
Compiler Construction as an Effective Application

to Teach Object-Oriented Programming

Akim Demaille Roland Levillain∗

EPITA Research and Development Laboratory (LRDE)
14-16, rue Voltaire; FR-94276 Le Kremlin-Bicêtre; France

Abstract

Compiler construction: a course feared by most
students, and a competence seldom needed in
the industry. Yet we claim that compiler con-
struction is a wonderful subject that benefits
from virtually all the computer-science topics.
In this paper we show in particular why Com-
piler Construction (CC) is a killer example for
Object-Oriented Programming (OOP), provid-
ing a unique opportunity for students to under-
stand what it is, what it can be used for, and
how it works.

1 Introduction

The curriculum at epita, a French private
computer science university, emphasizes prac-
tical implementation projects. Ten years ago
the decision was made to assign a large scale
project. The requirements included OOP, de-
sign patterns [8], best software engineering prac-
tices (including tests, documentation, and ver-
sion management), C++ and teamwork manage-
ment. Compiler Construction (CC) provided a
nice application topic, hence the inception of the
Tiger compiler project [3].

Over three (optionally five) months, while
they are taught C++, undergraduate students
implement stage after stage a compiler in C++

for an Object-Oriented Language (OOL): Tiger
[1, 5]. The CC lecture and the project courses
are integrated. Since “students will (most
likely) never design a compiler” [2] CC is not
the primary goal. The teaching objectives are
focused on the process, the “how”, not the
“what.”

Therefore rarely used tools or languages that
are tailored for CC are not used. The compiler

∗Also with Université Paris-Est, LABINFO-IGM,
UMR CNRS 8049, A2SI-ESIEE, Cité Descartes, BP 99,
FR-93162 Noisy-le-Grand Cedex, France

itself is as simple as possible. The core assign-
ment produces Intermediate Representations
(IRs); skillful students are encouraged to work
till completion, producing assembly language.
See [3, 4] for more details.

Claims and Outline Based on our ten-year
experience, we claim that carefully crafted CC is
an OOP killer example. Deep understanding of
compiler is not required for this paper, Figure 1
provides a crash course. Section 2 presents four
features of compilers that make them unique to
demonstrate OOP. Section 3 explains how the
course and project are bound. In Section 4 we
provide additional support for our claim, includ-
ing feedback from the students. Finally, we con-
clude in Section 5.

2 The OO Crossing

OOP is surprisingly adequate to address some
of the data and algorithms used by compilers
(Section 2.1). At a higher level, the global ar-
chitecture of a compiler and its components fully
benefit from object-orientation (Section 2.2). Of
course a compiler for an OOL is particularly
suited to help understanding what’s OOP (Sec-
tion 2.3). And finally, students get an in-depth
knowledge of the OOL they implemented their
compiler in (Section 2.4).

2.1 Data and Algorithms

Compilers use a large number of data structures
and algorithms, which, of course, benefit from
OOP. More importantly, some of them pro-
vide an excellent introduction to the design of a
class hierarchy, and others require tortuous im-
plementations if not handled via OOP.

1



Mandatory
task

Optional
task

Execution
flow

Dependency

Parse Bind Type

Translate DesugarBounds 
Checking Inline

RenameProgram

IR

Dereify

A compiler typically features three parts: the front-end analyzes the input program, the middle-end
is independent of the source and target languages, and the back-end generates the output program
in the target language. This figure focuses on the front-end.

First, the source is parsed, resulting in an Abstract Syntax Tree (AST). The AST is the main data
structure of the front-end; it is analyzed/annotated/modified by the various modules. Then the bind
task implements scoped name analysis: it matches identifier uses with their declaration. The types
are checked. Renaming all the identifiers so that they are unique simplifies later transformations.
Object Oriented (OO) structures are translated into object-less equivalent constructs at the dereify
stage. Function inlining is an optimization, desugaring translates high-level constructs into more
primitive ones, and bound-checking instruments the code to catch out-of-bounds array accesses.
Finally, the front-end translates into an Intermediate Representation (IR), passed to the middle-end.

Figure 1: Crash course on the Tiger compiler front end.

Ast

Exp Dec ...

Int ... Function ...For Bin

Arith Comp

Figure 2: AST hierarchy.

2.1.1 Abstract Syntax Tree

The Composite design pattern is probably the
most emblematic example of OOP: what can be
a simpler introduction to hierarchies than the
one of an AST?

Source languages are described thanks to a
grammar composed of terminal symbols (also
called tokens) such as INTEGER or ‘+’, and of
non-terminal symbols such as expression or
statement. A grammar is a set of rules that
define the relations between the symbols, for in-
stance:
/∗ Exp ∗/ exp:

/∗ Int ∗/ INTEGER
| /∗ Add ∗/ exp ”+” exp
| /∗ For ∗/ ” for ” IDENTIFIER ”:=” exp ”to” exp ”do” exp
| /∗ Many more rules. ∗/

To each syntactic symbol corresponds a class of
the AST, and the hierarchy directly reflects the

grammar rules (see Figure 2). In the above ex-
ample, the classes Int, Add and For all derive
from the Exp class. The distinction between ab-
stract and concrete classes arises naturally: Exp
denotes a disjunction of cases, but “does not ex-
ist by itself”.

Student can be driven to provide smarter hi-
erarchies by considering the properties of the
symbols. The handling of the binary opera-
tors (arithmetic, order, equality) shows this very
well. They all have two operators, which should
be factored in a Bin(ary) class. From the type
checking point of view, there are two groups:
those that apply to integers and strings (order
and equality) and those that apply on numbers
only. This can be reflected by two additional ab-
stract classes, Arith(metic) and Comp(arison).

Even with the simplest processing of an
AST—because there can be many classes—
students quickly spot redundancies and factor.
Many invent the Template Method design-
pattern when implementing the AST pretty-
printer: all the Bin descendants first display a
‘(’1, then the left-hand side, the operator, the
right-hand side and finally ‘)’. The general tem-
plate is implemented in the Bin class, and the
specific part (the operator) is delegated to the
sub-classes.

1Without the parentheses ‘(1+2)*3’ would be dis-
played as ‘1+2*3’. ‘((1+2)*3)’ is longer than needed,
but correct.

2



2.1.2 Translation To Intermediate Rep-
resentation

The final stage of the front end, Translator,
translates the AST into some IR used by the
middle end. It exhibits an interesting problem
which is very cleanly handled by OOP. The
translation of some constructs depends on their
use. For instance a < b used as a statement can
be simply discarded (think of ‘(void) a < b;’
in C), used as an expression it should be nor-
malized to 0 or 1, and used as a conditional in
an if statement, it naturally translates into a
conditional branching instruction. Traditional
traversals of the AST cannot cope nicely with
the way a node is used : it requires that the pro-
cessing of a child knows the type of its parent
(and in some cases, of its ancestors!).

Appel [1] suggests a beautiful OOP im-
plementation: translation nutshells. Instead
of returning the completed translation of a
node, convert each AST construct into a proto-
translation, a nutshell whose type depends on its
actual nature. There are three proto-translation
types: Expression (values involved in com-
putations), Statement (expressions whose val-
ues are discarded, loops, etc.), and Comparison
(expressions well-suited for branching). Then
a parent completes the translation of a child
by calling a method that depends on its
need: as statement, as expression, and
as condition.

2.1.3 Language Extensions

We submit challenging optional tasks to keep
skillful students interested. Language exten-
sions (overloading support, additional primi-
tive types, etc.) are a good topic, but they re-
quire that base stages be extended to support
the new constructs. This is cleanly handled
by OOP: sub-class the visitors (e.g., derive an
OverloadTyper from the Typer to compute the
types of overloaded routines).

2.2 Architecture and Design Pat-
terns

Although compilers were amongst the most
complex pieces of software 50 years ago, today
the bird-eye view of their architecture is usually
surprisingly simple: a sequence of transforma-
tions2 (or tasks).

2These transformations can be complex and in the
case of optimizing compilers their scheduling is complex;
this is not the case in a pedagogic compiler.

DefaultVisitor

Visitor

PrettyPrinter ...

OverloadTyper

Binder Typer ...Translator

Figure 3: Visitor hierarchy.

All the stages in the front end apply on the
AST. Instead of continuously editing the AST
classes, the Visitor design pattern is used.
This pattern is a convenient implementation
of traversals that decouples the algorithm (the
traversal) from the data (the AST). The rele-
vance of this pattern is perfectly well understood
by the students because they deliver milestones
of their compiler: at each new stage we provide
new components (e.g., visitors with gaps) which
they simply add to their project. Using classi-
cal virtual methods instead or Visitors would
prevent modularity, since they require students
to alter the base classes, that they may already
have adjusted to their needs, to add new behav-
iors.

Common parts in the visitors, starting with
the traversal itself, provide a nice impetus for
more OOP: introduce a visitor hierarchy to fac-
tor common parts (see Figure 3).

The whole compiler is “customizable”, sup-
porting 60 modules and a large variety of dif-
ferent configurations, including optional assign-
ments (see Figure 1). The explicit sequencing
between the different tasks would be cumber-
some to write, a maintenance nightmare. The
different stages of the compiler are therefore ex-
pressed as Task objects that declare their de-
pendencies (dashed arrows in Figure 1) to the
scheduler which computes the effective sequence
(solid arrows). This is an instance of the Com-
mand design pattern.

Other design patterns fit compilers, too
many to enumerate. Of course Singletons
are. . . numerous (e.g., memory pool). The Fly-
weight pattern factors occurrences of an iden-
tifier to a single one. Not only does it save space,
but it also dramatically speeds up the handling
of identifiers: string operations (hashing, equal-

3



ity, order) become single CPU instructions on
pointers.

2.3 Object-Oriented Source Lan-
guage

Students get special insight with OOP when im-
plementing an OOL.

2.3.1 Understanding the Semantics

In our experience, most students quickly under-
stand what OOP is: encapsulation, data hiding,
inheritance and polymorphism. They also are
quickly able to make profit of object-orientation
in most situations. Yet, most lack a precise and
formal view of what an OOL is. Students who
read language standards are rare (and should be
hired immediately), usually they content them-
selves from what the courses and the course
book provide: more of a tutorial than a refer-
ence guide.

Studying a simple language, with well de-
fined semantics, allows the teacher to focus on
the key components of OOL, to emphasize the
dark corners (such as covariance vs. contravari-
ance issues), or even to highlight design choices
made invisible by the syntax (the dot notation,
‘obj.fun(arg)’, hides the fact that polymor-
phism is usually restrained to the first argument,
‘obj’).

Believing that we understand specifications is
one thing, implementing them is another.

2.3.2 Understanding the Dynamics

The best means to feel the “Ah ah!” effect on
OOP is to implement it.

Sticking to its guideline, the Tiger project
makes sure that students’ attention is not dis-
rupted from the topic, OOP, by devoting a well
defined and isolated task to it: “de-reification”.
This task transforms an object-oriented Tiger
program into a plain Tiger project. Because it
works on the high-level language instead of some
low-level machine code, students of every skill
can understand it. Because no other process-
ing is performed, the attention is fully devoted
to the mechanism of OOP. In addition, it is
the opportunity to present different implemen-
tation of OOP, based of vtables as in C++, or
on dispatching functions [13].

Thanks to this insight students can bring
OOP into non-object-oriented languages (when
they are not given the choice on the implementa-
tion language). Yet they are still able to explain

why support from the compiler, rather than a li-
brary, is a better option.

2.4 Object-Oriented Implementa-
tion Language

Finally, as a piece of software, the compiler must
be written in some programming language. Ob-
viously, since there are many opportunities for
object-oriented design in a compiler (see Sec-
tion 2.1 and 2.2), an OOL is well-suited. But
which one? We chose C++ over more recent lan-
guages like Java or C# for a number of reasons.

Rigorous and Demanding As Stroustrup
[11] puts it himself “C makes it easy to shoot
yourself in the foot; C++ makes it harder, but
when you do it blows your whole leg off”. As
any sharp tool, C++ can provide excellent re-
sults when mastered, or return itself against a
lazy programmer. This is not the case of some
“too comfortable languages” such as Java [7].

Multi-paradigm C++ supports a wide spec-
trum of programming styles. For instance,
we teach different memory management tech-
niques: Resource Acquisition Is Initialization
(RAII) (a C++ idiom), flyweight pool, refer-
ence counting. This is impossible in garbage-
collected languages. Generic Programming
(GP) is heavily used: generic containers and
generic algorithms are numerous. Parts use
Functional Programming (FP), and even meta-
programming: programs run at compile-time [4,
Goals Sections].

Existing Libraries C++ often looks poor
compared to other OOL when it comes to its
standard library, STL [10]. For instance it does
not even provide hash tables! But using stock
C++ today would be weird: knowing and us-
ing Boost [12] is part of the C++ curriculum.
Boost libraries are excellent material for teach-
ing OOP, GP, and FP: these peer-reviewed
libraries enlighten good C++ practices, design
patterns, code factoring and reusing, as well as
portability.

3 Course and Project

Managing such a project, spanning three to five
months, with more than two hundred and fifty
students per class, i.e., from about four hun-
dred compiler deliveries (the project is made in

4



groups of 4 students, with 6 deliveries), is a chal-
lenge in itself.

Organization The Tiger team is composed of
(i) one teacher who manages the project, writes
the assignments and examinations, maintains
the reference compiler, (ii) some co-maintainers
who contribute mandatory or optional parts
of the compiler, (iii) about twenty assistants,
students of the previous class willing to assist
younger students. They are also in charge of
oral examinations.

We use Web sites to publish information,
mailing lists to coordinate ourselves, and pub-
lic newsgroups for asynchronous discussion with
the students. A 200+ page document [4] details
all the assignments and makes explicit what stu-
dents are expected to learn. It also proposes
ideas of optional extensions for the most enthu-
siastic students.

The project starts after students have com-
pleted a “Languages, Automata, Grammars,
Parsing” course. To learn the language they
first have to write a significant program in Tiger.
They will use this assignment, together with
other provided big programs, to exercise their
compilers. Almost concurrently they start writ-
ing the scanner and parser. At the same period
C++ lectures start.

One Milestone Assignment and support
code for a stage are typically published on a
Monday, and the delivery is two to three weeks
afterward. In the meanwhile, the assistants are
available at almost any time. On the Friday at
noon, students must have uploaded their pack-
age on the Web site. It launches the automated
testing procedure, which evaluates every stage
of the compiler. It computes a global correction
grade, giving higher penalties to errors in ear-
lier phases. The result is published to the mem-
bers of the group who may decide to “re-upload”
within two days, which causes a 10% penalty.
The following week the oral examination is or-
ganized. One assistant spends about 45mn with
a group, asking questions, evaluating answers,
browsing the code, and helping students to un-
derstand and overcome their problems.

Tools In such a large environment, automa-
tion is salvation. Many auxiliary tools were
written [6] to ensure via a daily build that the
reference compiler suffers no regression, to check

the students packages, to run the test suites, to
generate the documentation samples, to gener-
ate the AST, to produce the code delivered to
student etc. Many of these tools are free soft-
ware, available from the project’s Web site [9].

4 Discussion

We conducted a survey at the end of the year
among 204 students, to ask them which no-
tions they thought were best taught by the com-
piler assignment. The item with the best mark
(3.58/5) was “understanding how programming
languages work”, followed by “object-oriented
modeling and design patterns” (3.18/5) and
“C++” (3.07/5), which all three are actually
the main goals aimed at by the project. How-
ever, we were surprised to find that program-
ming languages were felt as better taught than
C++, as we put the emphasis on the latter item
rather than on the former during courses and
the project. We think that using a more com-
plex OO source language to be compiled ac-
tually helped the students to apply what they
had learned, and better understand how object-
oriented languages work. This idea is indeed
confirmed by the fact that students seemed to
have overcome most of the difficulties intro-
duced by the OO constructs in the front-end:
according to the survey, the parts considered as
the less difficult ones were “name binding” and
“type-checking” – the ones that were actually
the most affected by the OO extension.

Over the years the project became easier, and
less ambitious [3]. Infrastructure is also pro-
vided for highly skilled students. As an unex-
pected result, proficient students had lost some
interest in the project: they felt the pleasure of
writing a compiler was stolen from them. To
meet their expectations, each stage now offers a
set of options. They range from easy to ambi-
tious and provide more insight into CC (which is
not the purpose of the core assignment). Thanks
to this infrastructure, new refinements were pro-
posed, and more students implemented options.

As the project is long and teaches many sub-
jects, it is usually perceived by students as hav-
ing a strong impact on their schooling. During
yearly debriefings, many of them report that
the project was demanding. However we have
received good reports from alumni each year
about the project, sometimes several years af-
ter their graduation! Frequent remarks include
the actual effectiveness of the project at teach-

5



ing design patterns, and that they are currently
using them in their daily work. Many of them
report that they have gained a status of expert
w.r.t. C++, design, development process and
tools among their team. And sometimes they
even admit they reused a technique from the
Tiger Compiler in their current project, almost
as-is! Though informal, we rate these “success
stories” as a good indicators of the relevance of
the project at teaching modern and accurate OO
and C++ design and programming.

5 Conclusion

In this paper, we have reported a ten-year ex-
perience on how Compiler Construction can be
profitable to teach OOP to computer science
students. Key ideas include the use of OO
principles both as a tool (the compiler given
as assignment) and as an object of study (the
source language of this compiler); assignments
with many steps and code with gaps; and a
good toolset to help students understand and
develop their compiler. We believe that good ex-
amples of pedagogical OO assignments must ex-
hibit advanced, carefully crafted material: C++

and modern tools and idioms have proved to be
very valuable assets to that intent. Our Tiger
compiler assignment has changed over the years
to follow the evolution of our OO course, and
will continue to serve as one of our major peda-
gogical platform in the forthcoming years.

Acknowledgments We thank Alexandre
Duret-Lutz for his proofreading and comments.

References

[1] Andrew W. Appel. Modern Compiler Imple-
mentation in C, Java, ML. Cambridge Univer-
sity Press, 1998.

[2] Saumya Debray. Making compiler design rele-
vant for students who will (most likely) never
design a compiler. In Proceedings of the
33rd SIGCSE technical symposium on Com-
puter science education, pages 341–345. ACM
Press, 2002. ISBN 5-58113-473-8. doi: http:
//doi.acm.org/10.1145/563340.563473.

[3] Akim Demaille. Making compiler construction
projects relevant to core curriculums. In Pro-
ceedings of the Tenth Annual Conference on In-
novation and Technology in Computer Science
Education (ITICSE’05), pages 266–270, Uni-
versidade Nova de Lisboa, Monte da Pacarita,
Portugal, June 2005. ISBN 1-59593-024-8.

[4] Akim Demaille and Roland Levillain.
The Tiger Compiler Project Assignment.
EPITA Research and Development Lab-
oratory (LRDE), 14-16 rue Voltaire, FR-
94270 Le Kremlin-Bicêtre, France, 2007.
http://www.lrde.epita.fr/~akim/ccmp/

assignments.pdf.

[5] Akim Demaille and Roland Levillain. The
Tiger Compiler Reference Manual. EPITA Re-
search and Development Laboratory (LRDE),
14-16 rue Voltaire, FR-94270 Le Kremlin-
Bicêtre, France, 2007. http://www.lrde.

epita.fr/~akim/ccmp/tiger.pdf.

[6] Akim Demaille, Roland Levillain, and Benôıt
Perrot. A set of tools to teach compiler con-
struction. In Proceedings of the Thirteenth An-
nual Conference on Innovation and Technology
in Computer Science Education (ITICSE’08),
Universidad Politécnica de Madrid, Spain,
June 2008.

[7] Robert B. K. Dewar and Edmond Schon-
berg. Computer science education: Where
are the software engineers of tomorrow?
CrossTalk, The Journal of Defense Software
Engineering, 21(1):28–30, January 2008. URL
http://www.stsc.hill.af.mil/CrossTalk/

2008/01/0801DewarSchonberg.html.

[8] Erich Gamma, Richard Helm, Ralph John-
son, and John Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Soft-
ware. Addison-Wesley Professional Computing
Series. Addison-Wesley Publishing Company,
New York, NY, 1995.

[9] LRDE. Tiger project home page, 2000. http:

//tiger.lrde.epita.fr/.

[10] Alexander Stepanov, Meng Lee, and David
Musser. The C++ Standard Template Library.
Prentice-Hall, 2000.

[11] Bjarne Stroustrup. Bjarne Stroustrup’s
FAQ. http://www.research.att.com/~bs/

bs_faq.html, September 2008.

[12] The Boost Project. Boost C++ libraries. http:
//www.boost.org/, 2008.

[13] Olivier Zendra, Dominique Colnet, and
Suzanne Collin. Efficient dynamic dis-
patch without virtual function tables: the
SmallEiffel compiler. ACM SIGPLAN No-
tices, 32(10):125–141, 1997. ISSN 0362-
1340. doi: http://doi.acm.org/10.1145/263700.
263728. URL http://smarteiffel.loria.fr/

papers/oopsla97.pdf.

6

http://www.lrde.epita.fr/~akim/ccmp/assignments.pdf
http://www.lrde.epita.fr/~akim/ccmp/assignments.pdf
http://www.lrde.epita.fr/~akim/ccmp/tiger.pdf
http://www.lrde.epita.fr/~akim/ccmp/tiger.pdf
http://www.stsc.hill.af.mil/CrossTalk/2008/01/0801DewarSchonberg.html
http://www.stsc.hill.af.mil/CrossTalk/2008/01/0801DewarSchonberg.html
http://tiger.lrde.epita.fr/
http://tiger.lrde.epita.fr/
http://www.research.att.com/~bs/bs_faq.html
http://www.research.att.com/~bs/bs_faq.html
http://www.boost.org/
http://www.boost.org/
http://smarteiffel.loria.fr/papers/oopsla97.pdf
http://smarteiffel.loria.fr/papers/oopsla97.pdf

	1 Introduction
	2 The OO Crossing
	2.1 Data and Algorithms
	2.1.1 Abstract Syntax Tree
	2.1.2 Translation To Intermediate Representation
	2.1.3 Language Extensions

	2.2 Architecture and Design Patterns
	2.3 Object-Oriented Source Language
	2.3.1 Understanding the Semantics
	2.3.2 Understanding the Dynamics

	2.4 Object-Oriented Implementation Language

	3 Course and Project
	4 Discussion
	5 Conclusion

