
1

Trie-based Output Space Itemset Sampling
Lamine Diop∗†, Cheikh Talibouya Diop‡, Arnaud Giacometti∗ and Arnaud Soulet∗

∗University of Tours, 3 Place Jean Jaurès 41029 Blois, France, firstname.lastname@univ-tours.fr
‡ University Gaston Berger of Saint-Louis, BP 234, Saint-Louis, Senegal, cheikh-talibouya.diop@ugb.edu.sn

†EPITA Research Laboratory (LRE), FR-94276 Le Kremlin-Bicetre, lamine.diop@epita.fr

Abstract—Pattern sampling algorithms produce in-
teresting patterns with a probability proportional to
a given utility measure. Utility changes need quick
re-preprocessing when sampling patterns from large
databases. In this context, existing sampling techniques
require storing all data in memory, which is costly. To
tackle these issues, this work enriches D. Knuth’s trie
structure, avoiding 1) the need to access the database
to sample since patterns are drawn directly from the
enriched trie and 2) the necessity to reprocess the whole
dataset when utility changes. We define the trie of oc-
currences that our first algorithm TPSpace (Trie-based
Pattern Space) uses to materialize all of the database
patterns. Factorizing transaction prefixes compresses
the transactional database. TPSampling (Trie-based
Pattern Sampling), our second algorithm, draws pat-
terns from a trie of occurrences under a length-based
utility measure. Experiments show that TPSampling
produces thousands of patterns in seconds.

Index Terms—Pattern mining, Big data, Pattern
sampling, Itemset, Trie data structure

I. Introduction

Pattern mining [1] is an active research field that aims
at discovering interesting and non-trivial information in
large databases. Methods for discovering relevant patterns
in a transactional database are known as itemset min-
ing methods. During the last decade, researchers in this
field addressed the pattern explosion problem, which was
caused by the combination of the volume of data and the
combinatorial nature of mining methods. In fact, control-
ling the size of the set of frequent patterns given a mini-
mum threshold, for example, is extremely difficult. On the
one hand, if the minimum threshold is very low, the end-
user is overwhelmed by the number of returned patterns.
However, if the minimum threshold is very high, the set of
patterns may be empty. Many approaches are proposed to
solve this problem, such as Top-k pattern mining [2], which
returns the k most frequent patterns but lacks diversity.
The last approach proposed is based on output pattern
sampling [3]. Output pattern sampling is the process of
selecting a sample of patterns from the entire dataset.
It is a non-exhaustive method for discovering relevant
patterns that provides high statistical guarantees thanks
to its random nature. Pattern sampling has been shown to
be an important component of interactive pattern-based
mining systems by providing anytime methods [4] and by
integrating user feedback [5], [6].

With state-of-the-art sampling methods, the entire
database must be stored in memory, except [7], where the
data are natively decentralized in different sites and the
algorithm executed in a single machine. In our case, we
assume all transactions are on a single machine where the
user can run a sampling algorithm. In large databases,
a compact data structure can be used to compress the
database, as was done by Han et al. [8] for exhaustive
frequent patterns mining. No output pattern sampling
method in the literature [3], [9], [10], [11] has been applied
to compact database representation. Besides, when a user
changes a utility measure, reprocessing must be easy.
An efficient method should not weight every transaction.
Large databases slow down the processing phase. Diop
et al. [7] address changing utilities like frequency, area,
or decay. However, the proposed solution depends on the
database number of transactions.
This paper discusses ways to speed up pattern sampling

in large databases when changing utility measures. We
sample patterns directly from a compressed database. So,
our main goal is to come up with a generic output pattern
sampling algorithm that draws patterns from a trie of
occurrences based on a length-based utility measure [7].
Our main contributions are as follows.

• We introduce a new structure called trie of occur-
rences and propose TPSpace (Trie-based Pattern
Space), its construction algorithm. Each node in a
trie has weight information for drawing a pattern. In
our case, we weight each node based on the number
of occurrences in the sub-trie of which it is the root.

• We propose TPSampling (Trie-based Pattern Sam-
pling), a generic algorithm for sampling patterns from
a trie of occurrences according to a length-based
utility measure. TPSampling is generic because it
takes into account any length-based utility measure.

The remainder of this paper is structured as follows.
Section II situates our work in the state-of-the-art of
pattern sampling and Section III highlights the challenges
that must be overcome in order to achieve our goal. Our
main contributions are covered in Section IV and Section
V. The theoretical analyses are presented in Section VI,
the experimental results in Section VII, and Section VIII
concludes the paper.

2

II. Related works
This section presents the related works in pattern sam-

pling and data structures for pattern mining.

A. Pattern sampling techniques
Since the first proposition of pattern sampling method

[3] in 2009, numerous algorithms have been proposed for
output pattern sampling [9], [10], [12], [11], [13]. Its utility
has been widely demonstrated in many areas in recent
years, including feature classification [9], outlier detection
[4], and interactive discovery [5], [6]. It has also been used
in a variety of structured data formats, including graphs
[3], itemsets [9], and sequences [11]. To circumvent the
long tail issue [9], Diop et al.[11] weight each pattern with
a norm-based utility. In this paper, we tackle the state-
of-the-art methods based on their efficiency in memory
storage and flexibility on utility change.
Efficiency in memory storage: It is worth noting that
all of these algorithms operate locally on a single machine.
As a result, they completely use the available RAM by
storing the whole data set, which might be a challenge
with huge databases.
Flexibility on utility change: When the user changes
the utility measure, these approaches perform a reprocess-
ing phase that involves weighing each database transaction
according to the new utility measure for the multi-steps
ones. Diop et al.[7] demonstrate that the reprocessing
phase is experimentally fast since it is proportional to the
number of transactions in the database. This argument is
no longer valid in large databases with many transactions.

B. Data structures for pattern mining
Many data structures have been proposed to solve the

problem of pattern mining, such as the “FP-Tree” [8] or
“Trie” [14]. Because multiple transactions can contain the
same information, there are many repetitions in trans-
actional databases. These repetitions make sense in this
field because they allow us to discover interesting rules;
however, we must first understand how to represent them.
In a transactional database, for example, if 90% of trans-
actions that contain the items {e1, e2, e3, e4} also contain
the items {e5, e6}, we might as well group them together
so that they share the same prefix. This significantly
reduces the database’s size in memory. It is now possible to
represent transactions containing the same item in a single
path using “FP-Tree” or “Trie”. This is due to the fact that
they share the same prefix. The difference between these
two structures is that, unlike “trie”, which only connects
a node to its children, “FP-Tree” connects nodes from
different branches to quickly compute the frequency of the
patterns. We propose using “trie” [14] to have a compact
representation of the database in memory because we do
not want to compute this latter. Trie has been used in Big
Data for graph distributed computing [15].

We propose an original multi-step pattern sampling
method in this paper, the first approach based on compact

structure. We will see that the goal of using the compact
structure is not only for memory issues, but also to
facilitate reprocessing when the user changes the utility
measure: utility change flexibility.

III. Preliminaries and problem statement
In this section, we first present some basic concepts and

definitions that are required for understanding the subject.
We conclude with a formalization of the problem addressed
in this paper.

A. Basic definitions
Let I = {e1, · · · , eN} be a finite set of literals called

items. We assume an arbitrary total order >I exists be-
tween the items: e1 >I · · · >I eN . An itemset (or pattern),
denoted by ϕ = {ei1 , · · · , ein} (or simply ϕ = ei1 · · · ein),
with n ≤ N , is a none empty subset of I, ϕ ⊆ I. The set
of all patterns that we can generate from I is called the
pattern language, denoted by L = 2I \ {∅}. The length of
a pattern ϕ ∈ L denoted by |ϕ| is the number of items
it contains (its cardinality). A transactional database D is
a multi-set of itemsets (called transactions) where each
of them has a unique identifier j ∈ N. We denote by
tj = e1 · · · en a transaction identified by j of length |t| = n
defined in I, and L(D) the set of all patterns that appear
in D and L[µ..M](D) = {ϕ ∈ L(D) : µ ≤ |ϕ| ≤ M}. For
example, Table I is a transactional database made up of
four items, I = {A,B,C,D}. In the rest of this paper, we
use this database to give some illustrations.

Originally, the goal of a pattern sampling technique is
to access the pattern space L(D) by an efficient sampling
procedure simulating a distribution P: L(D) → [0; 1]
which is defined with respect to some utility measure
m : P(·) = m(·)/Z where Z is a normalization constant,
the sum of the utilities of all patterns ϕ ∈ L(D), defined
by Z =

∑
ϕ∈L(D) m(ϕ,D). The selection of k patterns of

L(D) according to a distribution proportional to a utility
measure m may be expressed as follows:

Samp`ek(L,D,m) =
k⋃
i=1
{ϕi ∼ m(L,D)}

where ϕ ∼ m(L,D) means that ϕ is drawn with a
probability proportional to m. Formally, ϕ ∼ m(L,D) ⇔
P(ϕ,L(D)) = m(ϕ,D)/Z. In other words, the main objec-
tive of the output sampling methods is to get a sample of
patterns that is representative of the set of patterns that
can be extracted from the database.
For example, if a pattern ϕ1 has a utility twice as high
as that of a pattern ϕ2 according to the utility measure
chosen by the user, then ϕ1 should be twice as likely to
be in the sample as the pattern ϕ2. Frequency is the most
common utility measure.
Definition 1 (Frequency of a pattern): Let D be a

database and ϕ be a pattern of L(D). The frequency of ϕ
in D is defined as follows: freq(ϕ,D) = |{ti ∈ D : ϕ ⊆ ti}|.

3

TABLE I: A transactional database D

tid Itemsets
t1 A B
t2 A C
t3 B C
t4 A B C D

Let m(·) = freq(·) for example, ϕ1 and ϕ2 are two
patterns of L(D) having respective frequencies freq(ϕ1,D)
and freq(ϕ2,D) such that freq(ϕ1,D) = 2 × freq(ϕ2,D),
then the probability of drawing ϕ1 according to the fre-
quency should be twice that of ϕ2.
Example 1: In Table I, the normalization constant,

Z, is the sum of the pattern frequencies: Z =∑
ϕ∈L(D) freq(ϕ,D) = 24. Within the database D, we

have freq(AB,D) = |{t1, t4}| = 2 and freq(AD,D) =
|{t4}| = 1. This means that P(AB,L(D)) = 2/24 and
P(AD,L(D)) = 1/24. So, the probability to draw AB is
twice that of AD in D.

By definition, the operator Samplek with k > 0 is
not deterministic if L(D) has at least two patterns with
probabilities that are not null. In other words, two draws
with the same utility measure in the same database may
not return the same k patterns.

It is also common to give a utility to an itemset and to
combine the frequency of an itemset with its utility. In this
paper, we deal with length-based utility measures [16].
Definition 2 (Length-based utility measures [16].): A

utility u defined from L(D) to R is called a length-based
utility if there exists a function fu from N to R such that
u(ϕ) = fu(|ϕ|) for each ϕ ∈ L(D) . Given the set U of
length-based utilities,M is the set of utility measures mu

such that for every pattern ϕ and database D,

mu(ϕ,D) = freq(ϕ,D)× u(ϕ) with u ∈ U .

For example, with the frequency, the utility function
ufreq(ϕ) = 1 for all patterns in L(D). If we consider
the utility function uarea(ϕ) = |ϕ|, we obtain the area
measure: freq(ϕ,D) × |ϕ|. If udecay(ϕ) = α|ϕ|, we get an
exponential decay in α ∈]0, 1]. More generally, we consider
the class of utility measures of the form freq(ϕ,D)×u(ϕ)
where u exclusively depends on the length of itemsets.

B. Key ideas, challenges and problem statements
We first focus on some interesting key ideas and chal-

lenges to situate our work before formulating the questions
we should properly answer in order to achieve our goal.

a) Key idea: As we have pointed out, drawing a
pattern is one of the most important steps in pattern
sampling, especially in the case of user-centered mining.
In this paper, we suggest using a trie structure to build
the pattern space while making sure that reprocessing in
utility change can be done in a flexible way.

ε

A

B,t1

C

D,t4

C,t2

B

C,t3

Fig. 1: Representation of a database D as a trie

Definition 3 (Trie [14]): A trie is a data structure in
the form of a rooted tree such that for any node, its
descendants have the common prefix.
Example 2: We represent the database D as a trie in

Figure 1. To do this, each node in the trie has the set of
transactions in the database that end with its label.
It is important to note that many representations of
the database D as a trie are possible depending on the
insertion order of the items (decreasing order of their
frequencies, ascending order, lexicographic order, etc.).

b) Challenges with trie-based pattern sampling: It is
difficult to sample a pattern in the trie structure. Aside
from ensuring that a pattern is drawn exactly with a
probability proportional to its weight, we must also pay
attention to new length-based utilities to avoid time-
consuming reprocessing. In that case, the following are the
primary issues that must be addressed:
• efficiently build and weights the trie that corresponds

to the database,
• draw a pattern directly from the trie proportionally

to its utility in the database.
c) Problem statement: These main challenges can be

finally solved by answering the following questions that we
formulate here.
Let D be a database, u, u′ ∈ U two length-based utilities,
and µ and M two integers such that 0 < µ ≤M .
1) What should be done to a (classical) trie to allow di-

rect pattern sampling without the underlying trans-
actional database?

2) How to draw a pattern ϕ from L[µ..M](D) propor-
tionally to mu(ϕ,D) directly from the weighted trie?

3) How to compute Samp`ek1(L[µ..M],D,mu) and
Samp`ek2(L[µ..M],D,mu′), with 0 < k1 ≤ k2, with-
out rebuilding the trie of occurrences?

The notations of this paper are summarized in Table II.

IV. TPSpace: Trie-based Pattern Space
To define our new data structure, we need to introduce

the notion of occurrence:
Definition 4 (Occurrence and language of occurrences):

Let D be a transactional database, and µ and M two
integers, 0 < µ ≤ M . If a transaction t of identifier i
in D contains the pattern ϕ ∈ L[µ..M](D), then we denote
by ϕi the occurrence of ϕ in ti. The set of occurrences

4

TABLE II: Notations

Symbol Definition
L[µ..M](D) Set of patterns of D with lengths between the length constraints µ and M
u Length-based utility that belongs to the set of length-based utility U
mu(ϕ,D) The utility measure of the pattern ϕ in D that combines frequency and utility u
fu Utility function defined from N to R+ such that u(ϕ) = fu(|ϕ|) for all pattern ϕ
Samp`ek(L[µ..M],D,mu) Set of k patterns at most drawn from L[µ..M](D) proportionally to mu

ϕi Occurrence of the pattern ϕ in the transaction ti
Lo[µ..M](D) Set of occurrences of D with lengths between the length constraints µ and M
η Node of the trie T
P Identifier of a node, it’s also a prefix
P̃ Label of the node η identified by P , P̃ = η.label
TP Sub-trie of the trie T whose root is the node identified by P
φ+
` (P,D) (resp. φ−` (P,D)) Set of occurrences of length ` with (resp. without) the item P̃ in the sub-trie TP

Φ+
` (P,D) (resp. Φ−` (P,D)) Cardinality of φ+

` (P,D) (resp. of φ−` (P,D))
T .Φ`(P,D) Cardinality of the set of occurrences of length ` in the trie T
rank`(ϕj , T) Rank of the occurrence ϕj of length ` in all the set of occurrences in Lo[`..`](D)
rank>I (ϕj , φ1(P,D)) Rank of ϕj in φ1(P,D) based on lexicographical order when |ϕj | = 1

in D under length constraints µ and M is denoted by
Lo[µ..M](D) = {ϕi : (∃(ϕ, ti) ∈ L[µ..M](D) × D)(ϕ ⊆ ti)}.
The length of ϕi is equal to the length of ϕ.
Note that Lo(D) is a set of occurrences while L(D) is a set
of patterns, and, unlike a pattern, an occurrence belongs to
one and only one transaction. The frequency of a pattern
in L(D) is the cardinality of the set of its occurrences in
Lo(D). We have then

P(ϕ,L[`..`](D)) =
|{ϕi ∈ Lo[`..`](D)}|
|Lo[`..`](D)| .

Example 3: To draw a pattern of length 2 pro-
portionally to its frequency in D, it suffices to uni-
formly draw an occurrence in the set Lo[2..2](D) =
{AB1, AB4, AC2, AC4, BC3, BC4, AD4, BD4, CD4}. As a
result, the probability of drawing the pattern AB in the
set S is equal to P(AB,L[2..2](D)) = |{AB1,AB4}|

|Lo
[2..2](D)| = 2

9 .
Using a uniform drawing of occurrences, we may draw a
pattern of length ` based on its frequency among patterns
of the same length. If we can draw a length ` proportion-
ally to the sum of patterns utilities of length `, we can
then pick a pattern from the database based on its utility.

A. Definition of a trie of occurrences

Since many representations are possible according to the
order insertion, we start by defining the total order rela-
tions used in this paper before formalizing the identifier
and the content of a node.
Definition 5 (Total order relation between items): Let

I be a set of items or literals on which the transactional
database D is defined.
• The total order relation >lexicoI is lexicographic-based

if literals are ranked lexicographically.

• A total order relation on literals is called a frequency-
based order and is denoted by >freqI if it orders the
elements of I according to the descending order of
their frequencies in D and according to the lexico-
graphic order in the case of equal frequency.

Example 4: Given the database D, we have freq(A,D) =
3, freq(B,D) = 3, freq(C,D) = 3 and freq(D,D) = 1. In
this case, we can already say that A >freqI D, B >freqI D

and C >freqI D because freq(A,D) = freq(B,D) =
freq(C,D) > freq(D,D). Now, if we consider the lex-
icographic order between the items, we have A >lexicoI
B >lexicoI C. So, continuing with the order relation >freqI ,
we have A >freqI B >freqI C >freqI D.
In the following we denote >I∈ {>lexicoI , >freqI }. Note
that there are other types of total order relations in the
literature that can be applied to literals.

We are now going to define the notion of node identifier
in a trie. It is a concept that will allow us to enrich the
trie of occurrences from a transactional database.
Definition 6 (Node identifier): Given a set of items I =

{e1, · · · , en} and a symbol ε 6∈ I, a trie T defined on I is
a tree where every node η ∈ T except the root contains
a label denoted by η.label ∈ I, and where the root of
the trie contains the label ε. Thus, any node η ∈ T can
be identified by the sequence of node labels on the path
from the root of T to the node η. If εei1 . . . eik is this
sequence, we write it down more simply as P = ei1 . . . eik ,
and we denote by P̃ = eik the label of the identified node
η, P̃ = η.label. For the root, we set that P = ∅.
In the following, we will often use the concept of a sub-

trie of a trie defined below.
Definition 7 (Sub-trie): Let T be a trie and P the

identifier of a node. We denote by TP the sub-trie of T
whose root is the node identified by P .

5

We now define the concatenation operator ◦ as follows.
Definition 8 (Concatenation operator ◦): Let ϕ and ϕ′

be two itemsets defined in I and ordered according to >I ,
ϕ ◦ ϕ′ = ϕ ∪ {e′ ∈ ϕ′ : (∀e ∈ ϕ)(e >I e′)}.
If >I is the lexicographic order, then we have B ◦ AC =
BC and A ◦BC = ABC. With this concatenation opera-
tor, we can define a prefix that will be used in the definition
of a truncated database.
Definition 9 (Prefix): Let t be a transaction defined in

I and P a sequence of items ordered according to >I . P
is a prefix of the transaction t if there is an itemset ϕ ⊆ I
such that t = P ◦ ϕ.
In the database D in Fig. 1, P = AB is a prefix of
the transaction t4 = ABCD but P is not a prefix of
the transaction t3 = BC. According to Definition 9,
transactions with a common prefix can be grouped.
To determine which sub-trie a pattern occurs in, we
introduce the concept of a truncated database.
Definition 10 (Truncated database): Let >I be a total

order relation on all items, D be a transactional database,
and P be a node identifier. A truncated database of D on
P , denoted by DP , is a transactional database that holds
a copy of any transaction t of D with prefix P minus the
items of trans that appear before P̃ . DP = {(i, P̃ ◦ ϕ) ∈
N× L(D) : (i, t) ∈ D ∧ t = P ◦ ϕ}.
Example 5: Let us consider the trie of the transac-

tional database D in Fig. 1. Occurrences in the truncated
database DAB are the occurrences stored in the sub-trie
whose root is identified by the prefix AB: B1, B4, BC4,
BD4, CD4, BCD4. The occurrences stored in the sub-
trie whose root is identified by the prefix AC: C2 are the
occurrences in the truncated database DAC .

Now, by splitting these groups of occurrences by length,
we will identify which of them are represented at the top
level of the truncated database of D on the prefix P .
Definition 11 (Computing weights Φ−` and Φ+

`): Let D be
a transactional database and P a prefix. The set of occur-
rences of length ` of the truncated database on the prefix
P is defined by: φ`(P,D) = {(i, ϕ) ∈ N × L(D) : (i, ϕ′) ∈
DP ∧ϕ ⊆ ϕ′∧|ϕ| = `}. Φ`(P,D) denotes the total number
of occurrences of length ` in the truncated database DP :
Φ`(P,D) = |φ`(P,D)|. The set of occurrences φ`(P,D) can
be split into two parts:
• The set of occurrences of length ` of the database

truncated on the prefix P and containing the item P̃
is defined by:

φ+
` (P,D) = {(i, ϕ) ∈ φ`(P,D) : P̃ ∈ ϕ}.

Its cardinality is denoted by Φ+
` (P,D) = |φ+

` (P,D)|.
• The set of occurrences of length ` of the database

truncated on the prefix P without the item P̃ is
defined by:

φ−` (P,D) = {(i, ϕ) ∈ φ`(P,D) : P̃ 6∈ ϕ}.

Its cardinality is denoted by Φ−` (P,D) = |φ−` (P,D)|.

ε
10 9 4

A
Φ+

` 3 5 3
Φ−` 5 3 1

B
2 2 1
2 1 0

C
1 1 0
1 0 0

D
1 0 0
0 0 0

C
1 0 0
0 0 0

B
1 1 0
1 0 0

C
1 0 0
0 0 0

Fig. 2: Trie of occurrences of the trie provided by Fig. 1

Example 6: Given the truncated database DA =
{(1, AB), (2, AC), (4, ABCD)} on the node A, we have
φ+

2 (A,D) = {(1, AB), (2, AC), (4, AB), (4, AC), (4, AD)}
and φ−2 (A,D) = {(4, BC), (4, BD), (4, CD)} on the other
hand. Then Φ+

2 (A,D) = 5 and Φ−2 (A,D) = 3.
At the top level of a trie TP , we will record the cardinalities
of these sets as weight, differentiating the subsets of
occurrences of length ` containing or not the item P̃ .
Definition 12 (trie of occurrences): Given a transactional

database, a trie of occurrences for D, denoted by T , is a
tree where each node η ∈ T contains:
• a label denoted by η.label belonging to I∪{ε}, ε being

the label reserved for the root.
• If η is the root then P = ∅, we have η.Φ`(P,D) =
|φ`(P,D)|.

• a list of children denoted by η.child. Subsequently, we
denote |η.child| the number of children of the node η
and η.child[i] the i-th child of η for i ∈ [1..|η.child|].

• an array of positive weights defined by η.Φ+
` (P,D) for

` ∈ [µ..M] with P the identifier of the node η in T ,
and µ and M the length constraints.

• an array of negative weights defined by η.Φ−` (P,D)
for ` ∈ [µ..M] with P the identifier of the node η in
T , and µ and M the length constraints.

Example 7: Let us consider the transactional database
of Fig. 1, the minimum µ = 1 and maximumM = 3 length
constraints, we build the trie of occurrences according to
the total order relation >I in Fig. 2.
In this example, the set of labels for the children of the

root is {A,B}. The number of patterns of length ` = 2
in the trie T is equal to T .φ2(∅,D) = 9. Let η be the
node identified by P = A. Then we have η.φ+

2 (P,D) = 5
and η.φ−2 (P,D) = 3 to say that the sub-trie TA contains 5
occurrences of length 2 with the item P̃ = A : AD4, AC4,
AB4, AB1, AC2, and 3 occurrences of length 2 without

6

the item P̃ = A : CD4, BD4, BC4.
B. TPSpace: Algorithm for building a trie of occurrences

We describe how to generate a trie of occurrences from
a transactional database to effectively handle length-based
utility measures. First, note that the transactions are
added to the trie iteratively. In our case, we must compute
the positive and negative contributions of each transaction
t into a node P identified by P , where P is a prefix of t.
Property 1: Let D = {t1, · · · , tn} be a transactional

database. We denote by Di the subset of transactions
defined by Di = {tk ∈ D : 1 ≤ k ≤ i}. If P is a prefix
of ti, then we have:

Φ?` (P,Di) = Φ?` (P,Di−1) +
(
|ti| − |P |
`− β

)
, β =

{
1 if ? = +
0 if ? = −

By convention, Φ?` (P,D0) = 0 whatever the identifier P .
Proof 1: Omitted due to space limitation.
When adding the transaction ti in the trie T , the terms(|ti|−|P |
`−1

)
and

(|ti|−|P |
`

)
are called respectively the positive

and the negative contribution of ti to the occurrences of
length ` of the node identified by the prefix P .
Example 8: Considering Example 6 let’s compute

the weights Φ+
2 (P,D) and Φ−2 (P,D), with P = A,

using Property 1. By definition, we have DA =
{(1, AB), (2, AC), (4, ABCD)}. According to Property 1,
we have: Φ+

2 (P,D1) = 0 +
(|t1|−1

2−1
)

=
(2−1

1
)

=
(1

1
)

= 1.
Then, by adding t2 we have Φ+

2 (P,D2) = Φ+
2 (P,D1) +(|t2|−1

2−1
)

= 1 +
(2−1

1
)

= 1 +
(1

1
)

= 1 + 1 = 2. Adding
t3 does not affect the weights of the node identified by
P = A because, in this case, P is not a prefix of t3.
So we have Φ+

2 (P,D3) = Φ+
2 (P,D2) = 2. Finally, by

adding t4, we have Φ+
2 (P,D4) = Φ+

2 (A,D3) +
(|t4|−1

2−1
)

=
2 +

(4−1
1
)

= 2 +
(3

1
)

= 2 + 3 = 5. We also have
Φ−2 (P,D1) = 0 +

(|t1|−1
2
)

=
(2−1

2
)

=
(1

2
)

= 0. With
adding t2 we have Φ−2 (P,D2) = Φ−2 (P,D1) +

(|t2|−1
2
)

=
0 +

(2−1
2
)

=
(1

2
)

= 0. Likewise, adding t3 does not affect
the weights of the node identified by P = A. So we have
Φ−2 (P,D3) = Φ−2 (P,D2) = 0. Finally, by adding t4, we get
Φ−2 (A,D4) = Φ−2 (A,D3) +

(|t4|−1
2
)

= 0 +
(4−1

2
)

=
(3

2
)

= 3.
We need now to introduce some basic functions for

creating, adding, or finding a node when inserting the
items of a transaction into a trie.
• Let CreateNode be the function defined by η ←
CreateNode(e) where η is a node such that η.label =
e, and η.child = ∅ represents here an empty list of
nodes.

• Let SearchChild the function defined by
η.child[i] ← SearchChild(e, η) if there is i such
that η.child[i].label = e, null otherwise.

• Let AddChild be the function allowing to add a child
to a node. More precisely, if η is a node such that
k = |η.child|, we will consider that after execution
of AddChild(c, η), we have |η.child| = k + 1 and
η.child[k + 1] = c.

In the following, t[j], with j > 0, is the jth item of the
transaction t according the total order relation >I .

Algorithm 1 TPSpace
1: Input: A transactional database D, the minimum µ and

maximum M length constraints
2: Output: A trie of occurrences T
3: T ← CreateNode(ε), i← 0 . Creation of the trie root
4: for t ∈ D do
5: for `← µ to M do
6: Compute c.Φ`(∅,Di)
7: η ← T and i← i+ 1
8: for j ← 1 to |t| do
9: c← SearchChild(t[j], η) and P = t[1] · · · t[j]
10: if c = null then . If c is not child of node η
11: c← CreateNode(t[j]) . so we create it
12: AddChild(c, η)
13: for `← µ to M do
14: Compute c.Φ+

` (P,Di)
15: Compute c.Φ−` (P,Di)
16: η ← c

17: return T

Algorithm 1 describes the TPSpace method to create a
trie of occurrences of an input database D according to a
total order relation>I . We initialize the trie of occurrences
(line 3) by creating an empty node with the CreateNode
function. For each transaction t of the input database
whose items follow the order relation >I , we start at
the root then, using Property 1, we compute and add
its total contribution in the trie according to the lengths
(line 6). Then, for each item t[j] of the transaction being
inserted in the trie, if there is not a child node c labelled
with the item t[j] according to the SearchChild function
(line 9), we create it using the function CreateNode (line
11) then we add it among the children of η with the
function AddChild (line 12). Finally, we add the positive
and negative contributions of the transaction t to the node
c (lines 13 to 15) using Property 1. We now go to node c
(line 16) and the process starts again with the item at
position j + 1 in t. Finally, line 17 returns the trie of
occurrences T of the database D.

V. TPSampling: Trie-based Pattern Sampling
This section introduces trie of occurrences basics to

understand our method. Then, it presents the algorithm
TPSampling to draw a pattern proportionally to a given
utility measure.

A. Drawing approach
To draw a pattern of length ` proportionally to a length-

based utility u multiplied by its frequency in the database,
we can uniformly draw an occurrence among the set of
occurrences of length `. To do this, we first need to draw
an integer ` ∈ [µ..M] proportionally to Φ`(∅,D) × fu(`).
Second, we uniformly draw an occurrence of length ` from
Lo[`..`](D), but directly from the trie. More precisely, a
numbering system assigns a number to each occurrence

7

and then, we draw a random number for selecting the
occurrence.
The intuition of the numbering system that we use can be
summarized as follows:
• It is a recursive and postfix traversal (in depth and

from left to right). The occurrences represented at the
root of a sub-trie are numbered from left to right and
the children of a node are ordered,

• At the top level of a sub-trie, from the root identified
by a prefix P , we give a lower rank to occurrences
without the label P̃ than others containing P̃ .

Definition 13 (Ranking occurrences by length): If ϕj is
an occurrence of length ` from a database D and T is a
trie constructed from D, we denote rank`(ϕj , T) the rank
of this occurrence in Lo[`..`](D) relative to the trie T . This
rank can be defined recursively as follows.
• If ϕj ∈ φ−` (P,D), and more precisely if ϕj ∈ φ`(P ◦
ei,D) where ei = TP .child[i], then rank`(ϕj , T P) =∑i−1
k=1 Φ`(P ◦ ek, T) + rank`(ϕj , T P◦ei).

• If ϕj ∈ φ+
` (P,D), then ϕj = P̃ ◦ϕ′j . And in this case,

if ϕ′j ∈ φ`−1(P ◦ ei,D) where ei = TP .child[i], then
rank`(ϕj , T P) = Φ−` (P, T) +

∑i−1
k=1 Φ`−1(P ◦ ek, T) +

rank`−1(ϕ′j , T P◦ei
).

• Finally, if ϕj is an occurrence of length 1,
we define rank1(ϕj , T P) by: rank1(ϕj , T P) =
rank>I (ϕj , φ1(P,D)) where >I defined on items
is extended to occurrences of length 1 as follows:
(i, e) >I (j, e′) if e′ >I e or e = e′ and i > j.

Example 9: If we consider the patterns of length 2 and
the total order relation >freqI , the list in Table III gives
the rank of each occurrence in the trie of Fig. 2:

TABLE III: Ranking occurrences of length 2
ϕi CD4 BD4 BC4 AD4 AC4 AB4 AB1 AC2 BC3

rank2 1 2 3 4 5 6 7 8 9

φ2(∅,D) = {CD4, BD4, BC4, AD4, AC4, AB4, AB1, AC2,
BC3}. We also know that CD4 ∈ φ−2 (A,D), which
implies that rank2(CD4, T) = rank2(CD4, T A) =
rank2(CD4, T AB) = rank2(CD4, T ABC). Then we have
rank2(CD4, T) = Φ−2 (ABC, T) + rank1(D, T ABC) =
0 + rank>freq

I
(D, {D}) = 1.

Let us compute rank2(AB4, T). We know that AB4 ∈
φ+

2 (A,D), then rank2(AB4, T) = Φ−2 (A, T) + 0 +
rank1(B4, T AB) = 3 + rank>freq

I
(B4, {B1, B4, C4, D4}).

Or (4, D) >freqI (4, C) >freqI (4, B) >freqI (1, B), then
rank>freq

I
(B4, {B1, B4, C4, D4}) = 3, which results in

rank2(AB4, T) = 3 + 3 = 6.

B. Trie-based pattern sampling algorithm
Algorithm 2 takes as input a trie of occurrences T , a

length-based utility u ∈ U , and minimum µ and maxi-
mum M length constraints. It returns a pattern ϕ drawn
proportionally to its utility in the corresponding database.

Algorithm 2 TPSampling
1: Input : A trie T of occurrences of a database D, a length-

based utility u ∈ U and the minimum and maximum length
constraints µ and M

2: Output : A pattern ϕ drawn proportionally to its interest
ϕ ∼ fu(|ϕ|)× freq(ϕ,D)

3: ϕ← ∅ and P ← ∅
4: Draw a length ` proportionally to T .Φ`(P,D)×fu(`) where
` ∈ [µ..M]

5: Draw uniformly a rank x in [1..T .Φ`(P,D)]
6: while (` > 0) do
7: Find the ith child ηi ∈ TP .child such that :∑

1≤k<i

Wk(P ◦ ηi.label,D) < x ≤
∑

1≤k≤i

Wk(P ◦ ηi.label,D)

with

Wk(P ◦ηi.label,D) =
∑

?∈{+,−}

TP .child[k].Φ?
` (P ◦ηi.label,D)

8:
x← x−

∑
1≤k<i

Wk(P ◦ ηi.label,D)

9: if (x > ηi.Φ−` (P ◦ ηi.label,D)) then . Check if the
label of the current node is part of the pattern

10: ϕ← ϕ ∪ ηi.label
11: x← x− ηi.Φ−` (P,D)
12: `← `− 1
13: P ← P ◦ ηi.label

14: return ϕ

Draw a length ` between µ and M . Line 4 draws an
integer ` between µ and M proportionally to the number
of occurrences of length `, T .Φ`(P,D), multiplied by the
utility of a length `, fu(`).

Uniform drawing of an occurrence of length `. To
sample an occurrence of length `, we uniformly draw a
rank x in the interval [1..T .Φ`(P,D)] (line 5). To find the
occurrence corresponding to x, we scan the trie in depth-
first search from left to right by looking for the nodes that
satisfy the system of inequalities in line 7 which is based on
Definition 13. This system of inequalities makes it possible
to find the rank of the occurrence from the trie of root
T . Whenever we encounter a node verifying the system
of inequalities, we test whether the item it contains is a
candidate for the pattern to be returned (line 9), and we
add it to the pattern if necessary (line 10). In line 13, we
consider the sub-trie whose node satisfying the system of
inequalities is the root. Thus, the new rank to visit is the
one obtained by subtracting from the old value of x the
sum of the weights of the i−1 first children of the current
node, father of ηi, (line 8) and the negative input to node
ηi (line 11). We will then look for the remaining `−1 items
of the pattern to be returned in the sub-trie of root ηi. The
process is iterated until the current value of ` is equal to
0. The set of items selected at the different visited nodes
form the pattern to return at line 14.

8

VI. Theoretical analysis

This section examines our trie sampling strategy in
terms of soundness and complexity (memory storage and
temporal). Property 2 shows that our sampling method
TPSampling does an exact draw of a pattern.
Property 2 (Soundness): Let T a trie of occurrences

from a transactional database and u a length-based util-
ity, Algorithm 2 draws a pattern ϕ proportionally to its
frequency weighted by its length-based utility.
Proof 2: Omitted due to space limitation.

A. Space complexity
The size of a trie of occurrences also depends on the

information stored in the nodes. In our case, the higher
the maximum length constraint, the larger the arrays
and the greater the memory size. This means that if
the number of nodes in the trie of occurrence is z, µ
and M the minimum and maximum length constraints
respectively, then the size in memory of the trie is in
O(z × 2 × (M − µ)). Fortunately, the maximum length
constraint must generally be small to avoid the long tail
problem. It is also important to note that, to have a
good practical consumption of memory storage, we do
not materialize the columns of tables that only contain
zero values. This trick counterbalances the impact of the
maximum length constraint increase. Furthermore, a tight
upper bound of the number of nodes is detailed in [17].

B. Time complexity
The time complexity of our method can be divided

into three phases: preprocessing time to build the trie of
occurrences, re-preprocessing times in utility change, and
drawing time of an occurrence.

a) Preprocessing time: It is the most expensive phase
of TPSpace. A first pass on the database is necessary
to retrieve the items from the database D and to com-
pute their frequencies in O(||D||) where ||D|| is the sum
of the lengths transactions from the database D. The
previously retrieved items are ordered according to the
chosen relation >I in O(|I| × log(|I|)). Then, before
adding a transaction to the trie, we order its items in
O(Tmax×log(Tmax)) where Tmax is the maximum length of
transactions in the database D. Finally, let z be the total
number of nodes in the trie, µ and M the minimum and
maximum length constraints respectively, then the weight-
ing of the nodes is done in O(z× 2× (M − µ)). Thus, the
total complexity for building the trie of occurrence of the
transactional database D built on the set of literals I is in
O(||D||+|I|×log(|I|)+|D|×Tmax×log(Tmax)+z×(M−µ)).

b) Reprocessing time in utility change: When the
utility changes without updating the length constraints
µ and M , the complexity of the reprocessing time is in
O(M −µ), which is particularly tiny. This is because only
the array of the root of the trie is traversed to compute
the new weight of each length ` ∈ [µ..M].

c) Drawing time of an occurrence: Let us denote by d
the degree (number of children) of a node of the trie and by
dmax the maximum degree of the trie, dmax ≤ |I|. Line 7 of
TPSampling finds ith node in O(log(dmax)). Thus, by go-
ing deeply through the trie of occurrences, TPSampling
draws an occurrence in O(Tmax× log(dmax)). So, a sample
of k patterns is obtained by TPSampling in O(k×Tmax×
log(dmax)). This complexity is comparable to that of the
two-step algorithm [9] (with length constraints) which
draws a sample of k patterns in O(k × Tmax × log(|D|)).

VII. Experiments
This experimental section aims to assess the efficiency

of our approach to large transactional databases. The ex-
periments were conducted with 2 UCI databases Susy and
USCensus, and 2 synthetic databases built with the IBM-
Generator1 T10I4D2000K and T10I6D3000K. Table IV pro-
vides benchmarks by number of items, transactions, and
maximum and average transaction length. It shows the
number of trie nodes for each database and according to
the total order relation. The minimum length constraint is
fixed at µ = 1 throughout the experiments. The prototype
of our method is implemented in Python version 3 and all
the experiments are performed on a 2.71 GHz 2 Core CPU
with 12 GB RAM. The source code is available at https:
//github.com/TPSampling/TPSampling. We also imple-
ment an approach of Two-Step proposed by Boley et al.[9]
under length constraints as a baseline.

TABLE IV: Characteristics of databases
D |I| |D| |t|min |t|max |t|avg

USCensus 396 1 M 25 68 68.00
Susy 190 5 M 19 19 19.00
T10I4D2000K 2,719 2 M 10 30 20.11
T10I6D3000K 3,952 3 M 10 35 22.61

A. Storage cost of the trie of occurrences
The cost2 of storing a trie of occurrences in a database

depends on both the total order relation >I and the max-
imum length constraint. According to the gain obtained
in the last column of Table VI, the number of nodes is
substantially lower with the >freqI relation than with the
>lexicoI relation. As a result, the fewer the nodes, the lower
the storage cost. Due to an “Out of memory” issue, it is not
feasible to perform TPSampling with the lexicographical
order in the last two databases.
Fig. 3 shows the evolution of the memory size required
by the tries of each database according to the maxi-
mum length constraint M ∈ [2..10] and the chosen or-
der relation. These experimental results show that our
approach is sensitive to the total order relation. For in-
stance, TPSampling +>freqI returns an “Out of memory”

1https://github.com/zakimjz/IBMGenerator
2Computed with the python package asizeof http://code.

activestate.com/recipes/546530-size-of-python-objects-revised/

https://github.com/TPSampling/TPSampling
https://github.com/TPSampling/TPSampling
http://code.activestate.com/recipes/546530-size-of-python-objects-revised/
http://code.activestate.com/recipes/546530-size-of-python-objects-revised/

9

 0

 50

 100

 150

 200

 250

 300

 350

 2 3 4 5 6 7 8 9 10

S
iz

e
 i
n
 m

e
m

o
ry

 (
M

B
)

Maximal length constraint

uscensus

Trie with frequency order
Trie with lexicographic order

Two−Step

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 2 3 4 5 6 7 8 9 10

S
iz

e
 i
n
 m

e
m

o
ry

 (
M

B
)

Maximal length constraint

susy

Trie with frequency order
Trie with lexicographic order

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 2 3 4 5 6 7 8 9 10

S
iz

e
 i
n
 m

e
m

o
ry

 (
M

B
)

Maximum lenght constraint

T10I4D2000K

Trie with frequency order

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 2 3 4 5 6 7 8 9 10

S
iz

e
 i
n
 m

e
m

o
ry

 (
M

B
)

Maximum lenght constraint

T10I6D3000K

Trie with frequency order

Fig. 3: Evolution of the memory size of the tries according to the length constraint

TABLE V: Preprocessing times in seconds according to the measures and (M ∈ {2, 6})

Two-Step TPSampling (>freq
I) TPSampling (>lexico

I)
D m M=2 M=6 M=2 M=6 M=2 M=6

USCensus

Area 0.01 ± 0.00 0.01 ± 0.00
5.26 ± 1.85 7.39 ± 0.17 8.09 ± 0.32 12.27 ± 1.27Decay 0.01 ± 0.00 0.01 ± 0.00

Freq 0.01 ± 0.00 0.01 ± 0.00

Susy

Area − −
347.99 ± 8.01 593.01 ± 44.24 532.01 ± 41.65 910.45 ± 65.47Decay − −

Freq − −

T10I4D2000K

Area − −
356.54 ± 9.31 418.87 ± 24.13 − −Decay − −

Freq − −

T10I6D3000K

Area − −
792.56 ± 45.21 1094.49 ± 51.42 − −Decay − −

Freq − −

TABLE VI: Characteristics of tries of the databases
Nb of nodes in the trie Gain (in %)

>freq
I >lexico

I
Nblexico−Nbfreq

Nblexico

USCensus 312,808 607,611 48.52
Susy 10,424,240 12,630,372 17.47
T10I4D2000K 9,957,321 − −
T10I6D3000K 10,617,309 − −

exception with T10I6D3000K when the maximum length
constraint is greater than 7. We also found that the trie of
occurrences created according to >freqI used less memory
than the Two-Step database representation. The later
generates an “Out of memory” exception with Susy, while
both Two-Step and TPSampling +>lexicoI return “Out of
memory” exception with T10I4D2000K and T10I6D3000K.

B. Speed of the approach

This section analyses preprocessing, reprocessing, and
pattern draw of our approach.
Evaluation of the preprocessing time. Interestingly,
the time to build a trie of occurrences is independent of
any length-based utility measure. In our experiments, we
consider the maximum length constraints M ∈ {2, 6}.
Table V presents the preprocessing times to build the tries
of occurrences and those of Two-Step according to the
maximum length constraint. Each experiment is repeated

10 times to have the average preprocessing times and the
standard deviations.
Because it only requires one pass through the database,
Two-Step is faster than TPSpace in preprocessing. How-
ever, on Susy, T10I4D2000K, and T10I6D3000K, it throws
a “Out of memory” exception, but TPSampling+ >freqI
lasts on average 18 minutes with the maximum length
constraints M = 6 in T10I6D3000K. Interestingly, we only
do this preprocessing once, after which we may utilise the
resulting trie of occurrences with any length-based utility.
Evaluation of the reprocessing time for utility
change. The reprocessing time, when utility changes, de-
pends linearly to the difference between the minimum and
the maximum length constraints only. Utility measures
like frequency, area, and exponential decay have not a
notorious impact on the speed of the reprocessing phase.
Contrariwise, Two-Step should do a new preprocessing
from scratch when utility changes. Experiments show that
in the reprocessing phase our approach needs a few time,
less than 10× 10−6 seconds with M = 10 while Two-Step
needs 0.45 seconds with USCensus. Interestingly, the repro-
cessing time is the same for all databases with the same
length constraints. These results show the importance of
the trie when changing the length-based utility measure.
Evaluation of the drawing time per pattern. We
test the speed of our approach on the 4 databases and
figure out the average drawing time of a pattern with a
maximum length constraint in [1..10] and an exponential

10

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 1 2 3 4 5 6 7 8 9 10

D
ra

w
in

g
 t

im
e

 p
e

r
p

a
tt

e
rn

 (
m

s
)

Maximum length constraint

Area

TPSampling(Susy)
TPSampling(T10I4D2000K)
TPSampling(T10I6D3000K)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 1 2 3 4 5 6 7 8 9 10

D
ra

w
in

g
 t

im
e

 p
e

r
p

a
tt

e
rn

 (
m

s
)

Maximum length constraint

Decay

TPSampling(Susy)
TPSampling(T10I4D2000K)
TPSampling(T10I6D3000K)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 1 2 3 4 5 6 7 8 9 10

D
ra

w
in

g
 t

im
e

 p
e

r
p

a
tt

e
rn

 (
m

s
)

Maximum length constraint

Freq

TPSampling(Susy)
TPSampling(T10I4D2000K)
TPSampling(T10I6D3000K)

Fig. 4: Evolution of the average of drawing time per pattern according to M (α = 0.1 for the exponential decay)

decay α = 0.1. Fig. 4 compares the average drawing time
of a pattern using TPSampling with length constraints.
For M ∈ [1..10], we repeat 100 times the draws of a
pattern. Standard deviations are omitted as they are tiny.
With large databases like Susy, T10I4D2000K, and
T10I6D3000K, TPSampling can draw a pattern in as little
as 2.5 milliseconds whileM ∈ [1..7]. WhenM is more than
7, TPSampling throws a “Out of memory” issue with
the T10I6D3000K database. We see that the drawing times
of TPSampling+Area and TPSampling+Freq increase
practically identically. TPSampling is efficient since it
produces thousands of patterns per second.

VIII. Conclusion

This paper proposed a generic trie-based output pat-
tern sampling method using two efficient algorithms.
TPSampling samples patterns based on any length-
based utility measure, using a trie of occurrence built
by TPSpace. After building a trie of occurrences with
fixed length constraints, the user can draw patterns with
frequency, area, and exponential decay α ∈]0, 1]. The
experiments also show that our approach is very flexible
on utility change and works well with large transactional
databases thanks to the prefix-based compression.

We hope to parallelize our method in the future by
adapting the BSP-based framework proposed by Diop and
Ba [18]. In such case, the trie might be spread over many
machines to parallelize the computation in the preprocess-
ing phase, as well as the drawing and reprocessing phases.

Acknowledgements. This work has been partly sup-
ported by the CEA-MITIC (African Center of Excellence
in mathematics, IT and ICT).

References
[1] R. Agrawal, T. Imieliński, and A. Swami, “Mining association

rules between sets of items in large databases,” in Proceedings
of the 1993 ACM SIGMOD International Conference on Man-
agement of Data, ser. SIGMOD ’93, 1993, pp. 207–216.

[2] P. Fournier-Viger, A. Gomariz, T. Gueniche, E. Mwamikazi, and
R. Thomas, “Tks: efficient mining of top-k sequential patterns,”
in International Conference on Advanced Data Mining and
Applications. Springer, 2013, pp. 109–120.

[3] M. Al Hasan and M. J. Zaki, “Output space sampling for graph
patterns,” Proc. of the VLDB Endowment, vol. 2, no. 1, pp.
730–741, 2009.

[4] A. Giacometti and A. Soulet, “Anytime algorithm for frequent
pattern outlier detection,” International Journal of Data Sci-
ence and Analytics, vol. 2, no. 3-4, pp. 119–130, 2016.

[5] M. van Leeuwen, Interactive Data Exploration Using Pattern
Mining. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014,
pp. 169–182.

[6] V. Dzyuba, M. v. Leeuwen, S. Nijssen, and L. De Raedt, “Inter-
active learning of pattern rankings,” Int. Journal on Artificial
Intelligence Tools, vol. 23, no. 06, p. 32 pages, 2014.

[7] L. Diop, C. T. Diop, A. Giacometti, and A. Soulet, “Pattern
on demand in transactional distributed databases,” Information
Systems, vol. 104, p. 101908, 2022.

[8] J. Han, J. Pei, and Y. Yin, “Mining frequent patterns without
candidate generation,” SIGMOD Rec., vol. 29, no. 2, pp. 1–12,
May 2000.

[9] M. Boley, C. Lucchese, D. Paurat, and T. Gärtner, “Direct local
pattern sampling by efficient two-step random procedures,” in
Proc. of the 17th ACM SIGKDD, 2011, pp. 582–590.

[10] V. Dzyuba, M. van Leeuwen, and L. De Raedt, “Flexible con-
strained sampling with guarantees for pattern mining,” Data
Mining and Knowledge Discovery, pp. 1266–1293, 2017.

[11] L. Diop, C. T. Diop, A. Giacometti, D. Li Haoyuan, and
A. Soulet, “Sequential Pattern Sampling with Norm Con-
straints,” in IEEE International Conference on Data Mining
(ICDM), Singapore, Singapore, Nov. 2018.

[12] A. Giacometti and A. Soulet, “Dense neighborhood pattern
sampling in numerical data,” in Proc. of SDM 2018, 2018, pp.
756–764.

[13] L. Diop, “High average-utility itemset sampling under length
constraints,” in Advances in Knowledge Discovery and Data
Mining: 26th Pacific-Asia Conference, PAKDD 2022. Berlin,
Heidelberg: Springer-Verlag, 2022, p. 134–148.

[14] D. E. Knuth, the Art of Computer Programming. Reading,
Massachusetts: Addison–Wesley, 1968, Third edition, 1997.

[15] L. Xiang, A. Khan, E. Serra, M. Halappanavar, and
A. Sukumaran-Rajam, “cuts: scaling subgraph isomorphism on
distributed multi-gpu systems using trie based data structure,”
in SC ’21. ACM, 2021, pp. 69:1–69:14.

[16] L. Diop, C. T. Diop, A. Giacometti, and A. Soulet, “Pattern
sampling in distributed databases,” in Advances in Databases
and Information Systems, J. Darmont, B. Novikov, and
R. Wrembel, Eds. Cham: Springer International Publishing,
2020, pp. 60–74.

[17] N. Shahbazi and J. Gryz, “Upper bound on the size of fp-tree,”
inAdvances in Databases and Information Systems, J. Darmont,
B. Novikov, and R. Wrembel, Eds. Cham: Springer Interna-
tional Publishing, 2020, pp. 23–33.

[18] L. Diop and C. Ba, “Parallelization of sequential pattern sam-
pling,” 2021 IEEE International Conference on Big Data (Big
Data), pp. 5882–5884, 2021.

	Introduction
	Related works
	Pattern sampling techniques
	Data structures for pattern mining

	Preliminaries and problem statement
	Basic definitions
	Key ideas, challenges and problem statements

	TPSpace: Trie-based Pattern Space
	Definition of a trie of occurrences
	TPSpace: Algorithm for building a trie of occurrences

	TPSampling: Trie-based Pattern Sampling
	Drawing approach
	Trie-based pattern sampling algorithm

	Theoretical analysis
	Space complexity
	Time complexity

	Experiments
	Storage cost of the trie of occurrences
	Speed of the approach

	Conclusion
	References

