]’ = (0 <= b[x][y]) ? st : OFF;

module timer
t : [0..666] init 0;

end

// Transition to the next state st, consuming c.
formula transition (int x, int y, int st, int c) =

t’ = t+1 & consume(x, y, c) & set_state(x, y, st);

The module timer and the formula transition main-
tain a global variable t which is the time. It is not used
in the modeling, but in the properties to be verified.

Fig. 3. Formulas

of energy is subtracted. Now that CTMCs are supported by
APMC, it is possible to relate consumption to time.

The initial instant coincides with the detection of the fire,
that is to say, the (center) grid cell broadcasts immediately.
The robustness of the WSN is evaluated by measuring the
probability that the alert is reported at specified time intervals.
To test the robustness, we change the initial conditions: a
percentage of sensors randomly lost on the grid.

B. The Implementation in XRM

XRM makes the implementation simple and concise: the
whole implementation is included. Parameters are introduced

for x from 0 to X - 1 do
for y from 0 to Y - 1 do

module sensor[x][y]

s[x][y] : [0..4] init (static_rand (0, 100) < LOSS) ? OFF : SENSE;
b[x][y] : [0..POWER] init POWER;

[] s[x][y] = SENSE -> 1: transition (x, y, senses (x, y) ? BROADCAST : LISTEN, COST_SENSE);
[] s[x][y] = LISTEN -> 1: transition (x, y, ears (x, y) ? BROADCAST : SLEEP, COST_LISTEN);
[] s[x][y] = SLEEP -> 0.5: transition (x, y, SENSE, COST_SLEEP)

+ 0.5: transition (x, y, LISTEN, COST_LISTEN);
[] s[x][y] = BROADCAST -> 1: transition (x, y, BROADCAST, COST_BROADCAST);

end
end

end

Fig. 4. The WSN Model in XRM

// A broadcast in (x, y..Y - 1)?
formula X_broadcasts (int x, int y) =

valid (x, y)
& (broadcasts (x, y) | X_broadcasts (x, y + 1));

// A broadcast in (x..X - 1, y)?
formula Y_broadcasts (int x, int y) =

valid (x, y)
& (broadcasts (x, y) | Y_broadcasts (x + 1, y));

// A broadcast in the perimeter?
formula boundary_broadcasts =

X_broadcasts (0, 0) | X_broadcasts (X - 1, 0)
| Y_broadcasts (0, 0) | Y_broadcasts (0, Y - 1);

properties
for T from 0 to 1200 step 100 do

// Alarm triggered before instant T?
P =? [true U (t <= T & boundary_broadcasts)];

end
end

The properties to verify can be specified in a separated
file, or embedded in the “master” XRM file, as is the case
above, in order to share parameters and formulas.

Fig. 5. The WSN Properties in XRM

in Figure 2, useful formulas in Figure 3, and the grid itself in
Figure 4. The grid is implemented via two nested for loops.
Each sensor has two variables to store its current state and
energy level. Then the set of possible transitions with specified
probabilities are given.

The last section of our XRM file, containing the properties,
is given in Figure 5. Specifying properties of the model to
verify takes a similar amount of work for large systems. In
the running example, the system meets its specifications if
the alarm is properly delivered to the boundaries of the grid.
Again, looping constructs are required, but given that side
effects are prohibited, we use XRM’s support of recursion to
implement formulas such as X_broadcasts, which checks
whether a cell in a column is broadcasting.

We can use APMC to approximate the probability that
several formulas are verified in one run. In [8] this feature
was heavily used to extract “delivery” graphs: the probability
that the message was delivered at regular intervals of time.

As a result, the properties need XRM features: functions
(extended formulas), loops, and so on. Because properties can
be embedded in the same XRM file as the model, they easily
share the parameters and formulas.

C. Benefits of XRM

Using XRM vastly simplified the redevelopment of the
model described by [8]. The initial implementation represents
246 lines of shell script, 1,769 lines of M4 general macros
and 257 lines of dedicated macros. It takes about 10 lines of
shell and 54 lines of XRM.

1) Domain Specific Compiler: The first and foremost ad-
vantage of using the XRM compiler instead of hand-crafted
tools is almost invisible: because you actually use a true
compiler rather than a simple macro processor, there are
genuine validity tests and error reporting features. Developing
a large model is tedious and error-prone, one may easily
make out-of-bounds mistakes, swap arguments, etc. If lucky,
the resulting code will be incorrect and rejected by the RM
engine; yet the error will be reported against unreadable, non-
indented, generated code instead of against the high-level
source. If unlucky, the error will remain unnoticed, and will
“only” render the verification meaningless. Using the XRM
tool set, several high level sanity checks are performed (bounds
checking, type checking, warnings for unreachable states, etc.)
and possible errors are reported against the genuine source.

Ironically, although there is less point in looking at ex-
panded XRM, it is by far more readable than that of hand-
made preprocessors. Contrary to the latter ones that expand
macros blindly, unaware of the structure of the host language,
the former builds an Abstract Syntax Tree (AST) of the
program which is transformed and pretty-printed back into
properly indented RM source.

2) Domain Specific Syntax: Because XRM is truly de-
veloped as an extension to RM, its syntax was crafted to
fit, unlike general purpose macro preprocessors. In addition,
external tools require special tags separating macro language
from host language; for instance, consider all the additional
square brackets when using M4 in Figure 6. In addition, to
avoid identifiers from one world to be captured by the other,

Build the sensor at X,Y.
m4_define([rm_sensor],
[module S[]rm_id([$1], [$2])

rm_state_definition([$1], [$2])
rm_battery_definition([$1], [$2])

rm_rule1([$1], [$2], SENSE, m4_if(m4_eval(rm_event == rm_location([$1], [$2])), 1, BROADCAST, LISTEN))
rm_rule1([$1], [$2], LISTEN, rm_neighbors_broadcast($1, $2) ? BROADCAST : SLEEP)
rm_rule2([$1], [$2], SLEEP, 0.5, SENSE, 0.5, LISTEN)
rm_rule1([$1], [$2], BROADCAST, BROADCAST)

endmodule
])

m4_for([X], [0], rm_max_x, [1],
[m4_for([Y], [0], rm_max_y, [1],

[rm_sensor([X], [Y])
])])

This is the original code from [8]. Interestingly in their Fig. 2 the authors did not show exactly this code (entangled with M4
code), but rather some abstraction of the code they “meant”. Contrast this to Figure 4.

Fig. 6. The WSN Model Generated in RM using the M4 Macro Processor

name conventions are required, hence all the rm_ and m4_
prefixes. XRM features scopes, that is to say that an identifier
might serve different purposes in a different location without
risking unexpected captures. Finally, the calling convention
for functions can be tailored to be consistent with the host
syntax: see how XRM functions support both named and typed
arguments (Figure 3) as opposed to M4 for instance (macro
rm_sensor in Figure 6).

3) Domain Specific Tool: Designed to fulfill our needs
to model WSNs, and set to meet the expectations of the
practitioner, XRM allows its users to be more productive. Its
syntax, simple and consistent with RM, makes the learning
curve gradual. Thanks to its dedicated tool set, the edit-
compile-debug cycle is short. Because the tools exist, the prac-
titioner is not distracted by the need to implement sophisticated
shell-scripts. Finally, because the compiler features various
optimizations (like dead code removal), the model might be
even easier to verify.

V. CONCLUSION

In this paper, we have presented eXtended Reactive Modules
(XRM), a syntactic pre-processor for Reactive Modules (RM)
well suited for modeling large systems such as wireless sensor
networks. Using XRM it is possible to generate RM models
(suitable for PRISM [1] and APMC [2]). In the future, we
might directly use the high-level model: highly factored, it is
inexpensive to run directly in an environment such as APMC.

ACKNOWLEDGMENTS

We thank Martin Bravenboer, from the Stratego/XT team,
for his continuous help during the development of XRM. The
anonymous referees suggested very useful changes in this
paper. Stephen Frank reported mistakes.

REFERENCES

[1] M. Z. Kwiatkowska, G. Norman, and D. Parker, “Probabilistic sym-
bolic model checking with PRISM: A hybrid approach,” in Tools and
Algorithms for Construction and Analysis of Systems, 2002, pp. 52–66.

[2] T. Hérault, R. Lassaigne, F. Magniette, and S. Peyronnet, “Approximate
probabilistic model checking.” in VMCAI, ser. Lecture Notes in Com-
puter Science, B. Steffen and G. Levi, Eds., vol. 2937. Springer, 2004,
pp. 73–84.

[3] R. Alur and T. A. Henzinger, “Reactive modules.” in LICS, 1996, pp.
207–218.

[4] “Xrm web page,” 2006, http://projects.lrde.epita.fr/Xrm.
[5] D. E. Culler, D. Estrin, and M. B. Srivastava, “Guest editors’ introduc-

tion: Overview of sensor networks.” IEEE Computer, vol. 37, no. 8, pp.
41–49, 2004.

[6] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “Wireless
sensor networks: a survey.” Computer Networks, vol. 38, no. 4, pp. 393–
422, 2002.

[7] M. Cadilhac and J. Oudinet, “Private communication,” 2006.
[8] A. Demaille, S. Peyronnet, and T. Hérault, “Probabilistic verification

of sensor networks,” in Proceedings of the Fourth IEEE International
Conference on Computer Sciences, Research, Innovation and Vision for
the Future (RIVF’06), Ho Chi Minh City, Vietnam, February 2006.

[9] B. W. Kernighan, “RATFOR – a rational fortran,” in Workshop on
Fortran Preprocessors, Pasadena, Calif., November 1974, p. 3.

[10] E. Visser, “Program transformation with Stratego/XT: Rules, strategies,
tools, and systems in StrategoXT-0.9,” in Domain-Specific Program
Generation, ser. Lecture Notes in Computer Science, C. Lengauer et al.,
Eds. Spinger-Verlag, June 2004, vol. 3016, pp. 216–238. [Online].
Available: http://www.cs.uu.nl/research/techreps/UU-CS-2004-011.html

[11] B. Sigoure, “eXtended Reactive Modules,” EPITA Research and
Development Laboratory (LRDE), Tech. Rep., 2006. [Online]. Available:
http://publications.lrde.epita.fr/200607-Seminar-Sigoure

[12] T. Hérault, R. Lassaigne, and S. Peyronnet, “APMC 3.0: Approximate
verification of discrete and continuous time markov chains,” in Proceed-
ings of Qest 2006, 2006, to appear.

[13] R. Friedman and G. Korland, “Timed grid routing (TIGR) bites off
energy,” in Proceedings of MobiHoc 2005, 2005.

[14] J. Hightower and G. Borriello, “Location systems for ubiquitous com-
puting,” IEEE Computer, vol. 34, no. 8, pp. 57–66, August 2001.

http://projects.lrde.epita.fr/Xrm
http://www.cs.uu.nl/research/techreps/UU-CS-2004-011.html
http://publications.lrde.epita.fr/200607-Seminar-Sigoure

	I Introduction
	II Wireless Sensor Networks
	II-A Main characteristics of wireless sensor networks
	II-A1 Network topology and scalability
	II-A2 Fault tolerance
	II-A3 Environment
	II-A4 Power consumption

	II-B Existing Approaches to Model Generation

	III Extended Reactive Modules Languages
	III-A Features
	III-A1 Scalability
	III-A2 Functions
	III-A3 Specialization
	III-A4 Properties

	IV Case Study
	IV-A A Modeling
	IV-B The Implementation in xrm
	IV-C Benefits of xrm
	IV-C1 Domain Specific Compiler
	IV-C2 Domain Specific Syntax
	IV-C3 Domain Specific Tool

	V Conclusion
	References

