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Derived-Term Automata of
Multitape Expressions with Composition∗

Akim DEMAILLE1

Abstract

Rational expressions are powerful tools to define automata, but
often restricted to single-tape automata. Our goal is to unleash their
expressive power for transducers, and more generally, any multitape
automaton; for instance (a+ |x+b+ |y)∗. We generalize the construction
of the derived-term automaton by using expansions. This approach
generates small automata, and even allows us to support a composition
operator.

Keywords: Antimirov, automaton, derivatives, derived term, expan-
sion, extended rational expressions, transducer, multitape, composition

1 Introduction

To compute the edit-distance between words and/or (rational) languages,
Mohri [20, Figure 4] introduces the following two-tape automaton (aka
transducer) A, whose weights, written in angle brackets, are in 〈N,min,+〉:

〈0〉 〈0〉
〈0〉a|a, 〈0〉b|b, 〈1〉ε|a, 〈1〉ε|b, 〈1〉a|ε, 〈1〉b|ε

Ng [21, Figure 2] focuses on the prefix distance and introduces A′:
∗Extended version of Derived-term automata of multitape rational expressions, presented

at CIAA’16 [9].
1EPITA Research and Development Laboratory (LRDE), 14-16, rue Voltaire, 94276 Le

Kremlin-Bicêtre, France, E-mail: akim@lrde.epita.fr. (2017-11-27 19:48:50 +0100 6e2f2c2)
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〈0〉

〈0〉

〈0〉
〈0〉a|a, 〈0〉b|b

〈1〉ε|a, 〈1〉ε|b,
〈1〉a|ε, 〈1〉b|ε,
〈2〉a|b, 〈2〉b|a

〈1〉ε|a, 〈1〉ε|b,
〈1〉a|ε, 〈1〉b|ε,
〈2〉a|b, 〈2〉b|a

Such automata are tedious to type in. Rational expressions have alre-
ady proved being extremely concise and handy tools to define automata,
but rational expressions for multitape automata have received little at-
tention. Yet an expression such as (a|a + b|b + 〈1〉(1|a+ 1|b+ a|1 + b|1))∗

clearly denotes the behavior of A.1 Provided that operators such as +
can be used below the tupling operator |, an more concise expression
is E := (a|a + b|b + 〈1〉(1|(a+ b) + (a+ b)|1))∗.2 Similarly E′ := (a|a +
b|b)∗(〈1〉(1|(a+ b) + (a+ b)|1)+〈2〉(a|b+ b|a))∗ denotes the behavior of A′.3

Our purpose is to define multitape rational expressions such as E and E′

(Section 2) and to introduce an algorithm that computes precisely automata
A and A′ from them (Section 4). To this end, we rely on an intermediary
structure, expansions, studied in Section 3.

Mohri [20] also shows (still in Figure 4) that A is equivalent to the
composition of the following two simpler transducers, using two new symbols
to denote I nsertion and Suppression4:

a|a, b|b, 〈1〉ε|I, 〈1〉a|S, 〈1〉b|S I|a, I|b, S|ε, a|a, b|b

In Section 5 we introduce a composition operator @, such that E is
equivalent to (a|a+ b|b+ 〈1〉(1|I + [ab]|S))∗@ (a|a+ b|b+ I|[ab] +S|1)∗, and
extend our procedure to support it. It builds A from this expression.

Various aspects of our proposal are discussed in Section 6, and present
related works in Section 7.

The contributions of this paper are:

1We use ε for the empty word, 1 for the expression that denotes the empty word, and
we now leave the unit weight implicit; 0 in the current case.

2Linguists often simplify (partial) identities such as (a|a) + (b|b)(c|c)∗ as a + bc∗. With
such conventions, we could even write ([a−z] + 〈1〉(1|[a−z] + [a−z]|1))∗.

3As a matter of fact, the 〈2〉(a|b + b|a) part is useless, as substitution is already scored
as 1 + 1, one suppression, one insertion.

4In the paper, the second automaton shows transitions for 〈0〉S|a and 〈0〉S|b which
were clearly not meant by the author.
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• we define (weighted) multitape rational expressions featuring operators
for tupling, |, and for composition, @;
• we provide an algorithm to build a concise automaton equivalent to

such an expression. This algorithm is a generalization of the derived-
term based algorithms, freed from the requirement that the monoid is
free.

The constructs exposed in this paper are implemented in Vcsn5. Vcsn is
a free-software platform dedicated to weighted automata and rational expres-
sions [10]; its lowest layer is a C++ library, on top of which Python/IPython
bindings provide an interactive graphical environment. The examples in
this paper are demonstrated at http://vcsn.lrde.epita.fr/dload/2.6/
notebooks/SACS-2017.html. They can be executed, modified, extended,
directly from any web browser at http://vcsn-sandbox.lrde.epita.fr.

2 Notations

Our purpose is to define (weighted) multitape rational expressions, such as
E1 := 〈5〉1|1+〈4〉a d e∗|x+〈3〉b d e∗|x+〈2〉a c e∗|x y+〈6〉b c e∗|x y (weights are
written in angle brackets). It relates ade with x, with weight 4. We introduce
an algorithm to build a multitape automaton (aka transducer) from such
an expression, e.g., Fig. 1. This algorithm relies on rational expansions.
They are to the derivatives of rational expressions what differential forms
are to the derivatives of functions. Defining expansions requires several
concepts, defined bottom-up in this section. The following figure presents
these different entities, how they relate to each other, and where we are
heading to: given a weighted multitape rational expression such as E1,
compute its expansion:

Weight︷︸︸︷
〈5〉

︸︷︷︸
(Immediate) constant term

⊕
Label︷︸︸︷
a|x
︸︷︷︸
First

�
[
〈2〉 �

Expression

(Section 2.2)︷ ︸︸ ︷
ce∗|y
︸ ︷︷ ︸

Derived term

⊕
Monomial︷ ︸︸ ︷
〈4〉 � de∗|1

]
⊕ b|x�

[

Polynomial

(Section 2.3)︷ ︸︸ ︷
〈6〉 � ce∗|y ⊕ 〈3〉 � de∗|1

]

︸ ︷︷ ︸
(Immediate) proper part of the expansion

︸ ︷︷ ︸
Expansion (Section 3.1)

from which we build its derived-term automaton (Fig. 1).

5Vcsn http://vcsn.lrde.epita.fr.

http://vcsn.lrde.epita.fr/dload/2.6/notebooks/SACS-2017.html
http://vcsn.lrde.epita.fr/dload/2.6/notebooks/SACS-2017.html
http://vcsn-sandbox.lrde.epita.fr
http://vcsn.lrde.epita.fr
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E1 = 〈5〉1|1+ 〈4〉a d e∗|x+ 〈3〉b d e∗|x+ 〈2〉a c e∗|x y + 〈6〉b c e∗|x y
〈5〉

c e∗|y

d e∗|1

e∗|1

〈2〉a|x, 〈6〉b|x

〈4〉a|x, 〈3〉b|x

c|y

d|ε

e|ε

Figure 1: The derived-term automaton of E1 (see Examples 1 to 4) with
E1 := 〈5〉1|1 + 〈4〉a d e∗|x+ 〈3〉b d e∗|x+ 〈2〉a c e∗|x y + 〈6〉b c e∗|x y.

It is helpful to think of expansions as a normal form for expressions.

2.1 Rational Series

Series will be used to define the semantics of the forthcoming structures:
they are to weighted automata what languages are to Boolean automata.
Not all languages are rational (denoted by an expression), and similarly,
not all series are rational (denoted by a weighted expression). We follow
Sakarovitch [24, Chap. III].

In order to cope with (possibly) several tapes, we cannot rely on the
traditional definitions based on the free monoid A∗ for some alphabet A.

2.1.1 Labels

Let M be a monoid (e.g., A∗ or A∗ ×B∗), whose neutral element is denoted
εM —or ε when clear from the context— and named the empty word.
For consistency with the way transducers are usually represented, we use
m | n rather than (m,n) to denote the pair of m and n. For instance
εA∗×B∗ = εA∗ | εB∗ , and εM | a ∈M × {a}∗.

A set of generators G of M is a subset of M such that G∗ = M . By
G? we denote {ε} ∪G. A monoid M is of finite type (or finitely generated)
if it admits a finite set of generators.

A monoid M is graded if it admits a gradation function |·| ∈ M → N
such that ∀m,n ∈ M , |m| = 0 iff m = ε, and |mn| = |m|+ |n|. Cartesian
products of graded monoids are graded, and Cartesian products of finitely
generated monoids are finitely generated. Free monoids and Cartesian
products of free monoids are graded and finitely generated.
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2.1.2 Weights

Let 〈K,+, ·, 0K, 1K〉 (or K for short) be a semiring whose (possibly non com-
mutative) multiplication will be denoted by juxtaposition. K is commutative
if its multiplication is. K is a topological semiring if it is equipped with a
topology, and both addition and multiplication are continuous. It is strong
if the product of two summable families is summable.

2.1.3 Series

A (formal power) series over M with weights (or multiplicities) in K is a
map from M to K. The weight of m ∈M in a series s is denoted s(m). The
null series, m 7→ 0K, is denoted 0; for any m ∈M (including εM ), m denotes
the series u 7→ 1K if u = m, 0K otherwise. If M is of finite type, then we
can define the Cauchy product of series. s · t := m 7→ ∑

u,v∈M |uv=m s(u) ·
t(v). Equipped with the pointwise addition (s + t := m 7→ s(m) + t(m))
and · as multiplication, the set of these series forms a semiring denoted〈
K〈〈M〉〉,+, ·, 0, ε

〉
.

The constant term of a series s, denoted sε, is s(ε), the weight of the
empty word. A series s is proper if sε = 0K. The proper part of s is the
proper series sp such that s = sε + sp.

2.1.4 Star

The star of a series is an infinite sum: s∗ :=
∑

n∈N s
n. To ensure semantic

soundness, we need M to be graded monoid and K to be a strong topological
semiring.

We will need a property of star based on the following result. In
various forms it is named the ‘denesting rule’ [15, p. 57], the ‘property S’
[24, Propositions III.2.5 and III.2.6], or the ‘sum-star equation’ [11, p. 188].
Proofs can be found for the axiomatic approach of star (based on Conway
semirings), but we followed the topology-based one, for which we did not
find a published version.

Proposition 1 (Super S) Let K be a strong topological semiring. For
any series s, t ∈ K〈〈A∗〉〉, if s∗ε, (tεs

∗
ε)
∗, and (sε + tε)

∗ are defined and
(sε + tε)

∗ = s∗ε(tεs
∗
ε)
∗, then (s+ t)∗ = s∗(ts∗)∗.

Proof: This proof goes in several steps, with different constraints over s
and t. From a formal point of view, it is actually ‘trivial’: a simple look at
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the proof of Sakarovitch [24, Proposition III.2.6] shows that both expressions
are formally equivalent. The real technical difficulty is semantic: ensuring
that all the (infinite) sums are properly defined.

We actually only need Item 4 below to establish Proposition 2.

1. When s and t are proper. This is a well-known consequence of Arden’s
lemma [24, Proposition III.2.5].

2. When s ∈ K, and t is proper. This property holds when K is a strong
topological semiring, and when s∗ is defined [24, Proposition III.2.6].

3. When s, t ∈ K. This result follows directly from the hypothesis of
this property. Note however that s∗(ts∗)∗ = (s+ t)∗ is verified in all
the ‘usual’ semirings.

• If K is a usual numerical semiring (i.e., Q,R, or more generally, a
subring of Cn), then s∗ is the inverse of 1 − s, i.e., (1 − s)s∗ =
s∗(1 − s) = 1. To establish the result, we show that s∗(ts∗)∗

is the inverse of 1 − (s + t). By hypothesis, s∗ and (ts∗)∗ are
defined. (1 − (s + t))s∗(ts∗)∗ = (1 − s)s∗(ts∗)∗ − ts∗(ts∗)∗ =
(ts∗)∗ − ts∗(ts∗)∗ = (1− ts∗)(ts∗)∗ = 1, which shows that (s+ t)∗

is defined.
• If K is a tropical semiring, say,

〈
Z ∪ {∞},min,+,∞, 0

〉
, then s∗

is defined iff s ≥ 0, and then s∗ = 0, hence the result trivially
follows.
• If K is the Log semiring,

〈
R+ ∪ {∞},+Log,+,∞, 0

〉
where +Log :=

x, y 7→ − log(exp(−x) + exp(−y)). Then we get x∗ = log(1 −
exp(−x)). Again, one can verify the identity.

4. When s ∈ K and t is any series. By hypothesis, (ts∗)∗ is defined,
i.e., (tεs

∗)∗ is defined, so by Item 3, (s+ tε)
∗ is defined.

(s+ t)∗ = (s+ tε + tp)
∗

= (s+ tε)
∗(tp(s+ tε)

∗)∗ by Item 2, tp proper, (s+ tε)
∗ defined

= s∗(tεs
∗)∗(tps

∗(tεs
∗)∗)∗ by Item 3

= s∗(tεs
∗ + tps

∗)∗ by Item 2, tps
∗ proper, (tεs

∗)∗ defined

= s∗((tε + tp)s
∗)∗

= s∗(ts∗)∗
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5. When s is any series and t is proper. By hypothesis, s∗ is defined,
so s∗ε is defined.

(s+ t)∗ = (sε + (sp + t))∗

= s∗ε((sp + t)s∗ε)
∗ by Item 2, sp + t proper

= s∗ε(sps
∗
ε + ts∗ε)

∗

= s∗ε(sps
∗
ε)
∗(ts∗ε(sps

∗
ε)
∗)∗ by Item 1, sps

∗
ε and ts∗ε proper

= (sε + sp)
∗(t(sε + sp)

∗)∗ by Item 2 s∗ε defined, sp proper

= s∗(ts∗)∗

6. When s and t are any series. By hypothesis, s∗ is defined.

(s+ t)∗ = (s+ tε + tp)
∗

= (s+ tε)
∗(tp(s+ tε)

∗)∗ by Item 5, tp proper

= s∗(tεs
∗)(tps

∗(tεs
∗)∗)∗ by Item 4, tε ∈ K

= s∗(tεs
∗ + tps

∗)∗ by Item 5, tps
∗ proper

= s∗(ts∗)∗ �

All the usual semirings (B,F2,Q,R,Rmin,Log, etc.) are strong topo-
logical semirings, in which if s∗ε, (tεs

∗
ε)
∗, and (sε + tε)

∗ are defined then
(sε + tε)

∗ = s∗ε(tεs
∗
ε)
∗.

Proposition 2 Let K be a strong topological semiring. Let s ∈ K, t ∈
K〈〈A∗〉〉, if s∗, (tεs

∗)∗, and (s + tε)
∗ are defined and (s + tε)

∗ = s∗(tεs
∗)∗

then (s+ t)∗ = s∗ + s∗t(s+ t)∗.

Proof: The result follows from Proposition 1, and from (ts∗)∗ = ε +
(ts∗)(ts∗)∗: (s+ t)∗ = s∗(ts∗)∗ = s∗(ε+ (ts∗)(ts∗)∗) = s∗ + s∗t(s∗(ts∗)∗) =
s∗ + s∗t(s+ t)∗. �

2.1.5 Tuple

We suppose K is commutative. Let M and N be two monoids. The tupling
of two series s ∈ K〈〈M〉〉, t ∈ K〈〈N〉〉, is the series s | t := m | n ∈M ×N 7→
s(m)t(n). It is a member of K〈〈M ×N〉〉.
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Proposition 3 (Series Tupling is Bilinear)
For all series s, s′ ∈ K〈〈M〉〉, t, t′ ∈ K〈〈N〉〉, and all weights k ∈ K,

(s+ s′) | t = s | t+ s′ | t s | (t+ t′) = s | t+ s | t′
(ks) | t = k(s | t) s | (kt) = k(s | t)

Proof: We prove the first equality. Let m |n ∈M×N . ((s+s′) | t)(m |n) =
(s + s′)(m) · t(n) = (s(m) + s′(m)) · t(n) = s(m) · t(n) + s′(m) · t(n) =
(s | t)(m | n) + (s′ | t)(m | n) = (s | t+ s′ | t)(m | n). �

From now on, M is a graded monoid of finite type, and K a commutative
strong topological semiring.

2.2 Weighted Rational Expressions

Contrary to the usual definition, we do not require a finite alphabet: any
set of generators G ⊆M will do. For expressions with more than one tape,
we require K to be commutative; however, for single tape expressions, our
results apply to non-commutative semirings, hence there are two exterior
products.

Definition 1 (Expression) A rational expression E over G is a term built
from the following grammar, where a ∈ G denotes any non empty label, and
k ∈ K any weight:

E ::= 0 | 1 | a | E + E | 〈k〉E | E〈k〉 | E · E | E∗ | E | E

.

Expressions are syntactic; they are finite notations for (some) series.

Definition 2 (Series Denoted by an Expression) Let E be an expres-
sion. The series denoted by E, noted JEK, is defined by induction on E:

J0K := 0 J1K := ε JaK := a JE + FK := JEK + JFK
q
〈k〉E

y
:= kJEK

q
E〈k〉

y
:= JEKk JE · FK := JEK · JFK

q
E∗

y
:= JEK∗

q
E | F

y
:= JEK | JFK

An expression is valid if it denotes a series. More specifically, there are two
requirements. First, the expression must be well-formed, i.e., concatenation
and disjunction must be applied to expressions of appropriate number of tapes.
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For instance, a+ b|c and a(b|c|d) are ill-formed6, (a|b)∗|c+ a|(b|c)∗ is well-
formed. Second, to ensure that JFK∗ is well defined for each subexpression of
the form F∗, the constant term of JFK must be starrable in K (Proposition 2).

Let [n] denote {1, . . . , n}. The size (aka length) of a (valid) expression
E, |E|, is its total number of symbols, not counting parenthesis; for a given
tape number i ∈ [k] the width on tape i, ‖E‖i, is the number of occurrences
of labels on the tape i, the width of E (aka literal length), ‖E‖ :=

∑
i∈[k]‖E‖i

is the total number of occurrences of labels different from ε.
Two expressions E and F are equivalent iff JEK = JFK. Some expressions

are ‘trivially equivalent’, for instance E · ε and E. To simplify the examples,
our expressions will always be simplified according to the following identities.

Definition 3 (Trivial Identities) Any subexpression of a form listed to
the left of a ‘⇒’ is rewritten as indicated on the right.

E + 0⇒ E 0 + E⇒ E

〈0K〉E⇒ 0 〈1K〉E⇒ E 〈k〉0⇒ 0 〈k〉〈h〉E⇒ 〈kh〉E
E〈0K〉 ⇒ 0 E〈1K〉 ⇒ E 0〈k〉 ⇒ 0 E〈k〉〈h〉 ⇒ E〈kh〉

(〈k〉E)〈h〉 ⇒ 〈k〉(E〈h〉) `〈k〉 ⇒ 〈k〉`
E · 0⇒ 0 0 · E⇒ 0

(〈k〉?1) · E⇒ 〈k〉?E E · (〈k〉?1)⇒ E〈k〉?

0? ⇒ 1

E | 0⇒ 0 0 | E⇒ 0 (〈k〉?E) | (〈h〉?F)⇒ 〈kh〉?E | F

where E is a rational expression, ` ∈ G ∪ {1} a label, k, h ∈ K weights, and
〈k〉?` denotes either 〈k〉`, or ` in which case k = 1K in the right-hand side
of ⇒.

These identities are taken from Sakarovitch [24]; they are discussed in
Section 6.2. Note that linearity (‘weighted ACI’: associativity, commutativity
and 〈k〉E + 〈h〉E⇒ 〈k + h〉E) is not enforced; this is the role of polynomials.

2.3 Rational Polynomials

At the core of the idea of ‘partial derivatives’ introduced by Antimirov [3],
is that of sets of rational expressions, later generalized in weighted sets by

6As discussed in the introduction, an implementation could accept them, as abbreviati-
ons for a|a + b|c and (a|a|a)(b|c|d). But what sense could be given to a|b + c|d|e?
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Lombardy and Sakarovitch [16], i.e., functions (partial, with finite domain)
from the set of rational expressions into K \ {0K}. It proves useful to view
such structures as ‘polynomials of expressions’. In essence, they capture the
linearity of addition.

Definition 4 (Rational Polynomial) A polynomial (of rational expres-
sions) is a finite (left) linear combination of expressions. Syntactically it is
a term built from the grammar

P ::= 0 | 〈k1〉 � E1 ⊕ · · · ⊕ 〈kn〉 � En

where ki ∈ K \ {0K} denote non-null weights, and Ei denote non-null ex-
pressions. Expressions may not appear more than once in a polynomial. A
monomial is a pair 〈ki〉 � Ei. The weight of E in P is written P(E).

We use specific symbols (� and ⊕) to clearly separate the outer po-
lynomial layer from the inner expression layer. Let P =

⊕
i∈[n]〈ki〉 � Ei

be a polynomial of expressions. The projection of P is the expression
expr(P) := 〈k1〉E1 + · · ·+ 〈kn〉En (or 0 if P is null); this operation is perfor-
med on a canonical form of the polynomial (expressions are sorted in a well
defined order). Polynomials denote series: JPK :=

q
expr(P)

y
. The terms of

P is the set exprs(P) := {E1, . . . ,En}.

Example 1 Let E1 := 〈5〉1|1 + 〈4〉a d e∗|x + 〈3〉b d e∗|x + 〈2〉a c e∗|x y +
〈6〉b c e∗|x y. Polynomial ‘P1,a|x := 〈2〉 � ce∗ | y ⊕ 〈4〉 � de∗ | 1’ has two
monomials: ‘〈2〉� ce∗ | y’ and ‘〈4〉� de∗ | 1’. It denotes the (left) quotient of
JE1K by a | x, and ‘P1,b|x := 〈6〉 � ce∗ | y ⊕ 〈3〉 � de∗ | 1’ the quotient by b | x.

Let P =
⊕

i∈[n]〈ki〉�Ei,Q =
⊕

j∈[m]〈hi〉�Fi be polynomials, k a weight
and F an expression, all possibly null, we introduce the following operations:

P · F :=
⊕

i∈[n]

〈ki〉 � (Ei · F)

〈k〉P :=
⊕

i∈[n]

〈kki〉 � Ei P〈k〉 :=
⊕

i∈[n]

〈ki〉 � (Ei〈k〉)

P | 1 :=
⊕

i∈[n]

〈ki〉 � Ei | 1 1 | P :=
⊕

i∈[n]

〈ki〉 � 1 | Ei

P | Q :=
⊕

(i,j)∈[n]×[m]

〈ki · hj〉 � Ei | Fj
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Trivial identities might simplify the result. Note the asymmetry between left
and right exterior products. The addition of polynomials is commutative,
multiplication by zero (be it an expression or a weight) evaluates to the null
polynomial, and the left-multiplication by a weight is distributive.

Lemma 1 JP · FK = JPK · JFK
q
〈k〉P

y
= 〈k〉JPK

q
P〈k〉

y
= JPK〈k〉q

P | Q
y

= JPK | JQK.

Proof: The proofs of the first three equalities are straightforward. The
last one is a direct consequence of the bilinearity of tupling.

q
P | Q

y
=

r ⊕

(i,j)∈[n]×[m]

〈ki · hj〉 � Ei | Fj
z

=
∑

(i,j)∈[n]×[m]

〈
ki · hj

〉q
Ei | Fj

y

=
∑

(i,j)∈[n]×[m]

〈
ki · hj

〉(
JEiK |

q
Fj

y)
by Definition 2

=
(∑

i∈[n]

〈ki〉JEiK
)
|
(∑

j∈[m]

〈
hj
〉q
Fj

y)
by Proposition 3

=
r⊕

i∈[n]

〈ki〉 � Ei
z
|
r⊕

j∈[m]

〈hj〉 � Fj
z

= JPK | JQK �

2.4 Finite Weighted Automata

Our definition is slightly unusual in its handling of the labels, because it is
meant for single and multitape automata.

Definition 5 (Weighted Automaton) A weighted automaton A is a tu-
ple 〈M,G,K, Q,E, I, T 〉 where:

• M is a monoid,
• G (the labels) is a set of generators of M ,
• K (the set of weights) is a semiring,
• Q is a finite set of states,
• I and T are the initial and final functions from Q into K,
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• E is a (partial) function from Q×G×Q into K \ {0K};
its domain represents the transitions: (source, label , destination).

An automaton is proper if no label is εM .

Our automata are ‘ε-NFAs’: they may have spontaneous transitions, as
we do not require ε 6∈ G.

The size of an automaton is its number of states: |A| := |Q|.
A path π is a sequence of transitions (q0, `1, q1)(q1, `2, q2) · · · (qn−1, `n, qn)

where the source of each is the destination of the previous one; its source is
ι(π) := q0, its destination is τ(π) := qn, its label is the word `(π) := `1 · · · `n,
its weight is w(π) := E(q0, `1, q1) · . . . ·E(qn−1, `n, qn), and its weighted label
[17] is the monomial wl(π) := w(π)`(π). The set of paths of A is denoted
Path(A).

A state q is initial if I(q) 6= 0K. A state q is accessible if there is a path
from an initial state to q. The accessible part of an automaton A is the
sub-automaton whose states are the accessible states of A.

A computation c is a path π together with its initial and final functions at
the ends: c := (I(ι(π)), π, T (τ(π))), its weight is w(c) := I(ι(π))w(π)T (τ(π)).
The evaluation of word u by an automaton A, A(u), is the sum of the weights
of all the computations labeled by u, or 0K if there are none. The behavior
of A is the series JAK := u 7→ A(u).

Automata with spontaneous transitions may be invalid , if they have
cycles of spontaneous transitions whose weight is not starrable [17].

Definition 6 (Semantics of a State) Given a valid weighted automaton
A = 〈M,G,K, Q,E, I, T 〉, the semantics of state q (aka, its future) is the
series:

JqK := T (q) +
∑

π∈Path(A)|q=i(π)

wl(π)T (τ(π)) (1)

Clearly, JAK =
∑

q∈Q I(q)JqK.

Proposition 4 For any valid automaton A, we have:

JqK = T (q) +
∑

`∈G,q′∈Q
E(q, `, q′)`

q
q′

y
(2)

The equivalence of Eqs. (1) and (2) can be seen as two different strategies
of evaluation: the first one is by depth first (follow each path individually,



Derived-Term Automata of
Multitape Expressions with Composition 149

then sum their weights), the second one by breadth (starting from the set of
initial states, descend ‘simultaneously’ each transition, and repeat).

A simple proof by induction [8, Sec. 2.5] suffices in the absence of
spontaneous transitions. With cycles of spontaneous transitions, we face
infinite sums whose formal treatment requires arguments that go way beyond
the scope of this paper, and the possibility that the automaton is invalid.
This is in fact the core of the work of Lombardy and Sakarovitch [17].

3 Rational Expansions

Given an expression such as a+ 〈2〉bc∗, we want an algorithm to compute
its derived-term automaton:

a+ 〈2〉bc∗

1

c∗

a

〈2〉b c

To this end, we introduce expansions. They are comparable to some
normal form for rational expressions. They highlight the labels by which an
expression may ‘start’ (the first), and then the various possible continuations
(a weighted set of expressions, aka, a polynomial). The expansion of a+〈2〉bc∗
is a� [〈1〉 � 1]⊕ b� [〈2〉 � c∗].

3.1 Rational Expansions

Definition 7 (Rational Expansion) A rational expansion X is a term
X ::= 〈k〉 ⊕ `1 � [P1] ⊕ · · · ⊕ `n � [Pn] where k is a weight (possibly zero),
`i ∈ G are labels (occurring at most once), and Pi non-null polynomials.
The immediate constant term of an expansion X, noted X$, is k. The firsts
of X is f(X) := {`1, . . . , `n} (possibly empty) and its terms are exprs(X) :=⋃
i∈[n] exprs(Pi).

To ease reading, polynomials are written in square brackets. Contrary to
expressions and polynomials, there is no specific term for the zero expansion:
it is represented by 〈0K〉, the zero weight. Given an expansion X, we denote
by X` (or X(`)) the polynomial corresponding to ` in X, or the null polynomial
if ` 6∈ f(X). Expansions will thus be written: X = 〈X$〉 ⊕

⊕
`∈f(X) `� [X`].

An expansion X can be projected as a rational expression expr(X) by
mapping weights, labels and polynomials to their corresponding rational
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expressions, and ⊕/� to the sum/concatenation of expressions. Again, this
is performed on a canonical form of the expansion: labels are sorted. Expan-
sions also denote series: JXK :=

q
expr(X)

y
. An expansion X is equivalent to

an expression E iff JXK = JEK.
An expansion X is immediately proper if X$ = 0K; its immediate proper

part , Xp, is the expansion which coincides with X but with a null immediate
constant term; hence7 X = 〈X$〉 ⊕ Xp. An immediately proper expansion
may denote an improper series: consider for instance X := ε� [〈3〉 � a∗]; it
is immediately proper (X$ = 0), yet JXK(ε) = 3.

Example 2 (Example 1 continued) Let expansion X1 := 〈5〉 ⊕ a|x �
[P1,a|x]⊕ b|x� [P1,b|x]. Its immediate constant term is 5, and X1 maps the
generator a|x (resp. b|x) to the polynomial X1(a|x) = P1,a|x (resp. X1(b|x) =
P1,b|x). X1 can be proved to be equivalent to E1.

Let X,Y be expansions, k a weight, and E an expression (all possibly
null):

X⊕ Y := 〈X$ + Y$〉 ⊕
⊕

`∈f(X)∪f(Y)

`� [X` ⊕ Y`] (3)

〈k〉X := 〈kX$〉 ⊕
⊕

`∈f(X)

`� [〈k〉X`] X〈k〉 := 〈X$k〉 ⊕
⊕

`∈f(X)

`� [X`〈k〉] (4)

X · E :=
⊕

`∈f(X)

`� [X` · E] with X immediately proper (5)

X | Y :=





〈X$Y$〉
⊕〈X$〉

⊕

`′∈f(Y)

(ε|`′)� (1 | Y`′)

⊕〈Y$〉
⊕

`∈f(X)

(`|ε)� (X` | 1)

⊕
⊕

`|`′∈f(X)×f(Y)

(`|`′)� (X` | Y`′)

(6)

Since by definition expansions never map to null polynomials, some firsts
might be smaller that suggested by these equations. For instance in Z the
sum of 〈1〉 ⊕ a� [〈1〉 � b] and 〈1〉 ⊕ a� [〈−1〉 � b] is 〈2〉.

7The (straightforward) definition of addition of expansions, ⊕, will be given below.
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The following lemma is simple to establish: lift semantic equivalences,
such as Proposition 3, to syntax, using Lemma 1.

Lemma 2 JX⊕ YK = JXK + JYK
q
〈k〉X

y
= 〈k〉JXK

q
X〈k〉

y
= JXK〈k〉

JX · EK = JXK · JEK
q
X | Y

y
= JXK | JYK

3.2 Computing the Expansion of an Expression

We introduce a procedure to compute an (equivalent) expansion from an
expression.

Definition 8 (Expansion of a Rational Expression) The expansion of
a rational expression E, written d(E), is defined inductively as follows:

d(0) := 〈0K〉 d(1) := 〈1K〉 d(a) := a� [〈1K〉 � 1] (7)

d(E + F) := d(E)⊕ d(F) (8)

d(〈k〉E) := 〈k〉d(E) d(E〈k〉) := d(E)〈k〉 (9)

d(E · F) := dp(E) · F⊕
〈
d$(E)

〉
d(F) (10)

d(E∗) :=
〈
d$(E)∗

〉
⊕
〈
d$(E)∗

〉
dp(E) · E∗ (11)

d(E | F) := d(E) | d(F) (12)

where d$(E) := d(E)$, dp(E) := d(E)p are the immediate constant term and
immediate proper part of d(E).

The right-hand sides are indeed expansions. The computation trivially
terminates: induction is performed on strictly smaller subexpressions. Note
that the firsts are a subset of the labels of the expression.

Example 3 (Examples 1 and 2 continued)
With E1 := 〈5〉1|1+ 〈4〉a d e∗|x+ 〈3〉b d e∗|x+ 〈2〉a c e∗|x y+ 〈6〉b c e∗|x y, one
has:

d(E1) =





〈5〉
⊕ a|x� [〈2〉 � ce∗|y ⊕ 〈4〉 � de∗|ε]
⊕ b|x� [〈6〉 � ce∗|y ⊕ 〈3〉 � de∗|ε]

= X1 (from Example 2)

This expansion is the introductory example from Section 2.
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Proposition 5 The expansion of a rational expression is equivalent to the
expression.

Proof: We prove that
q
d(E)

y
= JEK by induction on the expression. The

equivalence is straightforward for Eqs. (7) to (9) and (12), viz.,
q
d(E | F)

y
=q

d(E) | d(F)
y

(by Eq. (12)) =
q
d(E)

y
|
q
d(F)

y
(by Lemma 2) = JEK | JFK (by

induction hypothesis) =
q
E | F

y
(by Lemma 2) . The case of multiplication,

Eq. (10), follows from:

q
d(E · F)

y
=

r
dp(E) · F⊕

〈
d$(E)

〉
· d(F)

z
=

q
dp(E)

y
· JFK +

〈
d$(E)

〉
·
q
d(F)

y

=
q
dp(E)

y
· JFK +

〈
d$(E)

〉
· JFK =

(q
〈d$(E)〉

y
+

q
dp(E)

y)
· JFK

=
r〈
d$(E)

〉
+ dp(E)

z
· JFK =

q
d(E)

y
· JFK

= JEK · JFK = JE · FK

The case of Kleene star, Eq. (11), follows from Proposition 2. �

An expansion X is normal if ε 6∈ f(Xp). For instance 〈1〉+ a� [〈12〉 �
(〈12〉a)∗] is normal, ε� [〈1K〉 � (〈12〉a)∗] is not. Both denote (〈12〉a)∗.

Lemma 3 The expansion of an expression is normal.

This is easily established by a simple verification on Definition 8. Ho-
wever, with the composition operator, normality is no longer guaranteed
(Section 5).

3.3 Derived Terms of an Expression

In this section, we prove that repeated computations of expansions are
‘generated’ by a finite number of expressions, called the derived terms. The
result, Lemma 7, will prove that our construct builds finite automata.

For any sets of expressions S, T , let S | T := {E | F}E∈S,F∈T .

Definition 9 (Derived Terms) The proper derived terms of an expres-
sion E is PD(E), the set of expressions defined inductively below:

PD(0) := ∅
PD(1) := {1}
PD(`) := {1} ∀` ∈ G
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PD(E + F) := PD(E) ∪ PD(F)

PD(〈k〉E) := PD(E) ∀k ∈ K
PD(E〈k〉) := {Ei〈k〉 | Ei ∈ PD(E)} ∀k ∈ K
PD(E · F) := {Ei · F | Ei ∈ PD(E)} ∪ PD(F)

PD(E∗) := {Ei · E∗ | Ei ∈ PD(E)}
PD(E | F) := (PD(E) | PD(F)) ∪ ({1} | PD(F)) ∪ (PD(E) | {1})

where G is the set of generators.
The derived terms of an expression E is D(E) := PD(E) ∪ {E}.

This simple inductive definition is similar to Def. 3 of Lombardy and
Sakarovitch [16]. Later, the authors changed their definition of derived term
to rely on derivatives with respect to words [2, Def. 3]. The original definition
denotes the set of potential derived terms, the second one denotes the true
derived terms (i.e., the actual states of the derived-term automaton). While
the two concepts coincide in the case of basic operators, they differ in ours:
tupling (and later composition) introduce many potential derived terms,
most of them not appearing in the resulting derived-term automaton. This
is why we do not use the name true derived term and the notation TD.

Lemma 4 (Number of Derived Terms) For any k-tape expression E,

|PD(E)| ≤
∏

i∈[k]

(‖E‖i + 1) .

Proof: It is simple to check by induction on E that for all cases, except
tuple, PD(E) ≤ ‖E‖ (which is the classical result for single-tape expressions,
see for example Lombardy and Sakarovitch [16, Theorem 2] or Angrand
et al. [2, Theorem 3]). In the case of |, it is clear that |PD(E | F)| ≤
(|PD(E)|+ 1) · (|PD(F)|+ 1), hence the result.�

Lemma 5 (Proper Derived Terms and Single Expansion) For any ex-
pression E, exprs

(
d(E)

)
⊆ PD(E).

Proof: Established by a simple verification of Definition 8. �

The derived terms of derived terms of E are derived terms of E. In other
words, repeated expansions never ‘escape’ the set of derived terms.

Lemma 6 (Proper Derived Terms and Repeated Expansions) Let E
be an expression. For all F ∈ PD(E), exprs

(
d(F)

)
⊆ PD(E).
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Proof: This will be proved by induction over E.

Case E = 0 or E = 1. Impossible, as then PD(E) = ∅.

Case E = a. Then PD(E) = {1}, hence F = 1 and therefore d(F) = d(1) =
〈0K〉, so exprs

(
d(F)

)
= ∅ ⊆ PD(E).

Case E = G + H. Then PD(E) = PD(G) ∪ PD(H). Suppose, without loss of
generality, that F ∈ PD(G). Then, by induction hypothesis, exprs

(
d(F)

)
⊆

PD(G) ⊆ PD(E).

Case E = 〈k〉G. Then if F ∈ PD(〈k〉G) = PD(G), so by induction hypothesis
exprs

(
d(F)

)
⊆ PD(G) = PD(〈k〉G) = PD(E).

Case E = G〈k〉. Then ∀F ∈ PD(G〈k〉) = {Gi〈k〉 | Gi ∈ PD(G)}, there exists
an i such that F = Gi〈k〉. Then d(F) = d(Gi〈k〉) = d(Gi)〈k〉 hence
exprs

(
d(F)

)
= exprs

(
d(Gi)〈k〉

)
.

Since Gi ∈ PD(G), by induction hypothesis exprs
(
d(Gi)

)
⊆ PD(G), so

by definition of the right exterior product of expansions (and polyno-
mials), exprs

(
d(Gi)〈k〉

)
⊆ PD(G〈k〉) = PD(E).

Hence exprs
(
d(F)

)
⊆ PD(E).

Case E = G · H. Then PD(E) = {Gi · H | Gi ∈ PD(G)} ∪ PD(H).

• If F = Gi · H with Gi ∈ PD(G), then d(F) = d(Gi · H) = dp(Gi) ·
H⊕

〈
d$(Gi)

〉
d(H).

Since Gi ∈ PD(G) by induction hypothesis exprs
(
dp(Gi)

)
=

exprs
(
d(Gi)

)
⊆ PD(G). By definition of the product of an ex-

pansion by an expression, exprs
(
dp(Gi) · H

)
⊆ {Gj · H | Gj ∈

PD(G)} ⊆ PD(G · H) = PD(E).
• If F ∈ PD(H), then by induction hypothesis exprs

(
d(F)

)
⊆ PD(H)

⊆ PD(E).

Case E = G∗. If F ∈ PD(E) = {Gi · G∗ | Gi ∈ PD(G)}, i.e., if F = Gi · G∗
with Gi ∈ PD(G), then d(F) = d(Gi ·G∗) = dp(Gi) ·G∗⊕

〈
d$(Gi)

〉
d(G∗),

so exprs
(
d(F)

)
⊆ exprs

(
dp(Gi) · G∗

)
∪ exprs

(
d(G∗)

)
.8 We will show that

both are subsets of PD(E), which will prove the result.

8Given two expansions X1,X2, exprs(X1 ⊕ X2) ⊆ exprs(X1) ∪ exprs(X2), but they may
be different; consider for instance X1 = a� [〈1〉 � 1] and X2 = a� [〈−1〉 � 1] with K = Z.
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Since Gi ∈ PD(G), by induction hypothesis, exprs
(
dp(Gi)

)
= exprs

(
d(Gi)

)

⊆ PD(G), so by definition of a product of an expansion by an expression,
exprs

(
dp(Gi) · G∗

)
⊆ {Gj · G∗ | Gj ∈ PD(G)} = PD(E).

By Lemma 5 exprs
(
d(G∗)

)
⊆ PD(G∗) = PD(E).

Case E = G | H. Let F ∈ PD(E) = PD(G)|PD(H)∪ {1}|PD(H)∪PD(G)|{1}.
• Suppose F ∈ PD(G)|PD(H), i.e., F = Gi|Hj with Gi ∈ PD(G),Hj ∈

PD(H). By induction hypothesis exprs
(
d(Gi)

)
⊆ PD(G) and

exprs
(
d(Hj)

)
⊆ PD(H), hence by definition of the tupling of

expansions (Eq. (6)) exprs
(
d(Gi) | d(Hj)

)
⊆ (PD(G) | PD(H)) ∪

({1} | PD(H)) ∪ (PD(G) | {1}) = PD(E).
We have d(F) = d(Gi | Hj) = d(Gi) | d(Hj), so exprs

(
d(F)

)
=

exprs
(
d(Gi) | d(Hj)

)
⊆ PD(E).

• Suppose F ∈ {1} | PD(H), i.e., F = 1 | Hj with Hj ∈ PD(H). By
induction hypothesis exprs

(
d(Hj)

)
⊆ PD(H), hence by Eq. (6)

exprs
(
d(1) | d(Hj)

)
= exprs

(
〈1K〉 | d(Hj)

)
= {1} | exprs

(
d(Hj)

)
⊆

{1} |PD(H) ⊆ (PD(1) |PD(H))∪ ({1} |PD(H))∪ (PD(1) | {1}) =
PD(E).
We have d(F) = d(1 | Hj) = d(1) | d(Hj), so exprs

(
d(F)

)
=

exprs
(
d(1) | d(Hj)

)
⊆ PD(E).

• The case F ∈ PD(G) | {1} is similar. �

Lemma 7 (Derived Terms and Repeated Expansions)
Let E be an expression. For all F ∈ D(E), exprs

(
d(F)

)
⊆ PD(E).

Proof: Since D(E) = PD(E) ∪ {E}, this is an immediate consequence of
Lemmas 5 and 6.�

4 Expansion-Based Derived-Term Automaton

The repeated computations of expansions build an automaton.

Definition 10 (Derived-Term Automaton)
The derived-term automaton of an expression E over G is the accessible
part of the automaton AE := 〈M,G?,K, Q,E, I, T 〉 defined as follows:

• Q is the set of rational expressions over G with weights in K,
• I = E 7→ 1K,
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E
〈
d$(E)

〉〈
d$(E)

〉

E`1,1

E`1,n

E`m,1

E`m,q

〈k`1,1〉`1
〈k`1,n〉`1

〈k`m,1〉`m

〈k`m,q〉`m

. . .

. . .

. . .

d(E)(`1)

d(E)(`m)

dp(E)

d(E) = 〈E$〉 ⊕ `1 � [

d(E)(`1)︷ ︸︸ ︷
〈k`1,1〉 � E`1,1 ⊕ · · · ⊕ 〈k`1,n〉 � E`1,n]

⊕ · · ·

︸︷︷︸
d$(E)

⊕ `m � [〈k`m,1〉 � E`m,1 ⊕ · · · ⊕ 〈k`m,q〉 � E`m,q]︸ ︷︷ ︸
dp(E)

Figure 2: Initial part of the derived-term automaton of E. This figure is
somewhat misleading: some E`,i might be equal to an E`′,j with ` 6= `′, or
E — but never another E`,j . In other words, from a given state, transitions
with different labels may reach common states.

• E(F, `,F′) = k iff ` ∈ f(d(F)) and 〈k〉 � F′ ∈ dp(F)(`),
• T (F) = d$(F).

The Fig. 2 illustrates the process.

Even if ε 6∈ G, the derived-term automaton may have spontaneous
transitions (G := {ε} ∪G). These provisions will be used in Section 5.

Example 4 (Examples 1 to 3 continued) Fig. 1 shows the derived-term
automaton of E1 from the introductory example (Section 2 and Example 1).

We must justify Definition 10 by proving that this automaton is finite.

Theorem 1 For any k-tape expression E, |AE| ≤
∏
i∈[k](‖E‖i + 1) + 1.

Proof: First observe that the states of AE are members of D(E) (this follows
from a simple examination of the repeated computations of expansions in
Definition 10). Then Lemma 7 allows to conclude. �
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Example 5 Let Ak be the
derived-term automaton of the
k-tape expression a∗1 | · · · | a∗k. The
states of Ak are all the possible
expressions where the tape i
features 1 or a∗i , except 1 | · · · | 1.
Therefore |Ak| = 2k − 1, and∏

i∈[k](‖E‖i + 1) = 2k.

A3, the derived-term automaton of
a∗ | b∗ | c∗, is depicted on the right.

a∗ | b∗ | c∗ a∗ | 1 | 1

a∗ | b∗ | 11 | b∗ | 1

1 | b∗ | c∗

1 | 1 | c∗ a∗ | 1 | c∗

a|b|c

ε|ε|c

ε|b|ε

ε|b|c a|ε|ε

a|ε|c

a|b|ε

ε|ε|c

ε|b|ε

ε|ε|c

ε|b|ε
ε|b|c a|ε|ε

ε|ε|c

a|ε|ε

a|ε|c

ε|b|ε

a|ε|ε

a|b|ε

Theorem 2 If valid, any expression E and its expansion-based derived-term
automaton AE denote the same series, i.e., JAEK = JEK.

Since the expansions are normal (Lemma 3), the firsts of the immediate
proper part exclude ε, this automaton is therefore proper. As a consequence,
the proof of Demaille [9, Theorem 2] would suffice to establish this result.
However, with the introduction of the composition operator in Section 5,
expansions may no longer be normal and automata proper. We need a more
powerful proof.

Proof: We show that the semantics of the states of AE Eq. (2) and of the
expressions in D(E) define the same system of linear equations.

The Definition 10 shows that each state qF of the AE has the following
semantics:

JqFK =
∑

`∈f(d(F))
〈k〉�F′∈d(F)(`)

k`,F′ ` JqF′K (13)

Besides:

JFK =
q
d(F)

y
(by Proposition 5)

=
r ⊕

`∈f(d(F))

`� d(F)(`)
z

=
∑

`∈f(d(F))

`
q
d(F)(`)

y

=
∑

`∈f(d(F))

`
r[ ⊕

〈k`,i〉�F`,i∈d(F)(`)

〈k`,i〉 � F`,i

]z
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=
∑

`∈f(d(F))

`
∑

〈k`,i〉�F`,i∈d(F)(`)

k`,i
q
F`,i

y

=
∑

`∈f(d(F))
〈k`,i〉�F`,i∈d(F)(`)

k`,i `
q
F`,i

y
(14)

One can then verify that Eqs. (13) and (14) define the same system of
linear equations, hence JAEK = JEK.�

Example 6 Let E2 := (a+ | x+ b+ | y)∗, where E+ := EE∗. Its expansion is

d(E2) = ε|ε � [〈1〉 � 1]

⊕ a|x� [(a∗ | 1)(a+ | x+ b+ | y)∗]

⊕ b|y � [(b∗ | 1)(a+ | x+ b+ | y)∗]

= ε|ε� [〈1〉 � 1]⊕ a|x� [(a∗ | 1)E2]⊕ b|y � [(b∗ | 1)E2]

Its derived-term automaton is:

E2 = (a+|x+ b+|y)∗

(a∗|1)E2

(b∗|1)E2

a|x

b|y

a|ε, a|x

b|y
a|x

b|ε, b|y

It is straightforward to extract an algorithm from Definition 10, using a
work-list of states whose outgoing transitions to compute (see Algorithm 1).
This approach admits a natural lazy implementation: the whole automaton
is not computed at once, but rather, states and transitions are computed
on-the-fly, on demand, for instance when evaluating a word, or during a
composition or a shortest path traversal, etc. One can apply transformations
on the expansion before extracting transitions from it, for instance to generate
deterministic/sequential automata [8, Section 4.2].

5 Support for Composition

Our goal is to introduce a composition operator in rational expressions, so
that, for instance, a|x@ x|c is equivalent to a|c. The construct is not limited
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Input :E, a rational expression
Output : 〈E, I, T 〉 an automaton (simplified notation)

I(E) := 1K ; // Unique initial state
Q := Queue(E) ; // A work list loaded with E
while Q is not empty do

E := pop(Q) ; // A new state/expression to complete
X := d(E) ; // Compute the expansion of E
T (E) := X$ ; // Final weight: the constant term
foreach a� [X(a)] ∈ X do // For each (first, polynomial) in X

foreach 〈k〉 � F ∈ X(a) do // For each monomial of X(a)
E(E, a,F) := k ; // New transition
if F 6∈ Q then // F is a new state. . .

push(Q, F) ; // . . . to complete later

Algorithm 1: Building the derived-term automaton. The set of states
is implicitly grown when transitions are added.

to two-tape automata, and the ‘zipping’ could be performed on any tape,
so for instance a|x|c(1 @ 2)A|B|x would denote a|A|B|c (or a|c|A|B?). To
avoid useless complications, we limit the presentation to the simple case of
two-tape expressions, where composition ‘zips’ the last tape of the left with
the first of the right. We also require both tapes to have the same type. As
a consequence, composition is an internal law.

Let A be an alphabet. By A? we denote {ε} ∪ A. We use a, b, . . . to
denote letters of A, and `, `′ to denote labels of A?.

5.1 Composition of Rational Series

Let A be an alphabet, and s, t ∈ K〈〈A∗ ×A∗〉〉 two series. The composition
of s with t is the series s @ t := m|n 7→ ∑

x∈M s(m|x) · t(x|n), which also
belongs to K〈〈A∗ ×A∗〉〉.

Proposition 6 (Series Composition is Bilinear)
For all series s, s′, t, t′ ∈ K〈〈A∗ ×A∗〉〉, and all weights k ∈ K,

(s+ s′) @ t = s@ t+ s′ @ t s@ (t+ t′) = s@ t+ s@ t′

(ks) @ t = k(s@ t) s@ (kt) = k(s@ t)
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Proposition 7 For all series s, t ∈ K〈〈A∗×A∗〉〉, and labels `, `′, `1, `2 ∈ A?,

((`1|`) · s) @ ((`′|`2) · t) = (`1|`2) ·





s@ t if ` = `′

((ε|`) · s) @ t if ` 6= ε, `′ = ε

s@ ((`′|ε) · t) if ` = ε, `′ 6= ε

0 otherwise

Proof: With the convention that terms with undefined words (e.g., a−1b)
are null, we have:

(
((`1|`) · s) @ ((`′|`2) · t)

)
(m|n) =

∑

x∈A∗
((`1|`) · s)(m|x)((`′|`2) · t)(x|n)

=
∑

x∈A∗
s(`−11 m|`−1x)t(`′−1x|`−12 n) = (`1|`2)

∑

x∈A∗
s(m|`−1x)t(`′−1x|n)

Then we reason by cases:
• if ` = `′, then:

∑

x∈A∗
s(m|`−1x)t(`−1x|n) =

∑

y∈A∗
s(m|y)t(y|n)

= (s@ t)(m|n)

• if ` 6= ε and `′ = ε, then:
∑

x∈A∗
s(m|`−1x)t(`′−1x|n) =

∑

x∈A∗
((ε|`) · s)(m|x)(t)(x|n)

=
(
((ε|`) · s) @ t

)
(m|n)

• the case ` = ε and `′ 6= ε is similar.
• if ` 6= `′ and neither is the empty word, then at least one of `−1x or
`′−1x is undefined. �

5.2 Composition of Weighted Rational Expressions

To the Definition 1, we add a clause E ::= E @ E. Its semantics is defined by
JE @ FK := JEK@JFK. Its trivial identities are:

E @ 0⇒ 0 0 @ E⇒ 0 (〈k〉?1) @ (〈h〉?1)⇒ 〈kh〉?1

where, as in Definition 3, 〈k〉?1 denotes either 〈k〉1, or 1 in which case k = 1K
in the right-hand side of ⇒.
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The definition of composition of polynomials follows from the bilinearity
of composition.

P @ Q :=
⊕

(i,j)∈[n]×[m]

〈ki · hj〉 � Ei @ Fj

With a proof similar to the case of | in Lemma 1, we can prove that for any
polynomials P and Q, JP @ QK = JPK @ JQK.

5.3 Composition of Rational Expansions

The definition of expansion composition may look straightforward: just
‘zip’ on the common letters, and compose the corresponding expressions.
For instance

(
(a|x)� [E]⊕ (a|b)� [E′]

)
@
(
(x|b)� [F]⊕ (a|b)� [F′]

)
results

in (a|b)� [E @ F]: only x appears both in output and input.
However, the empty word makes things more interesting. Consider

for instance
(
a|ε� [ε|x]

)
@
(
x|b� [ε|b]

)
: it denotes (a|x) @ (x|b) ≡ a|b.

Therefore the empty word must be ‘zippable’ with any other label; this
applies to the empty-word as output of the left-hand side: (a|ε � [P]) @
(x|b � [Q]) ⇒ a|ε � [P @ ((x|b)Q)], and as input of the right-hand side:
(a|x� [P]) @ (ε|b� [Q])⇒ ε|b� [((a|x)P) @ Q]. However, we must be careful
not to pair twice a|ε with ε|b, once for ε as right output label and once for
ε as left input label: that would denote 〈2〉a|b instead of a|b. Hence the
following definition:

X @ Y :=





〈X$Y$〉
⊕

⊕

ε|`2∈f(Y)

(ε|`2)� [〈X$〉(1 @ Yε|`2)]

⊕
⊕

`1|ε∈f(X)

(`1|ε)� [〈Y$〉(X`1|ε @ 1)]

⊕
⊕

`1|`∈f(X)
`′|`2∈f(Y)

(`1|`2)�




X`1|` @ Y`′|`2 if ` = `′

X`1|` @ (`′|ε)Y`′|`2 if ` = ε, `′ 6= ε

(ε|`)X`1|` @ Y`′|`2 if ` 6= ε, `′ = ε




(15)

where `, `1, and `2, are labels.
The following lemma is proved using Propositions 6 and 7.

Lemma 8 JX @ YK = JXK @ JYK.
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To compute the expansion of an expression with composition, Defini-
tion 8 only needs one additional case:

d(E @ F) := d(E) @ d(F)

Example 7 Consider the introductory example in Zmin. Let F := (a|a+b|b+
〈1〉(1|I + [ab]|S))∗ @ (a|a+ b|b+ I|[ab] + S|1)∗. Its derived-term automaton
is exactly the automaton from Mohri [20, Figure 4]:

〈0〉 〈0〉
〈0〉a|a, 〈0〉b|b, 〈1〉ε|a, 〈1〉ε|b, 〈1〉a|ε, 〈1〉b|ε

Expansions of expressions with composition may be not normal, which
will result in derived-term automata with spontaneous transitions.

Example 8 Let E :=
(
〈k〉1 | a

)∗
and F :=

(
〈h〉aa | 1

)∗
. The derived-term

automaton of E @ F is:

E@ F E@ (a|1)F
〈kh〉ε|ε

〈k〉ε|ε

Theorem 3 (Theorem 2 with Composition) If valid, any multitape ex-
pression with compositions E and its expansion-based derived-term automaton
AE denote the same series, i.e., JAEK = JEK.

Proof: Because it already ‘supports’ automata with spontaneous transitions,
the proof of Theorem 2 still applies here. We must however justify that the
automaton is indeed finite.

With the convention that (ε|ε)E = E, we can define the proper derived
terms of E @ F as: PD(E @ F) := {ε|`}`∈A?PD(E) @ {`|ε}`∈A?PD(F). With
this definition, Lemmas 5 and 6 apply to expressions with compositions,
which proves that the set of derived terms of an multitape expression with
composition is finite.�

Contrary to expressions without composition, the procedure may success-
fully build an invalid automaton. For a start, consider the automaton of
Example 8. This automaton is valid in B (as any automaton. . . ), but might
be in Q depending on the starrability of the weight k2h. In all the cases, the
validity of the automaton is equivalent to the validity of the expression. Un-
fortunately, there exists cases where this procedure builds invalid automata
from valid expressions (Section 6.1).
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6 Discussion

This section addresses several issues:
• not all the generated automata are valid (Section 6.1),
• the expressions may be normalized before and during the computations

(Section 6.2),
• the computations can be simplified by relying more on spontaneous

transitions, at the cost of creating useless states (Section 6.3),
• it is possible to keep simple computation and generate the same auto-

mata (Section 6.4),
• an efficient implementation of the procedure must pay attention to

some issues (Section 6.5),
• the generated automata are small (Section 6.6),
• the tupling operator can be supported by the derivative-based compu-

tation of the derived-term automaton (Section 6.7).

6.1 On the Validity of Automata

The computation of the expansion of product and star of expressions are
quite involved:

d(E · F) := dp(E) · F⊕
〈
d$(E)

〉
d(F) (Eq. (10))

d(E∗) :=
〈
d$(E)∗

〉
⊕
〈
d$(E)∗

〉
dp(E) · E∗ (Eq. (11))

whereas some simpler versions enjoying the freedom to use non-normal
expansions (see Section 3.2) suffice:

d(E · F) := d(E) · F (16)

d(E∗) := 〈1K〉 ⊕ d(E) · E∗ (17)

They generate arguably more natural automata, but with spontaneous
transitions.

Eqs. (16) and (17) Eqs. (10) and (11)

a∗b∗c∗ a∗b∗c∗ b∗c∗ c∗

a

ε

b

ε

c

a∗ b∗ c∗ b∗ c∗ c∗

a
b

c

b
c

c

(
〈12〉1

)∗
(
〈
1
2

〉
1)∗

〈
1
2

〉
ε

(
〈
1
2

〉
1)∗

〈2〉



164 A. Demaille

Also, a significant advantage of Eq. (17) over Eq. (11) is that its
correctness is straightforward to prove (it follows from s∗ = 1 + ss∗), while
justifying Eq. (11) required the Super S property (see Propositions 1 and 2),
whose proof involve topological arguments. With Eqs. (16) and (17) all these
‘details’ are delegated to the spontaneous transition removal procedure, as
discussed by Lombardy and Sakarovitch [17] for instance.

Therefore, Eqs. (10) and (11) may appear as mere optimizations of
Eqs. (16) and (17): they generate automata that have fewer spontaneous
transitions.

Alas, we are then exposed to the same problems as the techniques
that start from the Thompson automaton to compute different types of
automata [1]: for some valid expressions, we generate invalid automata.
For instance in Q, the expression (a∗ + 〈−1〉1)∗ is valid, as

q
a∗ + 〈−1〉1

y
is

proper, yet its Thompson automaton is invalid, as it contains a spontaneous
cycle whose weight, 1, is not starrable:

ε

ε

ε

ε

〈−1〉 ε

ε

ε

ε
a

ε

ε

ε
ε

ε

The following expressions show invalid automata built by Eqs. (16)
and (17) and the corresponding valid ones using Eqs. (10) and (11).

Eqs. (16) and (17) Eqs. (10) and (11)

(
a∗b∗ + 〈−1〉1

)∗
E

a∗b∗E

b∗E

〈−1〉ε

ε

a

a

ε

ε

b

E

a∗b∗E

b∗E

a

b

〈2〉a

〈2〉ba

〈2〉b

(
(〈12〉1)∗ + 〈−2〉1

)∗
E (

〈
1
2

〉
1)∗E

〈−1〉ε 〈
1
2

〉
ε

ε

〈
1
2

〉
ε

E

Since it may also generate non-normal expansions, our handling of the
composition may generate invalid automata from valid expressions too; for
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instance with E := (1|ab@ ab|1 + 〈−1〉1|1)∗:

E (1|b@ b|1)E

〈−1〉ε|ε
ε|ε

ε|ε

However, this can never happen in positive semirings.

6.2 Identities on Expressions

Small is beautiful. The smaller the automaton, the better. Therefore, it is
natural to be eager at simplifying the expressions, and apply all the possible
transformations that help reducing the size of the automaton [22].

Yet we chose relatively few identities: basically, those of Definition 3 are
about the constants (0, 1, 0K, 1K). The identities were chosen to avoid useless
clutter in the examples. Compare for instance the derived-term automaton
of a∗ with, and without the trivial identity 1 · E⇒ E:

a∗

a

a∗ 1 a∗
a

a

Eliminating zeroes (0, 0K) allows to accept expressions that contain an
invalid but useless part. For instance a+ 〈0〉1∗+ 01∗ processed without iden-
tities would fail in Q. Simplifying zeros also avoids creating non-coaccessible
states (consider abc0 for instance).

However, none of the trivial identities is needed for the procedure
to terminate: everything is taken care of by the polynomials. Identities
are not even needed to guarantee that expansions of expressions (without
composition) are normal, i.e., that the derived-term automaton is proper.

6.3 Denormalized Expressions

Both theory and implementation are simpler with denormalized expansions,
whose immediate constant term is moved into the terms of the empty word.
Consider for instance the expansion of a∗〈2〉:

〈2〉 ⊕ a� [〈1K〉 � a∗〈2〉] normal expansion (18)

ε� [〈2〉 � 1]⊕ a� [〈1K〉 � a∗〈2〉] denormalized expansion (19)
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With denormalized expansions, Eqs. (3) to (6) and (15) can be simplified
into:

X⊕ Y :=
⊕

`∈f(X)∪f(Y)

`� [X` ⊕ Y`]

〈k〉X :=
⊕

`∈f(X)

`� [〈k〉X`] X〈k〉 :=
⊕

`∈f(X)

`� [X`〈k〉]

X · E :=
⊕

`∈f(X)

`� [X` · E]

X | Y :=
⊕

`∈f(X),`′∈f(Y)

(`|`′)� (X` | Y`′)

X @ Y :=
⊕

`1|`∈f(X)
`′|`2∈f(Y)

(`1|`2)�




X`1|` @ Y`′|`2 if ` = `′

X`1|` @ (`′|ε)Y`′|`2 if ` = ε, `′ 6= ε

(ε|`)X`1|` @ Y`′|`2 if ` 6= ε, `′ = ε




With adjusted definitions of immediate constant term (the weight
associated to 1 in the term of ε) and immediate proper part, the remainder
of the automaton construction procedure remains the same.

However, this introduces new terms in the case of composition. Consider
expansions X := 〈1〉 and Y := a|b� [1]. Their (normal) composition with no
identities is 0. The denormalized expansion of X is X′ := ε|b � [ε|ε @ a|ε].
These results yield two different automata:

1|1@ a|b 1|1@ a|b 1|1@ a|1
ε|b

ε|ε

The second automaton includes a (useless) spontaneous loop which is
invalid in Q for instance. In this case, stronger identities on the composition
simplifies the expression 1|1@a|b into 0, which solves the problem, but in other
cases these spurious transitions remain. For instance, the expression from
Example 8 yields the following automaton with denormalized expansions:
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E@ F

(1|a)E@ 1|1 1|1@ (a|1)2F

E@ (a|1)F

1|1@ (a|1)F

〈k〉ε|ε 〈h〉ε|ε

〈kh〉ε|ε

ε|ε ε|ε

〈k〉ε|ε

ε|ε

ε|ε

With denormalized expansions, the introductory example (Example 7)
yields eight such useless states, in addition to the single useful one.

6.4 The Endmarker

Both types of expansions (denormalized or not) have different pros and cons.
With (non denormalized) expansions (Eq. (18)) the constant term has

a different nature from the rest of the expansion, which lacks elegance. The
equations are somewhat complex.

With denormalized expansions (Eq. (19)) the immediate constant term
is buried with other derived terms following the empty word, which leads to
convoluted definitions of the immediate constant term and of the immediate
proper part. The interpretation of the latter is somewhat clumsy: sometimes
they denote final states, sometimes spontaneous transitions. Besides, hiding
the (immediate) constant term in the derived terms of ε blurs the important
distinction between normal expansions (that yield automata without sponta-
neous transitions) and non normal ones. Finally, the generated automata
may have many useless states (Section 6.3).

These concerns can be addressed if we introduce an endmarker (aka,
end of tape symbol, or terminator), $, added at the end of the expression.
For instance the expansion of a∗〈2〉$ is:

$� [〈2〉 � 1]⊕ a� [〈1K〉 � a∗〈2〉] with endmarker

to compare with Eqs. (18) and (19). (Expressions/automata with/without
endmarker are equivalent [24, Proposition IV.5.1 p. 579].) We keep the
simpler and more regular equations of denormalized expansions: the constant
term becomes a regular weight, associated to the only possible derived term
in the polynomial of $: 1. And we also avoid the useless states, as with
non-denormalized expansions.

This also allows to simplify the construction of the derived-term automa-
ton. In Vcsn for example [10], the initial and final weights are implemented
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as weights of special transitions from the unique preinitial state to the initial
states, and from the final states to the unique postfinal state, all labeled
with the endmarker (which therefore also servers as a beginmarker).

a∗〈2〉
〈2〉

a∗

pre = $a∗〈2〉$ a∗〈2〉$ post = 1
$

a∗

〈2〉$

In the mathematical definition of an automaton, this corresponds to
the replacement of the initial and final functions, I and T , by two constants:
the pre and post states. Starting with an endmarker at both ends, $E$,
Definition 10 can then be simplified as:
• Q is the set of rational expressions on alphabet A with weights in K,
• E(F, `,F′) = k iff 〈k〉 � F′ ∈ d(F)(`), for all labels ` ∈ {$, ε} ∪A.

Using the endmarker, the simplified definitions of Section 6.3 can be
used in place of Eqs. (3) to (6) and (15) and yield the same automata. This
vastly simplifies the implementation.

6.5 Implementation Issues

In an implementation, a single recursive call to d(E) suffices for Eqs. (10)
and (11), from which d$(E) and dp(E) are obtained; expansions are computed
only when needed. So they should rather be written:

d(E · F) := let X = d(E) in if 〈X$〉 6= 0K then Xp · F⊕ 〈X$〉d(F) else Xp · F
d(E∗) := let X = d(E) in

〈
X∗$
〉
⊕
〈
X∗$
〉
Xp · E∗

Besides, existing expressions are referenced to, not duplicated. In the
previous piece of code, E∗ is not built again, the input argument is reused.

Identities that enforce right-associativity of the product are a strong
optimization that saves recursive calls. Consider ((ab)c)d; computing its
expansion requires that of (ab)c is needed, which requires that of (ab) which
requires that of a, which is a � [〈1K〉 � 1], that we multiply by b to get
a � [〈1K〉 � 1b], then multiplied by c, and finally by d, which results in
a � [〈1K〉 � ((1b)c)d]. Note that ((1b)c)d is still left-associative and will
require similarly deep computations. On the contrary, the expansion of
a(b(cd)) is computed in a single step: a� [〈1K〉 � 1(b(cd))].

At each step of the construction of the derived-term automaton we
compute the expansion of an expression, extract its terms and add transitions
to the states of these terms. It it therefore critical to use an efficient structure
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Derived-Term Inductive
Expression #S #T #S #T

([ab] + 〈1〉(ε | [ab] + [ab] | ε))∗ 1 6 7 42
[ab]∗(〈2〉(a|b+ b|a) + 〈1〉(ε | [ab] + [ab] | ε))∗ 2 14 9 60

[ab] + 〈1〉(ε|I + (a+ b) | S))∗ 1 5 6 30
([ab] + S|ε+ I | [ab])∗ 1 5 6 30

([ab] + 〈1〉(ε|I + [ab] | S))∗@([ab] + S|ε+ I | [ab])∗ 1 6 7 42
〈4〉ade∗|x+ 〈3〉bde∗|x+ 〈2〉ace∗|xy + 〈6〉bce∗|xy 4 7 13 16

a+ 〈2〉(bc∗) 3 3 4 4
a∗ | b∗ | c∗ | d∗ | e∗ 31 211 32 242
(a+ | x+ b+ | y)∗ 3 8 5 14

(〈k〉ε | a)∗@(〈h〉aa | ε)∗ 2 2 3 3

Table 1: Number of states and of transitions of the derived-term and in-
ductive automata for the expressions used in this paper. We used traditional
abbreviations, implemented in Vcsn: [ab] := a+ b, and single-tape expressi-
ons in multitape context denote partial identities, e.g., a+ 〈2〉(bc∗) denotes
(a|a) + 〈2〉((b|b)(c|c)∗).

to store and retrieve the derived terms. Hash tables are well suited for this
task.

6.6 Performances

We claimed that this construction builds small automata. On single tape
expressions, it is well known that the size of the standard automaton (aka
Glushkov automaton) of an expression E is exactly ‖E‖+ 1 [6], and that the
derived-term automaton is at most ‖E‖+ 1 but ‘often’ much smaller.

In Vcsn we implemented inductive, a generalization of the recursive
implementation of the computation of the standard automaton of an ex-
pression (see Lombardy and Sakarovitch [16, pp. 163-164] for instance) with
support for the | and @ operators, and compared the sizes of the automata
for the expressions used as examples in this paper. The results are presented
in Table 1. The derived-term automaton has never more states or transitions
on these examples.

Benchmarks ran on generated expressions show similar results (see http:
//vcsn.lrde.epita.fr/dload/2.6/notebooks/SACS-2017.html). There,
the speed of both implementations are also compared.

http://vcsn.lrde.epita.fr/dload/2.6/notebooks/SACS-2017.html
http://vcsn.lrde.epita.fr/dload/2.6/notebooks/SACS-2017.html
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6.7 Multitape Derivatives

We reproduce here the definition of constant terms and derivatives from
Lombardy et al [16, p. 148 and Def. 2], with our notations and added support
for multitape expressions. To facilitate reading, weights such as the constant
term are written in angle brackets, although so far this was reserved to
syntactic constructs.

Definition 11 (Constant Term and Derivative)

c(0) := 〈0K〉, ∂a0 := 0, (20)

c(1) := 〈1K〉, ∂a1 := 0,

c(a) := 〈0K〉,∀a ∈ A, ∂ab := 1 if b = a, 0 otherwise, (21)

c(E + F) := c(E) + c(F), ∂a(E + F) := ∂aE⊕ ∂aF, (22)

c(〈k〉E) := 〈k〉c(E), ∂a(〈k〉E) := 〈k〉(∂aE), (23)

c(E · F) := c(E) · c(F), ∂a(E · F) := (∂aE) · F⊕
〈
c(E)

〉
∂aF, (24)

c(E∗) := c(E)∗, ∂aE
∗ :=

〈
c(E)∗

〉
(∂aE) · E∗, (25)

c(E | F) := c(E) · c(F), ∂a|b(E | F), := ∂aE | ∂bF, (26)

∂a|ε(E | F), :=
〈
c(F)

〉
(∂aE | 1),

∂ε|b(E | F), :=
〈
c(E)

〉
(1 | ∂bF).

where Eq. (25) applies iff c(E)∗ is defined in K.

From an implementation point of view, Eq. (26) leads to repeated
computations of ∂aE and of ∂bF, unless one would cache them, but that’s
what expansions do.

Lemma 9 For any expression E (without composition), d(E)(ε) = c(E), and
d(E)(a) = ∂aE.

Proof: A straightforward induction on E. The cases of constants and
letters are immediate consequences of Eqs. (20) and (21) on the one hand,
and Eq. (7) on the other hand. Equation (8) matches Eqs. (22) and (23).
Multiplication (concatenation) is again barely a change of notation between
Eq. (10) and Eq. (24), and likewise for the Kleene star (Eqs. (11) and (25))
and tuple (Eqs. (12) and (26), using Eq. (6)). �

Note that, if we were to define the derivative with respect to the empty
word as the constant term, i.e., ∂εE := c(E), then the previous definition
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would simplify, for some operators, to:

∂`(E + F) := ∂`E + ∂`F ∂`(〈k〉E) := 〈k〉(∂`E) ∂`|`′(E | F) := ∂`(E) | ∂`′(F)

where for any weights k, k′, k | k′ := k · k′.
Note that these derivatives are no longer equivalent to the left quotient

of the corresponding language. Consider F := (a∗ | 1)(a+ | x + b+ | y)∗:
the language it denotes includes ab|y, yet ∂a|yF = 〈0K〉. Albeit surprising,
this result is nevertheless sufficient as can be observed in the derived-term
automaton in Example 6: while the state (a∗ | 1)(a+ |x+ b+ | y)∗ does accept
words starting with a on the first tape, and y on the second, an outgoing
transition on a|y would result in a more complex automaton.

7 Related Work

This paper is about an algorithm to convert an expression into automata,
and more specifically about multitape expressions.

7.1 From Expression to Automaton

Automata and rational (or regular) expressions share the same expressive
power [14]. This fact made rational expressions an extremely handy practical
tool to specify some rational languages in a concise way, from which acceptors
(automata) are built [25].

There are numerous algorithms to build an automaton from an expres-
sion starting with Glushkov [12], McNaughton and Yamada [19]. Brzozowski
[4] introduced the idea of derivatives of expressions as a means to construct
an equivalent automaton. The method applies to extended (unweighted)
rational expressions, and constructs a deterministic automaton. Antimirov
[3] modified the computation to rely on parts of the derivatives (‘partial
derivatives’), which results in nondeterministic automata.

Lombardy and Sakarovitch [16] extended this approach to support weig-
hted expressions; independently; with different foundations, Rutten [23]
proposed a similar construction. Caron et al. [5] introduced support for
(unweighted) extended expressions. Demaille [8] provides support for weigh-
ted extended expressions; expansions, originally mentioned by Brzozowski
[4], are placed at the center of the construct, replacing derivatives, to gain
independence with respect to the size of the alphabet, and efficiency.
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We are particularly interested in the derivative-based family of algo-
rithms, because they offer a very natural interpretation to states (they are
labeled by an expression that denotes the future of the states, i.e., the
language/series accepted from this state), and provide easy support for
on-the-fly conversion.

7.2 Multitape Expressions

Multitape automata, including transducers, share many properties with
‘single-tape’ automata, in particular the Fundamental Theorem [24, The-
orem 2.1, p. 409]: under appropriate conditions, multitape automata and
rational (multitape) series share the same expressive power.

Multitape rational expressions have been considered early [18], but “an
n-way regular expression is simply a regular expression whose terms are n-
tuples of alphabetic symbols or ε” [13], e.g., (ε|a+ ε|b)∗, but not (ε|(a+ b))∗.
Kaplan and Kay [13] do consider the full generality of the semantics of
operations on rational languages and rational relations, including ×, the
Cartesian product of languages, and even use rational expressions more
general than their definition. They do not, however, provide an explicit
automaton construction algorithm, apparently relying on the simple inductive
construction (using the Cartesian product between automata). Our | operator
on series was defined as the tensor product , denoted ⊗, by Sakarovitch [24,
Sec. III.3.2.5], but without equivalent for expressions.

Makarevskii and Stotskaya [18] define multitape derivatives, but (i)
in the case of expressions over tuples of letters, and (ii) only when in so-
called ‘standard form’, for which he notes “no method of constructing [an]
n-expression in standard form for a regular n-expression is known.”

We first introduced multitape expressions and their derived-term au-
tomata in Demaille [9]. This paper extends this work: the base theory is
generalized to support spontaneous transitions, which we used in Section 5
to introduce support for composition.

Constructions of the derived-term automaton with completely different
grounds have been discovered [1, 7]: they do not rely on derivatives at all.
It is an open question whether these approaches can be adapted to support
a tuple or a composition operator.
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8 Conclusion

Our work is in the continuation of derivative-based computations of an
automaton from an expression [3–5, 16]. However, we replaced the derivatives
by expansions, which lifted the requirement for the monoid of labels to be
free.

This freedom allowed us to generalize the computation of the derived-
term automaton to expressions with a tupling operator (a|b) and a composi-
tion operator (a|x@ x|b). This procedure generates small automata.

Compared to the derivative-based approach, expansions allowed simpler
proofs, and a more efficient implementation.

Vcsn5 implements the techniques exposed in this paper. Our future
work aims at other operators, and studying more closely the complexity of
the algorithm.
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