
Derived-Term Automata of
Weighted Rational Expressions with

Quotient Operators

Akim Demaille, Thibaud Michaud

akim@lrde.epita.fr, tmichaud@lrde.epita.fr
EPITA Research and Development Laboratory (LRDE)
14-16, rue Voltaire, 94276 Le Kremlin-Bicêtre, France

Abstract. Quotient operators have been rarely studied in the context of
weighted rational expressions and automaton generation—in spite of the
key role played by the quotient of words in formal language theory. To
handle both left- and right-quotients we generalize an expansion-based
construction of the derived-term (or Antimirov, or equation) automaton
and rely on support for a transposition (or reversal) operator. The result-
ing automata may have spontaneous transitions, which requires different
techniques from the usual derived-term constructions.

1 Introduction

There are several well-known algorithms to build an automaton from a rational
expression. We are particularly interested in the construction of the derived-
term automaton, pioneered by the derivatives of Brzozowski [4], improved as
partial derivatives by Antimirov [3], and generalized to weighted expressions by
Lombardy and Sakarovitch [13].

Thiemann [16] explores the properties of rational expression operators that
enable the construction of the derived-term automaton. In particular, he shows
that the left- and right- quotients are not “ε-testable”, and that transposition
(aka reversal) is neither “left nor right derivable”. Our purpose is to show how
expansions allow to overcome these issues and succeed in supporting the operators.

Our contributions include (i) a proof of the “super S” property, (ii) an
extension of rational expressions to support transpose, left- and right-quotient
operators, (iii) an algorithm to build the derived-term automaton of such an
expression which requires (iv) the support of spontaneous transitions in derived-
term automata.

We settle the notations and left quotient in Sect. 2. Rational expansions
are introduced and computed from an expression in Sect. 3; they are used in
Sect. 4 to construct the derived-term automaton. Handled in a different way, the
transpose operator is introduced in Sect. 5 and used to define the right quotient.
In Sect. 6 we present related work and conclude in Sect. 7.

2 Akim Demaille, Thibaud Michaud

〈11〉(ab∗) + 〈2〉a \ (〈3〉(a+ b) + 〈5〉(aa∗) + 〈7〉(ab∗))
〈6〉

a∗

b∗

〈10〉ε

〈14〉ε, 〈11〉a

a

b

Fig. 1. The derived-term automaton of our running example,
E1 := (〈2〉a) \ (〈3〉(a + b) + 〈5〉aa∗ + 〈7〉ab∗) + 〈11〉ab∗.

Vcsn is a free-software platform dedicated to weighted automata and rational
expressions [9]. All of constructs presented in this paper can be experimented
from a simple web-browser1.

2 Notations

Our purpose is to introduce a left-quotient operator \ for weighted rational
expressions (e.g., E1 := (〈2〉a) \ (〈3〉(a+ b) + 〈5〉(aa∗) + 〈7〉(ab∗)) + 〈11〉(ab∗),
weights are in angle brackets), and to build an equivalent automaton from it
(Fig. 1). To this end we compute the rational expansion of an expression [7]:

d(E1) =

Label︷︸︸︷
ε︸︷︷︸

First

�
[

Polynomial (Sect. 2.3)︷ ︸︸ ︷
Weight︷︸︸︷
〈6〉︸︷︷︸

Immediate Constant term

� 1 ⊕ 〈10〉 �
Expression (Sect. 2.2)︷︸︸︷

a∗ ⊕
Monomial︷ ︸︸ ︷
〈14〉 � b∗︸︷︷︸

Derived term

]
⊕

Label︷︸︸︷
a︸︷︷︸

First

�
[
Polynomial︷ ︸︸ ︷
〈11〉 � b∗

]

︸ ︷︷ ︸
Expansion (Sect. 3.1)

Expansions can be thought as a (non unique) normal form for expressions.
Defining them requires several concepts, introduced bottom-up in this section.

2.1 Rational Series

Series are to weighted automata what languages are to Boolean automata. Not
all languages are rational (denoted by an expression), and similarly, not all series
are rational (denoted by a weighted expression). We follow Sakarovitch [15].

Let A be a (finite) alphabet; a word m is a finite sequence of letters of A. The
empty word is denoted ε. The set of words is written A∗, and A? denotes A∪{ε}.
A language is a subset of A∗. Let 〈K,+, ·, 0K, 1K〉 be a commutative semiring
whose multiplication will be denoted by implicit concatenation. A (formal power)
series over A∗ with weights (or multiplicities) in K is any map from A∗ to K.
The weight of a word m in a series s is denoted s(m). The empty series, m 7→ 0K,

1 See the interactive environment, http://vcsn-sandbox.lrde.epita.fr, or the com-
panion notebook, http://vcsn.lrde.epita.fr/dload/doc/ICTAC-2017.html.

http://vcsn-sandbox.lrde.epita.fr
http://vcsn.lrde.epita.fr/dload/doc/ICTAC-2017.html

Title Suppressed Due to Excessive Length 3

is denoted 0; for any word u (including ε), u denotes the series m 7→ 1K if m = u,
0K otherwise. Equipped with the pointwise addition (s+ t := m 7→ s(m) + t(m))
and the Cauchy product (s ·t := m 7→∑

u,v∈A∗|u·v=m s(u) ·t(v)) as multiplication,

the set of these series forms a semiring denoted
〈
K〈〈A∗〉〉,+, ·, 0, ε

〉
.

The constant term of a series s, denoted sε, is s(ε), the weight of the empty
word. A series s is proper if sε = 0K. The proper part of s, denoted sp, is the
proper series which coincides with s on non empty words: s = sεε+ sp (or, with
a slight abuse of notations s = sε + sp).

Star. A weight k ∈ K is starrable if its star , k∗ :=
∑
n∈N k

n, is defined. We
suppose that K is a topological semiring , i.e., it is equipped with a topology, and
both addition and multiplication are continuous. Besides, it is supposed to be
strong , i.e., the product of two summable families is summable. This ensures
that K〈〈A∗〉〉, equipped with the product topology derived from the topology on
K, is also a strong topological semiring. The star of a series is an infinite sum:
s∗ :=

∑
n∈N s

n.
To prove the correctness of our construct (Proposition 6), we will need a

property of star (Proposition 2) which follows from the following result. In
various forms it is named the “denesting rule” [11, p. 57], the “property S” [15,
Propositions III.2.5 and III.2.6], or the “sum-star equation” [10, p. 188]. Proofs
can be found for the axiomatic approach of star (based on Conway semirings),
but we followed the topology-based one, for which we did not find a published
version.

Proposition 1 (Super S). Let K be a strong topological semiring. For any
series s, t ∈ K〈〈A∗〉〉, if s∗ε, (tεs

∗
ε)
∗, and (sε + tε)

∗ are defined and (sε + tε)
∗ =

s∗ε(tεs
∗
ε)
∗, then (s+ t)∗ = s∗(ts∗)∗.

Proof. This proof climbs from restricted forms (e.g., s being a weight and t being
proper) to the general cases using previous steps. See Appendix A.1. ut

All the usual semirings (Q,R,Rmin,Log, etc.) are strong topological semirings,
in which if s∗ε, (tεs

∗
ε)
∗, and (sε + tε)

∗ are defined then (sε + tε)
∗ = s∗ε(tεs

∗
ε)
∗.

Proposition 1 (and Proposition 2) actually do not need K to be commutative.

Proposition 2. Let K be a strong topological semiring. Let s ∈ K, t ∈ K〈〈A∗〉〉,
if s∗, (tεs

∗)∗, and (s+ tε)
∗ are defined and (s+ tε)

∗ = s∗(tεs∗)∗ then (s+ t)∗ =
s∗ + s∗t(s+ t)∗.

Proof. The result follows from Proposition 1, and from (ts∗)∗ = ε+ (ts∗)(ts∗)∗:
(s+t)∗ = s∗(ts∗)∗ = s∗(ε+(ts∗)(ts∗)∗) = s∗+s∗t(s∗(ts∗)∗) = s∗+s∗t(s+t)∗. ut

Left Quotient. Like Li et al. [12], we define the left quotient by series s of series
t as: s \ t := v 7→∑

u∈A∗ s(u) · t(uv).

Proposition 3 (Quotient is bilinear [12, Proposition 6]).
For weight k ∈ K and series s, s′, t, t′ ∈ K〈〈A∗〉〉:

s \ (t+ t′) = s \ t+ s \ t′ s \ kt = k(s \ t)
(s+ s′) \ t = s \ t+ s′ \ t (ks) \ t = k(s \ t)

4 Akim Demaille, Thibaud Michaud

Let u, v be two words, their root r(u, v) is u if u is a prefix of v, v if v is a
prefix of u, undefined otherwise.

Proposition 4. For series s, t ∈ K〈〈A∗〉〉 and words u, v ∈ A∗:

us \ vt =

{
0 if r(u, v) is undefined

u′s \ v′t otherwise, with u′ = r(u, v) \ u, v′ = r(u, v) \ v

2.2 Extended Weighted Rational Expressions

Definition 1 (Extended Weighted Rational Expression). A rational ex-
pression E is a term built from the following grammar, where a ∈ A is a letter,
and k ∈ K a weight: E ::= 0 | 1 | a | E + E | 〈k〉E | E · E | E∗ | E \ E.

Example 1. Let E1 := (〈2〉a) \ (〈3〉(a+ b) + 〈5〉aa∗ + 〈7〉ab∗) + 〈11〉ab∗. By “sim-
plifying” the left quotient (distributivity and (〈2〉a) \ (〈3〉(a+ b)) ≡ 〈6〉1, etc.),
it can be shown to be equivalent to 〈6〉1 + 〈10〉a∗ + 〈14〉b∗ + 〈11〉ab∗.

Rational expressions are syntactic objects; they provide a finite notation for
(some) series, which are semantic objects.

Definition 2 (Series Denoted by an Expression). Let E be an expression.
The series denoted by E, noted JEK, is defined by induction on E:

J0K := 0 J1K := ε JaK := a JE + FK := JEK + JFK
q
〈k〉E

y
:= kJEK

JE · FK := JEK · JFK JE∗K := JEK∗
q
E \ F

y
:= JEK \ JFK

An expression is valid if it denotes a series. More specifically, this requires that
JFK∗ is well defined for each sub-expression of the form F∗, i.e., that the constant
term of JFK is starrable in K (Proposition 2). So for instance, 1∗K and (a∗)∗ are
valid in B, but invalid in Q.

Two expressions E and F are equivalent iff JEK = JFK. Some expressions are
“trivially equivalent”; any candidate expression will be rewritten via the following
trivial identities. Any sub-expression of a form listed to the left of a ‘⇒’ is
rewritten as indicated on the right.

E + 0⇒ E 0 + E⇒ E

〈0K〉E⇒ 0 〈1K〉E⇒ E 〈k〉0⇒ 0 〈k〉〈h〉E⇒ 〈kh〉E
(〈k〉?1) · E⇒ 〈k〉E E · (〈k〉?1)⇒ 〈k〉E

E · 0⇒ 0 0 · E⇒ 0 0? ⇒ 1 0 \ E⇒ 0 E \ 0⇒ 0 1 \ E⇒ E

where E stands for a rational expression, ` ∈ A? is a label , k, h ∈ K are weights,
and 〈k〉?` denotes either 〈k〉`, or ` in which case k = 1K in the right-hand side of
⇒. The choice of these identities is beyond the scope of this paper [13, p. 149],
they are limited to trivial properties; in particular linearity (“weighted ACI”:

associativity, commutativity, and 〈k〉?E + 〈h〉?E⇒ 〈k + h〉E) is not enforced —
polynomials will take care of it (Sect. 2.3). In practice, additional identities help
reducing the number of derived terms, hence the final automaton size.

Title Suppressed Due to Excessive Length 5

2.3 Rational Polynomials

The “partial derivatives” [3] rely on sets of rational expressions, later generalized
to weighted sets [13], i.e., functions (partial, with finite domain) from the set of
expressions into K \ {0K}. It proves useful to view such structures as polynomials
of rational expressions. In essence, they capture the linearity of addition.

Definition 3 (Rational Polynomial). A polynomial (of rational expressions)
is a finite (left) linear combination of rational expressions. Syntactically it is
represented by a term built from the grammar P ::= 0 | 〈k1〉�E1⊕ · · ·⊕ 〈kn〉�En
where ki ∈ K\{0K} denote non-zero weights, and Ei denote non-zero expressions.
Expressions may not appear more than once in a polynomial. A monomial is a
pair 〈ki〉 � Ei. The terms of P is the set exprs(P) := {E1, . . . ,En}.

We use specific symbols (� and ⊕) to clearly separate the outer polynomial
layer from the inner expression layer. A polynomial P of expressions can be
“projected” as a rational expression expr(P) by mapping its sum and left multi-
plication by a weight onto the corresponding operators on rational expressions.
This operation is performed on a canonical form of the polynomial (expressions
are sorted in a well defined order). Polynomials denote series: JPK :=

q
expr(P)

y
.

Example 2 (Example 1 continued). Let E1 := (〈2〉a) \ (〈3〉(a+ b) + 〈5〉aa∗ +
〈7〉ab∗) + 〈11〉ab∗. The polynomial ‘P1ε := 〈6〉 � 1 ⊕ 〈10〉 � a∗ ⊕ 〈14〉 � b∗’ has
three monomials, and expr(P1ε) = 〈6〉1 + 〈10〉a∗ + 〈14〉b∗.

Let ` ∈ A? be a label, P = 〈k1〉 � E1 ⊕ · · · ⊕ 〈kn〉 � En a polynomial, k a
weight (possibly zero) and F an expression (possibly zero), we introduce:

` · P := 〈k1〉 � (` · E1)⊕ · · · ⊕ 〈kn〉 � (` · En)

P · F := 〈k1〉 � (E1 · F)⊕ · · · ⊕ 〈kn〉 � (En · F)

〈k〉P := 〈kk1〉 � E1 ⊕ · · · ⊕ 〈kkn〉 � En

P1 \ P2 :=
⊕

〈k1〉�E1∈P1

〈k2〉�E2∈P2

〈k1 · k2〉 � (E1 \ E2) (1)

Trivial identities might simplify the result, e.g., (〈1K〉 � 1) \ (〈1K〉 � a) = 〈1K〉 �
a. Note the asymmetry between left and right exterior products. Addition is
commutative, multiplication by zero (be it an expression or a weight) evaluates
to the polynomial zero, and left multiplication by a weight is distributive.

Lemma 1. J` · PK = ` · JPK JP · FK = JPK · JFKq
〈k〉P

y
= 〈k〉JPK

q
P1 \ P2

y
= JP1K \ JP2K.

Proof. These properties are trivial. In particular, the case of \ follows from
Proposition 3 (see Appendix A.2). ut

6 Akim Demaille, Thibaud Michaud

2.4 Weighted Automata

Definition 4. A finite weighted automaton A is a tuple 〈A,K, Q,E, I, T 〉 where:
– A is an alphabet,
– K (the set of weights) is a semiring,
– Q is a finite set of states,
– I and T are the initial and final functions from Q into K,
– E is a (partial) function from Q×A? ×Q into K \ {0K};

its domain represents the transitions: (source, label , destination).

Our automata are “ε-NFAs”: they may have spontaneous transitions (` ∈ A?).
A path π is a sequence of transitions (q0, `1, q1)(q1, `2, q2) · · · (qn−1, `n, qn) where
the source of each is the destination of the previous one; its source is ι(π) := q0,
its destination is τ(π) := qn, its label is the word `(π) := `1 · · · `n, its weight
is w(π) := E(q0, `1, q1) · . . . · E(qn−1, `n, qn), and its weighted label [14] is the
monomial wl(π) := w(π)`(π). The set of paths of A is denoted Path(A). A
computation c is a path π together with its initial and final functions at the ends:
c := (I(ι(π)), π, T (τ(π))), its weight is w(c) := I(ι(π))w(π)T (τ(π)).

The evaluation of word u by an automaton A, A(u), is the sum of the weights
of all the computations labeled by u, or 0K if there are none. The behavior of
A is the series JAK := u 7→ A(u). A state q is initial if I(q) 6= 0K. A state q is
accessible if there is a path from an initial state to q. The accessible part of an
automaton A is the sub-automaton whose states are the accessible states of A.

Automata with spontaneous transitions may be invalid , if they have cycles of
spontaneous transitions whose weight is not starrable [14].

Definition 5 (Semantics of a State). Given a weighted automaton A =
〈A,K, Q,E, I, T 〉, the semantics of state q (aka, its future) is the series:

JqK := T (q) +
∑

π∈Path(A)|q=i(π)
wl(π)T (τ(π)) (2)

Clearly, JAK =
∑
q∈Q I(q)JqK.

Proposition 5. For any automaton A, we have:

JqK = T (q) +
∑

`∈A?,q′∈Q
E(q, `, q′)`

q
q′

y
(3)

The equivalence of (2) and (3) can be seen as two different strategies of evaluation:
the first one is by depth first (follow each path individually, then sum their
weights), the second one by breadth (starting from the set of initial states,
descend “simultaneously” each transition, and repeat).

A simple proof by induction [7, Sec. 2.5] suffices in the absence of spontaneous
transitions. With cycles of spontaneous transitions, we face infinite sums whose
formal treatment requires arguments that go way beyond the scope of this paper.
This is in fact the core of the work of Lombardy and Sakarovitch [14].

Title Suppressed Due to Excessive Length 7

3 Rational Expansions

Expansions (Sect. 3.1) can be viewed as a normal form of rational expansions from
which the construction of the derived-term automaton is straightforward. For
instance, the (see Sect. 3.2) expansion of 〈2〉ac+ 〈3〉bc is a� [〈2〉�c]⊕b� [〈3〉�c].

3.1 Rational Expansions

An expansion [7, 6] is a syntactic object that denotes a linear form of a se-
ries/expressions: it maps each label to a polynomial. From systems of expansions,
building the “equation” automaton is straightforward (Sect. 4). Although closely
related to the derivatives of an expression, expansions can cope more easily with
new operators (such as quotient) than derivatives [6]. They also have a more
“forward” flavor: their computation follow very simple rules such as distributivity.
Let [n] denote {1, . . . , n}.

Definition 6 (Rational Expansion). A rational expansion X is a term built
from the grammar X ::= 0 | `1 � [P1]⊕ · · · ⊕ `n � [Pn] where `i ∈ A? are labels
(occurring at most once), and Pi non-zero polynomials. The firsts of X is f(X) :=
{`1, . . . , `n} (possibly empty), and its terms are exprs(X) :=

⋃
i∈[n] exprs(Pi).

Polynomials are written in square brackets to ease reading. Given an expansion
X, we denote by X` (or X(`)) the polynomial corresponding to ` in X, or the
polynomial zero if ` 6∈ f(X). Expansions will thus be written: X =

⊕
`∈f(X) `� [X`].

An expansion X can be “projected” as a rational expression expr(X) by
mapping labels and polynomials to their corresponding rational expressions, and
⊕/� to the sum/concatenation of rational expressions. Again, this is performed on
a canonical form of the expansion: labels and polynomials are sorted. Expansions
also denote series: JXK :=

q
expr(X)

y
. An expansion X is said to be equivalent to

an expression E iff JXK = JEK.
The immediate constant term of an expansion X, X$, is the weight of 1 in

X(ε), or 0K if it does not exist. The immediate proper part of X, Xp, is the
expansion which coincides with X but with a null immediate constant term;
hence2 X = ε� [〈X$〉� 1]⊕Xp. Beware that

q
Xp

y
might not be proper; e.g., with

X := ε� [〈2〉 � 1⊕ 〈3〉 � a \ a], we have Xp = ε� [〈3〉 � a \ a], yet
q
Xp

y
= 3.

Example 3 (Examples 1 and 2 continued). Let P1a := 〈11〉 � b∗. Expansion
X1 := ε� P1ε ⊕ a� P1a = ε� [〈6〉 � 1⊕ 〈10〉 � a∗ ⊕ 〈14〉 � b∗]⊕ a� [〈11〉 � b∗]
maps the label ε (resp. a) to the polynomial P1ε (resp. P1a). The immediate
constant term of X1 is 6. X1 is equivalent to E1.

Let X,Y be expansions, k a weight, and E an expression (all possibly zero):

X⊕ Y :=
⊕

`∈f(X)∪f(Y)
`� [X` ⊕ Y`] 〈k〉X :=

⊕

`∈f(X)
`� [〈k〉X`]

2 The (straightforward) definition of addition of expansions, ⊕, will be given below.

8 Akim Demaille, Thibaud Michaud

X · E :=
⊕

`∈f(X)
`� [X` · E]

X \ Y :=
⊕

ε� [X` \ Y`] ∀` ∈ f(X) ∩ f(Y)

ε� [Xε \ (`′ · Y`′)] ∀`′ ∈ f(Y) if ε ∈ f(X)

ε� [(` · X`) \ Yε] ∀` ∈ f(X) if ε ∈ f(Y)

(4)

Since by definition expansions never map to null polynomials, some firsts might
be smaller sets than suggested by these equations. For instance in Z the sum of
ε� [〈1〉 � 1]⊕ a� [〈1〉 � b] and ε� [〈1〉 � 1]⊕ a� [〈−1〉 � b] is ε� [〈2〉 � 1].

With the convention that terms with undefined roots are ignored (i.e., equal
to 0), the definition (4) can be stated as

X \ Y =
⊕

`∈f(X),`′∈f(Y)
p=r(`,`′)

ε�
[
((p \ `) · X`) \ ((p \ `′) · Y`′)

]
(5)

The following lemma is simple to establish: lift semantic equivalences, such
as those of Propositions 3 and 4, to syntax, using Lemma 1 (Appendix A.3).

Lemma 2. JX⊕ YK = JXK + JYK
q
〈k〉X

y
= 〈k〉JXK

JX · EK = JXK · JEK
q
X \ Y

y
= JXK \ JYK.

3.2 Expansion of a Rational Expression

Definition 7 (Expansion of a Rational Expression). The expansion of a
rational expression E, written d(E), is defined inductively as follows:

d(0) := 0 d(1) := ε� [〈1K〉 � 1] d(a) := a� [〈1K〉 � 1]

d(E + F) := d(E)⊕ d(F) d(〈k〉E) := 〈k〉d(E)

d(E · F) := dp(E) · F⊕
〈
d$(E)

〉
d(F)

d(E∗) := ε� [
〈
d$(E)∗

〉
� 1]⊕

〈
d$(E)∗

〉
dp(E) · E∗ (6)

d(E \ F) := d(E) \ d(F) (7)

where d$(E) and dp(E) are the immediate constant term/immediate proper part
of d(E).

The right-hand sides are indeed expansions. The computation trivially termi-
nates: induction is performed on strictly smaller sub-expressions.

Proposition 6. An expression is equivalent to its expansion.

Proof. Follows from a straightforward induction on E [7]. For instance, the case
of left quotient follows from

q
d(E \ F)

y
=

q
d(E) \ d(F)

y
(by definition (7)) =q

d(E)
y
\

q
d(F)

y
(by Lemma 2). The case of star is more delicate than in our

previous work [7] as dp(E) might not denote a proper series. This is handled by
Proposition 2, much more powerful than its predecessor [7, Proposition 2]. ut

Title Suppressed Due to Excessive Length 9

4 Expansion-Based Derived-Term Automaton

Definition 8 (Expansion-Based Derived-Term Automaton). The derived-
term automaton of an expression E over G is the accessible part of the automaton
AE := 〈M,G,K, Q,E, I, T 〉 defined as follows:
– Q is the set of rational expressions on alphabet A with weights in K,
– I = E 7→ 1K,
– E(F, `,F′) = k iff ` ∈ f(d(F)) and 〈k〉 � F′ ∈ dp(F)(`),
– T (F) = d$(F).

It is straightforward to extract an algorithm from Definition 8, using a work-
list of states whose outgoing transitions need to be computed [7, Algorithm 1].
However, we must justify Definition 8 by proving that this automaton is finite.

Example 4 (Examples 1 to 3 continued). With E1 := (〈2〉a)\(〈3〉(a+ b)+〈5〉aa∗+
〈7〉ab∗) + 〈11〉ab∗, one has:
d(E1) = ε� [〈6〉 � 1⊕ 〈10〉 � a∗ ⊕ 〈14〉 � b∗]⊕ a� [〈11〉 � b∗] (Example 3)

d(a∗) = ε� [〈1〉 � 1]⊕ a� [〈1〉 � a∗] d(b∗) = ε� [〈1〉 � 1]⊕ b� [〈1〉 � b∗]

Therefore dε(E1) is 6, and dε(a
∗) = dε(b

∗) = 1, from which AE1
follows: Fig. 1.

Example 5. The derived-term automaton of ((
〈
1
2

〉
ab) \ (ab∗))∗ is as follows. It

has a non coaccessible state with a spontaneous loop whose weight, 1, is not
starrable. This automaton must be trimmed to be valid.

((
〈
1
2

〉
(ab)) \ ab∗)∗ (b \ b∗)((

〈
1
2

〉
(ab)) \ ab∗)∗ b∗((

〈
1
2

〉
(ab)) \ ab∗)∗

(b \ 1)((
〈
1
2

〉
(ab)) \ ab∗)∗

〈
1
2

〉
ε

ε

ε 〈
1
2

〉
ε

b

ε

Theorem 1. For any expression E, AE is finite.

Proof. The proof goes in several steps (see Appendix A.5). First introduce the
proper derived terms of E, a set of expressions noted PD(E), and the derived terms
of E, D(E) := PD(E)∪{E}. PD(E) admits a simple inductive definition similar to [2,
Def. 3], to which we add PD(E \ F) := {E′ \ F′ | E′ ∈ PD(E),F′ ∈ PD(F)}. Second,
verify that PD(E) is finite. Third, prove that D(E) is “stable by expansion”,
i.e., ∀F ∈ D(E), exprs

(
d(F)

)
⊆ D(E). Finally, observe that the states of AE are

therefore members of D(E). ut

Theorem 2. If valid, any expression E and its expansion-based derived-term
automaton AE denote the same series, i.e., JAEK = JEK.

Proof. We show that the semantics of the states of AE (3) and of the expressions
in D(E) define the same system of linear equations (Appendix A.6). ut

10 Akim Demaille, Thibaud Michaud

The constant term of expressions without quotient can be computed syn-
tactically [7, Definition 8], thus invalid expressions can be rejected during the
construction of the derived-term automaton (when computing d$(E)∗ in (6)).
This is no longer true with the quotient operator: the procedure may succeed on
invalid expressions, the validity of the automaton [14] must be verified at end.
The elimination of the spontaneous transitions is a means to check the validity
of the automaton, but the computations highly depend on the semiring.

Example 6. In Q, E := (ab \ ab)∗ is invalid asq
ab \ ab

y
= JεK whose constant-term, 1, is not

starrable in Q. Therefore its derived-term automaton
is invalid in Q. However they are valid in B.

E (b \ b)Eε

ε

The procedure may also build invalid automata from
valid expressions. Consider for instance F := ab \
ab + 〈−1〉1: clearly JFK = 0, so JF∗K = 1. However
the derived-term automaton of F∗ is invalid: it has
spontaneous loops whose weights are not starrable.
This cannot happen in positive semirings.

F∗ b \ bF∗

〈−1〉ε
ε

〈−1〉ε

ε

5 Transposition and Right Quotient

This section introduces the support for the right quotient. We build it on top of
a transpose operator, which might be used eventually with other operators.

Transpose. The transpose (aka reversal or mirror image) of a word m =
a1a2 . . . an is mt := anan−1 . . . a1. The transpose of a series s is st := m 7→ s(mt).

Proposition 7. For series s, t ∈ K〈〈A∗〉〉:
(s+ t)t = st + tt (ks)t = k(st) (sk)t = (st)k (st)t = ttst st

t
= s

Right quotient. We define the right quotient of two series s by t as s / t := v 7→∑
u∈A∗ s(vu)·t(u). Since K is commutative, quotients are dual (see Appendix A.7).

Proposition 8. If K is commutative, then s / t = (tt \ st)t s \ t = (tt / st)t.

We extend Definition 1 with: E ::= 0 | 1 | a | E+E | 〈k〉E | E ·E | E∗ | E \E | Et,
with additional identities 0t ⇒ 0, `t ⇒ ` and we add

q
Et

y
:= JEKt to Definition 2.

Thanks to Proposition 8, we may add support for the right quotient as syntactic
sugar on top of transposition and left quotient: E / F := (Ft \ Et)t.
Definition 9. The transposed expansion of an expression E, written dt(E), is
defined inductively as follows:

dt(0) := d(0) dt(1) := d(1) dt(a) := d(a)

dt(E + F) := dt(E)⊕ dt(F) dt(〈k〉E) := 〈k〉dt(E)

dt(E · F) := dtp(F) · Et ⊕
〈
dt$(F)

〉
dt(E) dt(E∗) :=

〈
dt$(E)∗

〉
⊕
〈
dt$(E)∗

〉
dtp(E) · E∗t

dt(E \ F) := dt(E) \ dt(F) dt(Et) := d(E)

where dt$(E) and dtp(E) are the immediate constant term/immediate proper part
of dt(E). Then Definition 7 is extended with d(Et) := dt(E).

Title Suppressed Due to Excessive Length 11

Proposition 6 is generalized by proving
q
dt(E)

y
= JEKt (Appendix A.4).

Example 7. It is well known that the prefix of a language can be defined with
Pref(E) := E / A∗. Let E5 := (ab) / (a + b)∗ = ((a+ b)∗t \ (ab)t)t. We have
d(E5) = ε� [(ba)t ⊕ ((a+ b)∗t \ a)t]. Its derived-term automaton is:

E5 = ((a+ b)∗t \ (ab)t)t ((a+ b)∗t \ a)t a 1

(ba)t b

((a+ b)∗t \ 1)t(a(a+ b)∗t \ 1)t (b(a+ b)∗t \ 1)t

ε

ε

a

ε

ε

a

ε
ε

ε ε

b

6 Related Work

The quotient between rational series is surprisingly little treated in the literature.
Even Sakarovitch [15] defines the quotient by a word only: Sec. 1.2.3 p. 62 for
the quotient of a word and of a language, and Sec. 4.1.1 p. 438 for the quotient
of a series. It is quite rare to find the definition of the quotient of languages, and
to define the quotient of series seems a unique feature of Li et al. [12]3.

Expansions were previously introduced [7] to optimize the construction of the
derived-term automaton [13], and to add additional operators (the Hadamard
product and complement). It was shown that they can also support multitape
expressions [6]. Expansions previously appeared as an orphan concept from
Brzozowski [4, last line of p. 484], and as “linear forms” by Antimirov [3, Def. 2.3].

For basic (weighted) expressions, there are more efficient algorithms to build
the derived-term automaton [1, 5], but it is unclear how they could be extended
to support operators such quotients. Actually, it is also doubtful whether the
derivative-based approach [13] could be generalized to quotient, as the possible
presence of ε in the firsts would correspond to derivatives with respect to ε.

Being able to feature ε in the firsts of expansions is a key feature. Indeed,
Thiemann [16] shows that quotients have bad properties, in particular, they
are not ε-testable. We avoided these issues by constructing an automaton with
spontaneous transitions, which allows us to “delay” the computation of the
constant-term of a \ ab∗ to the one of b∗. Besides, although transpose is neither
left nor right derivable Thiemann [16], our procedure succeeds thanks to the
introduction of the transposed computation of the expansion: dt.

3 When lifting the quotient of a language (or series) by a word to a quotient of languages,
there are two options: union vs. intersection of the quotients by words. Li et al. [12]
name quotient the union-based versions and write s−1t and st−1, and name residual
the intersection-based ones, written s \ t and s / t. In this paper, we focus only on
left and right quotients, but denoted s \ t and s / t.

12 Akim Demaille, Thibaud Michaud

7 Conclusion

Thiemann [16] reported that the quotient and transpose operators pose real
problems to the derivative-based construction of the derived-term automaton.
We have addressed these issues in different ways. First, we rely on expansions
rather than on derivatives, which allows us to cope naturally with spontaneous
transitions, something that would correspond to nonsensical derivatives wrt
the empty word. Second, since we can no longer determine the validity of an
expression by a simple inductive computation, it is actually the validity of the
derived-term automaton that ensures it. Finally, we introduce the transposed
computation of expansions to handle the transpose operator.

In the future we will study the residuals, which, in the case of languages, rely
on the intersection of quotients of words, rather than their union. We also want
to explore other definitions of quotients, so that 〈2〉a \ 〈2〉ab = a, not 〈4〉a.

Acknowledgments We thank the anonymous reviewers for their very helpful
comments.

References

1. C. Allauzen and M. Mohri. A unified construction of the Glushkov, follow, and
Antimirov automata. In MFCS, vol. 4162 of LNCS, pp. 110–121. Springer, 2006.

2. P.-Y. Angrand, S. Lombardy, and J. Sakarovitch. On the number of broken derived
terms of a rational expression. Journal of Automata, Languages and Combinatorics,
15(1/2):27–51, 2010.

3. V. Antimirov. Partial derivatives of regular expressions and finite automaton
constructions. TCS, 155(2):291–319, 1996.

4. J. A. Brzozowski. Derivatives of regular expressions. J. ACM, 11(4):481–494, 1964.
5. J.-M. Champarnaud, F. Ouardi, and D. Ziadi. An efficient computation of the

equation K-automaton of a regular K-expression. In Developments in Language
Theory, vol. 4588 of LNCS, pp. 145–156. Springer, 2007.

6. A. Demaille. Derived-term automata of multitape rational expressions. In CIAA’16,
vol. 9705 of LNCS, pp. 51–63, July 2016. Springer.

7. A. Demaille. Derived-term automata for extended weighted rational expressions.
In Proc. of the Thirteenth International Colloquium on Theoretical Aspects of
Computing (ICTAC), LNCS, Oct. 2016. Springer.

8. A. Demaille. Derived-term automata for extended weighted rational expressions.
Technical Report 1605.01530, arXiv, May 2016. URL http://arxiv.org/abs/1605.

01530.
9. A. Demaille, A. Duret-Lutz, S. Lombardy, and J. Sakarovitch. Implementation

concepts in Vaucanson 2. In CIAA’13, vol. 7982 of LNCS, pp. 122–133, July 2013.
Springer.

10. Z. Ésik and W. Kuich. Equational Axioms for a Theory of Automata, pp. 183–196.
Springer, Berlin, Heidelberg, 2004.

11. D. C. Kozen. Automata and Computability. Springer, Secaucus, NJ, USA, 1st
edition, 1997.

12. Y. Li, Q. Wang, and S. Li. On quotients of formal power series. Computing Research
Repository, abs/1203.2236, 2012.

http://arxiv.org/abs/1605.01530
http://arxiv.org/abs/1605.01530

Title Suppressed Due to Excessive Length 13

13. S. Lombardy and J. Sakarovitch. Derivatives of rational expressions with multiplicity.
TCS, 332(1-3):141–177, 2005.

14. S. Lombardy and J. Sakarovitch. The validity of weighted automata. Int. J. of
Algebra and Computation, 23(4):863–914, 2013.

15. J. Sakarovitch. Elements of Automata Theory. Cambridge University Press, 2009.
Corrected English translation of Éléments de théorie des automates, Vuibert, 2003.

16. P. Thiemann. Derivatives for Enhanced Regular Expressions, pp. 285–297. Springer,
Cham, 2016.

A Proofs

A.1 Proof of Proposition 1

This proof goes in several steps, with different constraints over s and t. From
a formal point of view, it is actually “trivial”: a simple look at the proof of
Sakarovitch [15, Proposition III.2.6] shows that both expressions are formally
equivalent. The real technical difficulty is semantic: ensuring that all the (infinite)
sums are properly defined.

We actually only need Item 4 to establish Proposition 2.

1. When s and t are proper. This is a well-known consequence of Arden’s
lemma [15, Proposition III.2.5].

2. When s ∈ K, and t is proper. This property holds when K is a strong
topological semiring, and when s∗ is defined [15, Proposition III.2.6].

3. When s, t ∈ K. This result follows directly from the hypothesis of this
property. Note however that s∗(ts∗)∗ = (s+ t)∗ is verified in all the “usual”
semirings.
– If K is a “usual numerical semiring” (i.e., Q,R, or more generally, a subring

of Cn), then s∗ is the inverse of 1− s, i.e., (1− s)s∗ = s∗(1− s) = 1. To
establish the result, we show that s∗(ts∗)∗ is the inverse of 1 − (s + t).
By hypothesis, s∗ and (ts∗)∗ are defined. (1 − (s + t))s∗(ts∗)∗ = (1 −
s)s∗(ts∗)∗ − ts∗(ts∗)∗ = (ts∗)∗ − ts∗(ts∗)∗ = (1− ts∗)(ts∗)∗ = 1, which
shows that (s+ t)∗ is defined.

– If K is a tropical semiring, say,
〈
Z ∪ {∞},min,+,∞, 0

〉
, then s∗ is defined

iff s ≥ 0, and then s∗ = 0, hence the result trivially follows.
– If K is the Log semiring,

〈
R+ ∪ {∞},+Log,+,∞, 0

〉
where +Log :=

x, y 7→ − log(exp(−x) + exp(−y)). Then we get x∗ = log(1 − exp(−x)).
Again, one can verify the identity.

4. When s ∈ K and t is any series. By hypothesis, (ts∗)∗ is defined, i.e.,
(tεs

∗)∗ is defined, so by Item 3, (s+ tε)
∗ is defined.

(s+ t)∗ = (s+ tε + tp)
∗

= (s+ tε)
∗(tp(s+ tε)

∗)∗ by Item 2, tp proper, (s+ tε)
∗ defined

= s∗(tεs
∗)∗(tps

∗(tεs
∗)∗)∗ by Item 3

= s∗(tεs
∗ + tps

∗)∗ by Item 2, tps
∗ proper, (tεs

∗)∗ defined

14 Akim Demaille, Thibaud Michaud

= s∗((tε + tp)s
∗)∗

= s∗(ts∗)∗

5. When s is any series and t is proper. By hypothesis, s∗ is defined, so s∗ε is
defined.

(s+ t)∗ = (sε + (sp + t))∗
= s∗ε((sp + t)s∗ε)

∗ by Item 2, sp + t proper

= s∗ε(sps
∗
ε + ts∗ε)

∗

= s∗ε(sps
∗
ε)
∗(ts∗ε(sps

∗
ε)
∗)∗ by Item 1, sps

∗
ε and ts∗ε are proper

= (sε + sp)
∗(t(sε + sp)

∗)∗ by Item 2 s∗ε is defined, sp is proper

= s∗(ts∗)∗

6. When s and t are any series. By hypothesis, s∗ is defined.

(s+ t)∗ = (s+ tε + tp)
∗

= (s+ tε)
∗(tp(s+ tε)

∗)∗ by Item 5, tp proper

= s∗(tεs
∗)(tps

∗(tεs
∗)∗)∗ by Item 4, tε ∈ K

= s∗(tεs
∗ + tps

∗)∗ by by Item 5, tps
∗ proper

= s∗(ts∗)∗

A.2 Proof of Lemma 1

These are trivial consequences of the properties of the corresponding operations
on series. For instance, let P =

⊕
i∈[m]〈ki〉 � Ei,Q =

⊕
j∈[n]

〈
hj
〉
� Fj , we have:

q
P \ Q

y
=

r ⊕

i∈[m],j∈[n]

〈
ki · hj

〉
� (Ei \ Fj)

z
by definition

=
∑

i∈[m],j∈[n]

r〈
ki · hj

〉
� (Ei \ Fj)

z

=
∑

i∈[m],j∈[n]
(ki · hj) ·

q
Ei \ Fj

y

=
∑

i∈[m],j∈[n]
(ki · hj) · JEiK \

q
Fj

y

=
∑

i∈[m],j∈[n]
(ki · JEiK) \ (hj ·

q
Fj

y
) by Proposition 3

=
∑

i∈[m],j∈[n]

r
〈ki〉 � Ei

z
\

r〈
hj
〉
� Fj

z

=
(∑

i∈[m]

r
〈ki〉 � Ei

z)
\
(∑

j∈[n]

r〈
hj
〉
� Fj

z)
by Proposition 3

Title Suppressed Due to Excessive Length 15

=
r⊕

i∈[m]

〈ki〉 � Ei
z
\

r⊕

j∈[n]

〈
hj
〉
� Fj

z

= JPK \ JQK

A.3 Proof of Lemma 2

The proofs are straightforward: lift semantic equivalences, such as those of
Propositions 3 and 4, to syntax.

We prove for instance the case of the left quotient. However, we will use (5)
rather than (4) for two reasons: not only is the proof more compact, it is also
more general as it provides support for expressions and automata whose labels
are words (e.g., “abcd”), not just letters or ε. In that case, one can verify that
d(“ab” \ “abcd”) = ε� [〈1K〉 � “cd”].

The proof is as follows.

q
X \ Y

y
=

r ⊕

`∈f(X),`′∈f(Y)
p=r(`,`′)

ε�
[
((p \ `) · X`) \ ((p \ `′) · Y`)

]z
by (5)

=
∑

`∈f(X),`′∈f(Y)
p=r(`,`′)

q
((p \ `) · X`) \ ((p \ `′) · Y`)

y
by Lemma 2 on ⊕

=
∑

`∈f(X),`′∈f(Y)
p=r(`,`′)

(
(p \ `) · JX`K

)
\
(

(p \ `′) · JY`′K
)

by Lemma 1

=
∑

`∈f(X),`′∈f(Y)
` · JX`K \ `′ · JY`′K by Proposition 4

=
∑

`∈f(X),`′∈f(Y)
J` · X`K \

q
`′ · Y`′

y
by Lemma 1

=
(∑

`∈f(X)
J` · X`K

)
\
(∑

`′∈f(Y)

q
`′ · Y`′

y)
by Proposition 3

=
r ⊕

`∈f(X)
`� X`

z
\

r ⊕

`′∈f(Y)
`′ � Y`′

z
by Lemma 2

= JXK \ JYK

A.4 Proof of Proposition 6

A simple induction on E proves
q
d(E)

y
= JEK, see the details in Demaille [7]. To

handle transpose, we add the following case:

q
dt(EF)

y
=

r
dtp(F) · Et ⊕

〈
dt$(F)

〉
dt(E)

z
by Definition 9

=
r
dtp(F)

z
JEKt + dt$(F)

q
d(E)

yt
by Definition 2 and

q
Et

y

16 Akim Demaille, Thibaud Michaud

=
r
dtp(F)

z
JEKt + dt$(F)JEKt by induction hypothesis

=
r
dtp(F) + dt$(F)

z
JEKt

=
q
dt(F)

y
JEKt

= JFKtJEKt = (JEKJFK)t = JEFKt by Proposition 7

A.5 Proof of Theorem 1

This proof shares large parts with the corresponding proof in Demaille [8, Ap-
pendix C], itself being based on the work from Lombardy and Sakarovitch [13].
As in the former we introduce PD(E), the proper derived terms of E, rather than
TD(E), the true derived terms of E, as in the latter.

We will manipulate sets of expressions. To simplify notations, operations on
expressions are lifted additively on sets of expressions. For instance:

{Ei | i ∈ [n]} \ {Fj | j ∈ [m]} := {Ei \ Fj | i ∈ [n], j ∈ [m]}

Definition 10 (Derived Terms). Given an expression E, its proper derived
terms is the set PD(E) defined as follows:

PD(0) := ∅ PD(1) := {1} PD(a) := {1} ∀a ∈ A
PD(E + F) := PD(E) ∪ PD(F) PD(〈k〉E) := PD(E) ∀k ∈ K

PD(E · F) := PD(E) · F ∪ PD(F) PD(E∗) := PD(E) · E∗
PD(E \ F) := PD(E) \ PD(F)

The derived terms of an expression E is D(E) := PD(E) ∪ {E}.

Lemma 3. For any expression E, D(E) is finite.

Proof. Follows from the finiteness of PD(E), which is a direct consequence from
Definition 10: finiteness propagates during the induction. ut

Lemma 4 (Proper Derived Terms and Single Expansion). For any ex-
pression E, exprs

(
d(E)

)
⊆ PD(E).

Proof. Established by a simple verification of Definition 7. ut

The derived terms of derived terms of E are derived terms of E. In other
words, repeated expansions never “escape” the set of derived terms.

Lemma 5 (Proper Derived Terms and Repeated Expansions). Let E be
an expression. For all F ∈ PD(E), exprs

(
d(F)

)
⊆ PD(E).

Proof. This will be proved by induction over E.

Title Suppressed Due to Excessive Length 17

Case E = 0 or E = 1. Trivially true, since there is no such F, as PD(E) = ∅.
Case E = a. Then PD(E) = {1}, hence F = 1 and therefore d(F) = d(1) = 〈0K〉,

so exprs
(
d(F)

)
= ∅ ⊆ PD(E).

Case E = G + H. Then PD(E) = PD(G) ∪ PD(H). Suppose, without loss of
generality, that F ∈ PD(G). Then, by induction hypothesis, exprs

(
d(F)

)
⊆

PD(G) ⊆ PD(E).
Case E = 〈k〉G. Then if F ∈ PD(〈k〉G) = PD(G), so by induction hypothesis

exprs
(
d(F)

)
⊆ PD(G) = PD(〈k〉G) = PD(E).

Case E = G · H. Then PD(E) = {Gi · H | Gi ∈ PD(G)} ∪ PD(H).
– If F = Gi · H with Gi ∈ PD(G), then d(F) = d(Gi · H) = dp(Gi) · H ⊕〈

d$(Gi)
〉
d(H).

Since Gi ∈ PD(G) by induction hypothesis exprs
(
dp(Gi)

)
= exprs

(
d(Gi)

)
⊆

PD(G). By definition of the product of an expansion by an expression,
exprs

(
dp(Gi) · H

)
⊆ {Gj · H | Gj ∈ PD(G)} ⊆ PD(G · H) = PD(E).

– If F ∈ PD(H), then by induction hypothesis exprs
(
d(F)

)
⊆ PD(H) ⊆

PD(E).
Case E = G∗. If F ∈ PD(E) = {Gi · G∗ | Gi ∈ PD(G)}, i.e., if F = Gi · G∗

with Gi ∈ PD(G), then d(F) = d(Gi · G∗) = dp(Gi) · G∗ ⊕
〈
d$(Gi)

〉
d(G∗), so

exprs
(
d(F)

)
⊆ exprs

(
dp(Gi) · G∗

)
∪ exprs

(
d(G∗)

)
.4 We will show that both are

subsets of PD(E), which will prove the result.
Since Gi ∈ PD(G), by induction hypothesis, exprs

(
dp(Gi)

)
= exprs

(
d(Gi)

)
⊆

PD(G), so by definition of a product of an expansion by an expression,
exprs

(
dp(Gi) · G∗

)
⊆ {Gj · G∗j | Gj ∈ PD(G)} = PD(E).

By Lemma 4 exprs
(
d(G∗)

)
⊆ PD(G∗) = PD(E).

Case E = G \ H. (1) and (4) show that for all expansions X,Y,

exprs
(
X \ Y

)
⊆ exprs(X) \ exprs(Y) (8)

Let F ∈ PD(E) = PD(G) \PD(H), i.e., let F = Gi \Hj with Gi ∈ PD(G),Hj ∈
PD(H), then

exprs
(
d(F)

)
= exprs

(
d(Gi \ Hj)

)

= exprs
(
d(Gi) \ d(Hj)

)
by (7)

⊆ exprs
(
d(Gi)

)
\ exprs

(
d(Hj)

)
by (8)

⊆ PD(G) \ PD(H) by induction hypothesis

= PD(G \ H) by Definition 10

= PD(E) ut

Lemma 6 (Derived Terms and Repeated Expansions). Let E be an ex-
pression. For all F ∈ D(E), exprs

(
d(F)

)
⊆ PD(E).

Proof. Immediate consequence of Lemmas 4 and 5, since D(E) = PD(E)∪{E}. ut
4 Given two expansions X,Y, exprs(X⊕ Y) ⊆ exprs(X) ∪ exprs(Y), but they may be

different; consider for instance X = a� [〈1〉 � 1] and Y = a� [〈−1〉 � 1] in Z.

18 Akim Demaille, Thibaud Michaud

We may now prove Theorem 1.

Theorem 1 For any expression E, AE is finite.

Proof. The states of AE are members of D(E) (Lemma 6), which is finite
(Lemma 3). ut

A.6 Proof of Theorem 2

The Definition 8 shows that each state qF of the AE has the following semantics:

JqFK =
∑

`∈f(d(F))
〈k〉�F′∈d(F)(`)

k`,F′ ` JqF′K (9)

Besides:
JFK =

q
d(F)

y
(by Proposition 6)

=
r ⊕

`∈f(d(F))
`� d(F)(`)

z
=

∑

`∈f(d(F))
`
q
d(F)(`)

y

=
∑

`∈f(d(F))
`
r[⊕

〈k`,i〉�F`,i∈d(F)(`)

〈
k`,i
〉
� F`,i

]z

=
∑

`∈f(d(F))
`

∑

〈k`,i〉�F`,i∈d(F)(`)

k`,i
q
F`,i

y

=
∑

`∈f(d(F))
〈k`,i〉�F`,i∈d(F)(`)

k`,i `
q
F`,i

y
(10)

(9) and (10) define the same system of linear equations, hence JAEK = JEK. ut

A.7 Proof of Proposition 8

(tt \ st)t(v) = (tt \ st)(vt)
=
∑

u∈A∗
tt(vtu) · st(u)

=
∑

u∈A∗
t(utv) · s(ut) by definition of transpose

=
∑

u∈A∗
t(uv) · s(u) by change of variable: u→ ut

=
∑

u∈A∗
s(u) · t(uv) by commutativity of K

= (s / t)(v)

Commutativity may be replaced by a weaker condition: ∀u, v ∈ A∗, t(uv) · s(u) =
s(u) · t(uv).

The right-quotient is treated similarly.

	Derived-Term Automata of Weighted Rational Expressions with Quotient Operators

