TTProfiler: Types and Terms Profile Building for Online Cultural
Heritage Knowledge Graphs

LAMINE DIOP, EPITA, LRE, France
BEATRICE MARKHO FF, Université de Tours, LIFAT, France
ARNAUD SOULET, Université de Tours, LIFAT, France

As more and more knowledge graphs (KG) are published on the Web, there is a need for tools that show their content. This
implies showing the schema-level patterns instantiated in the graph, but also the terms used to qualify its entities. In this
paper, we present a new profiling tool that we call TTprofiler. It shows the predicates that relate types in the KG, and also
the terms present in this KG, because of their paramount importance in most KGs, especially in the Cultural Heritage (CH)
domain. We recall the role of terminologies and how they are implemented and used on the Web, we give the algorithm for
building a TT profile from an online KG’s Endpoint, and we report on experiments performed over a set of Cultural Heritage
Web KGs. A tool for visualizing TT profiles is also provided.

CCS Concepts: « Information systems — Data extraction and integration; Web data description languages.
Additional Key Words and Phrases: CIDOC CRM, Knowledge Graph, Profile Extraction, Terminologies, Visualization

ACM Reference Format:

Lamine DIOP, Béatrice Markhoff, and Arnaud Soulet. 2018. TTProfiler: Types and Terms Profile Building for Online Cultural
Heritage Knowledge Graphs. ACM J. Comput. Cult. Herit. 37, 4, Article 111 (August 2018), 22 pages. https://doi.org/XXXXXXX.
XXXXXXX

1 INTRODUCTION

It has become widespread in the Cultural Heritage (CH) field to generate Knowledge Graphs from legacy datasets,
using one or more ontologies [4]. A knowledge graph (KG) is a dataset in RDF [9], i.e. a set of (subject, predicate,
object) triples. CH KGs contribute to the Linked Open Data! (LOD) construction, publicly offering inter-linked
and semantically defined datasets, which is supposed to boost knowledge discovery and efficient data-driven
analytics at a world-wide scale. However, using LOD datasets, or KGs, for data analytics requires a clear idea of
their content and this is a long-standing challenge. These KGs generally use ontological schemas, composed of
classes (types) and predicates. It is not enough to know which ontologies are used, it is necessary to know how
they are used, i.e. which of their components serve in that particular dataset, and in what way. A very common
practice is then to look for types and predicates that are instantiated in the graph, and their number of instances.

These types and predicates are “universals” in the sense of metaphysics[17], contrary to the “individuals”
described in the dataset (of which universals are abstract representations). Nevertheless, when we try to explore in
this way the content of a CH LOD dataset, it quickly becomes apparent that many other universals than types and

https://lod-cloud.net

Authors’ addresses: Lamine DIOP, EPITA, LRE, Kremlin-Bicétre, France, lamine.diop@epita.fr; Béatrice Markhoff, Université de Tours, LIFAT,
Blois, France, beatrice.markhoff@univ-tours.fr; Arnaud Soulet, Université de Tours, LIFAT, Blois, France, arnaud.soulet@univ-tours.fr.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from
permissions@acm.org.

© 2018 Association for Computing Machinery.

XXXX-XXXX/2018/8-ART111 $15.00

https://doi.org/XXXXXXX. XXXXXXX

ACM]J. Comput. Cult. Herit., Vol. 37, No. 4, Article 111. Publication date: August 2018.

111:2 « Lamine DIOP, Béatrice Markhoff, and Arnaud Soulet

predicates exist in those KGs: these are elements of controlled vocabularies, taxonomies, thesauri, more generally
terminologies. Those terminological resources are conceived to improve communication among experts in certain
domains, and to retrieve information. In the digital world it is well known by database creators that terminologies
play an important role for interoperability of the data they store. This is also a W3C recommendation [13]: shared
and standardized vocabulary terms (i.e. URIs) must be used to encode data and metadata. The authors of the
recommendation state that the benefits of this good practice are: reuse, ease of processing, understanding, trust
and interoperability. In the Web, some terminological resources naturally take the form of ontologies formalised
using RDFS? or OWL3, others take the form of thesauri using for instance SKOS?, or, with a more linguistic
point of view, the form of lexical resources formalized with an extension of Ontolex-lemon?®, called Terminology
Module®. In this article, we are interested in showing the universals used in a KG because they give a clear idea of its
structure and content. In KGs, universals are types and predicates, and elements of a terminological resource that
are not types and predicates, but are associations of a concept to a word, documented somewhere. We call term
the words associated to the concept, and for showing it, we look for the concept’s URI (as we look for types and
predicates URIs).

In the last ten years, several proposals have been made for helping users in knowing what contains a given KG,
by extracting its predicates, the types of entities they link, and some basic statistics. For instance this is what
ABSTAT [18] does. Our aim is to generate such a profile of a KG, via its SPARQL Endpoint. ABSTAT does not
run on an online SPARQL Endpoint, but it allows us to clearly present what we call a profile: from a given KG,
ABSTAT builds a set of (C, P, D) triples with statistics, where C and D are types (classes) and P is a predicate
(property). Such a triple is called an Abstract Pattern (AP). Figure 1 shows the four first APs returned by ABSTAT
when asking for the predicate dbo: country on a dump of DBpedia 2016 in English, using ABSTAT’s website’. For
instance the first AP indicates that there are 560, 532 RDF triples (last column) in this KG for which the predicate
dbo: country (second column) relates a subject of type dbo:Location to an object of type dbo:Country, which
informs us that we can query locations and their associated countries in DBpedia. In the bottom of Figure 1 we
show the Basic Graph Pattern (BGP) able to compute the instances of an ABSTAT AP (n being its frequency, or
the number of its instances in the KG, i.e. the last column of the table above). In this BGP, edges labeled with “a”
represent the predicate “rdfitype”.

Considering again the results returned by ABSTAT in Figure 1, we notice that dbo:Location and schema:Place
are probably both types of the subjects of predicate dbo: country that have objects of type dbo: Country, since the
two APs have exactly the same frequency (560, 532). More generally, ABSTAT returns thousands of APs just for
the predicate dbo:country from this dataset, several of them representing the same facts in the KG. If the BGP in
Figure 3 (a) was instanciated in the KG, then ABSTAT would generate four APs (cartesian product of subject’s
and object’s types), all with the same frequency n. For representing each fact in the KG with only one AP, we
propose to deal with a new kind of AP, where the predicate P relates two sets of types, as in Figure 3 (a).

Moreover, to the best of our knowledge there is no tool that shows not only the types of the subject and object
of a predicate, but also the terms, elements of a terminological resource, used to characterise individuals in the
KG. For example, it is one thing to see that there are instances of E22_Human-made_Object in a graph, but the fact
that this graph contains information about coins, or burials, is much more interesting and precise. In KGs that
use the CIDOC Conceptual Reference Model ® (hereafter CIDOC), the reference ontology for Cultural Heritage,

Zhttps://www.w3.org/TR/rdf-schema
Shttps://www.w3.org/TR/owl-ref
4https://www.w3.org/TR/skos-reference
Shttps://www.w3.0rg/2016/05/ontolex/
Shttps://www.w3.org/community/ontolex/wiki/Terminology
"http://abstat.disco.unimib.it/

8cidoc-crm.org/

ACM J. Comput. Cult. Herit., Vol. 37, No. 4, Article 111. Publication date: August 2018.

TTProfiler « 111:3

dbo:Location (839987) dbo:country (770950) dbo:Country (13169) 560532
schema:Place (1665807) dbo:country (770950) dbo:Country (13169) 560532
dbo:Location (839987) dbo:country (770950) wgspos:SpatialThing 546131
(1965986)
schema:Place (1665807) dbo:country (770950) wgspos:SpatialThing 546131
(1965986)
Basic Graph Pattern ABSTAT Abstract Pattern
P
(& > 70 P:n
a a C > G,
v v
1 C,

Fig. 1. ABSTAT Abstract Patterns and corresponding Basic Graph Pattern to compute their instances.

E22_Human-made_Object
a
object
l P2_has_type

a Example of possible value for term-concept:
term-concept ES5_Type http://nomisma.org/id/coin

\skos:prefLabeI
“Coin"@en

Fig. 2. Example of representing a coin (the object) with CIDOC CRM.

this information is denoted by elements of a terminological resource, such as http://nomisma.org/id/coin for
instance. Quoting [3], “CIDOC defines and is restricted to the underlying semantics of database schemata and
document structures used in cultural heritage and museum documentation in terms of a formal ontology. It does
not define any of the terminology appearing typically as data in the respective data structures; however it foresees
the characteristic relationships for its use.” To this end, the class crm:E55_Type is provided as a gateway to these
controlled vocabularies. An example using this class is given in Figure 2, and more explanations are provided in
Section 2. CIDOC’s policy for terminologies is in line with the use of databases in CH communities insofar, as it
organises in ontology the entities of the domain and their relationships, but not the descriptive values, i.e. most of
the values in databases. In general, these are listed and described elsewhere in authority lists, for interoperability
purposes. This means that CIDOC-based KGs generally employ various sets of terms, which provide at least as
much meaning and clues on the KG’s content as the types and predicates it uses.

For taking this into account, we define another kind of abstract pattern to show terms used in the graph,
shown in Figure 3 (b), where the edge labeled with “prefLabel” represents the situation where the variable ?¢ is
instantiated by a terminological concept and ?[by its label, whatever the property actually used, which may be
rdfs:label, skos:preflLabel, etc. The example in Figure 2 is therefore represented by the Term Abstract Pattern

ACM]J. Comput. Cult. Herit., Vol. 37, No. 4, Article 111. Publication date: August 2018.

111:4 « Lamine DIOP, Béatrice Markhoff, and Arnaud Soulet

Basic Graph Pattern Types Abstract Pattem Basic Graph Pattern Terms Abstract Pattern
P P P P:n
?S o 7? {Cim Cib — » {Cs1, Cii} ’s n c
a/la a/ a a D having Term(t)
C11 C12 C21 CZZ (a) C ?l (b)

Fig. 3. Types (a) and Terms (b) Abstract Patterns, with their corresponding Basic Graph Pattern (to their left).

F ‘ S% Plain (technique)@en_et_al
. 2 . 1] ® &s
F4_Man1festat&§1l§§énpglg}wi% RE:. o
(\p‘\’ ~O~injy, . Label set
r»gc- @fu Ateg (431-7427_W0rk_ onception
793) Plain (technique)@en

. e
F28_Exprcss®:(c3{&ashﬁ

Brocading weft@en

Two-coloured damask@en

Muslin@en

Ciselé velvet@en

Lampassette@en

Namchr}p{l_et

{her, Pattern weft@en

Fig. 4. Excerpts of profiles for MMM (left) and SILKNOW (right), generated by TTPROFILER.

where C = E22_Human-made_Object, P = P2_has_type, t; = http://nomisma.org/id/coin (and ?I =“Coin”). In this
pattern the third item is a set of concepts denoting terms detected by Function Term, defined in Section 4, whose
implementation depends on how the terminologies are implemented, and how they are used in the KGs.

To sum-up our contribution, we deal with KGs in the LOD as presented in [9], offering an online SPARQL
endpoint, which use formally defined existing RDFS or OWL schemas, and contain terminology elements that
are defined in existing terminological resources. We consider that the KG may not contain the definition of
the schemas and terminological resources it uses, which is the most common situation for Web KGs, so we
don’t make use of it. We present a program called TTProFILER which builds a set of Types and Terms (TT)
Abstract Patterns from an online KG, that we call a TT-profile. It does so by querying the KG’s SPARQL endpoint.
TTPROFILERs code is publicly available’. Moreover, some of its results can be visualized online!’. Figure 4 shows
such visualizations for TTprofiles of MMM!! and SILKNOW 2. Those knowledge graphs contain millions of RDF
triples but their structure and their terms can be explored via their profile. To the best of our knowledge it is
the only software that acts by querying a knowledge graph via its SPARQL endpoint and displays its terms, in
addition to its types and predicates.

This article extends the one presented at SWODCH 2021 [7] in three ways: firstly, we motivate in Section 2
the particular attention we pay to the terminology elements that appear in KGs, by recalling their utility and
the way they are used in the Web. In this way, the notion of term is much more precise and this is propagated
in definitions, algorithms and implementations, hence in experimental results too. Secondly, we provide a new

*https://github.com/DTTProfiler/DT TProfiler
Ohttps://kgsumviz.univ-tours.fr/

1 Mapping Manuscripts Migration: http://1df.fi/mmm/sparql
2https://data.silknow.org/sparql

ACM J. Comput. Cult. Herit., Vol. 37, No. 4, Article 111. Publication date: August 2018.

TTProfiler « 111:5

section for related work. Thirdly, we present and discuss new experimental results. The rest of this article is
organized as follows: Section 2 is dedicated to terms, Section 3 deals with related proposals for giving hints
about knowledge graphs’ content, in Section 4 we provide definitions and formulate the problem resolved by
TTPROFILER. In Section 5 we explain its algorithm. We report in Section 6 our experiments on various online
Cultural Heritage KGs, and we conclude in Section 7.

2 WHERE ARE THE TERMS WE NEED IN KG PROFILES

When a community wants to share a consensus on how to name universals'® of its domain, it works on two
related questions: what are these universals and which words best represent what they are? This defines the
concept-terms of the domain, in other words the domain’s terminology. In many sciences this is a significant
part of the research activities. In this paper, we call term an element of a terminology, i.e. a concept and its
word(s), or a word and its related concept (cf. Section 2.2, and Definition 4.4). In general, but particularly in the
Semantic Web, terminologies are created either by linguists, following an onomasiological (the concept is the
entry point) or semasiological (the word is the entry point) point of view, or by ontologists, or by information
processing professionals for information retrieval purposes. Terminologies can be lists (controlled vocabularies), or
taxonomies, or thesauri (Knowledge Organisation Systems), or ontologies. Their items may be in the intensional
part of a KB, taking the form of class and property names (as in the “Terminological Box” of Description logics),
or they may be in the extensional part of a KG, taking the form of data, instances of classes (for instance of
the skos:Concept class). With TTPROFILER, when they are classes or properties they are extracted using Types
Abstract Patterns, while the in-data terms are extracted using Terms Abstract Patterns shown in Figure 3. In this
section, we begin with the term usage policy adopted by CIDOC because it is the basis for our awareness of the
fundamental importance of terms, followed by a short survey on terminological resources on the Web, because
we think that the Web and its uses bring a new light to the old notion of universals. Then we recall the principles
of terminologies, thesauri, and ontologies, in order to clarify what their relationships are.

2.1 The well defined convention adopted by CIDOC

In the Cultural Heritage domain, the community that defined and maintains CIDOC, the CRM SIG, has a
clear policy for the use of terminological descriptions in conjunction with the ontology, which we now briefly
recall. CIDOC is an ontology designed to support the semantic interoperability of digital cultural heritage re-
sources. The use of terminologies is addressed in the introduction of the document that defines it [3], in the
section entitled About Types'*. A particular class, E55_Type, is intended to group the terminology elements used
to characterize and classify the instances of CIDOC classes. The highest class in the subsumption hierarchy,
E1_CRM_Entity, is the domain of the property P2_has_type, whose range is E55_Type. Thus, each CIDOC class
(except E59_Primitive_Value), inherits the P2_has_type property, which provides a general mechanism for special-
izing the classification of instances at any level of detail. This can be done by linking to external sources (thesauri
or ontologies). To classify in this way, it is possible to implement the concept either as a subclass (E55_Type
being used as a kind of Region from a DOLCE point of view [5]), or as an instance of E55_Type. According to the
foundational principles of CIDOC, a new subclass should only be created if the concept is sufficiently stable and
associated with additional properties, otherwise an instance of E55_Type must be chosen. In Figure 2 we show
for example how the information about a coin is structured in this case. Instances of E55_Type can be associated
with labels and organized hierarchically (with broader/narrower and part-of properties). Moreover, E55_Type is a
subclass of E28_Conceptual_Object, it therefore also inherits all the properties of this superclass in order to be

13In metaphysics universals are what particular things have in common [17].
141t is also explained in more detail here: https://www.cidoc-crm.org/FunctionalUnits/taxonomic-discourse

ACM]J. Comput. Cult. Herit., Vol. 37, No. 4, Article 111. Publication date: August 2018.

111:6 « Lamine DIOP, Béatrice Markhoff, and Arnaud Soulet

documented. This coherent treatment of terminologies reinforces the capacity of CIDOC to serve as a pivot for
the integration of knowledge relating to CH.
2.2 Terminological Resources on the Web

Terminological resources can be found in the form of thesauri or ontologies in the Semantic Web, both of which
support semantic interoperability, the former at the data level and the latter at the metadata level. Terminological
resources are more massively reused than ontologies designed to represent a knowledge domain, because the
consensus required for their reuse is on the terms (and their definition in context), and not on the more complex
question of how the domain representation is organized and structured (ontology). It seems to be easier to choose
a relevant term from a thesaurus, which most often contains textual definitions of terms, than to understand and
reuse an ontology, except for the simplest ones like FOAF and Dublin Core, which are mostly used as terminological
resources. Thus, there are many, and in some cases very large, terminological resources on the Web. For example,
in the biomedical field, UMLS!® gathers concepts from several dozen terminologies, MeSH'® (defined by the US
National Library of Medicine) indexes Medline and PubMed article directories, while SNOMED cTV gathers
several hundred thousand concepts used in clinical environments, in particular for patient records. Similarly,
in the environmental domain, AGROVOC!'® gathers more than 38,000 concepts of food, agriculture, fisheries,
forestry, etc. with which are associated more than 800,000 terms in 40 languages. In the field of Cultural Heritage,
the Backbone thesaurus of DARIAH'? is an initiative for the aggregation and maintenance of vocabularies built in
communities, but it is above all the Getty AAT vocabulary?® which is used and with which the thesauri produced
by projects are aligned. This is the case for example in EUROPEANA?! or in the ARTADNEplus?? platform. The
latter organizes the possible searches according to three axes When-Where-What: the Getty AAT is used in the
What axis, to describe what is searched for, Periodo? is used for the When axis and Geonames?* for the Where
axis. It is interesting to note here that, for search axes such as When (historical periods), Where (places) and Who
(people, organizations), URIs from authority lists are also used, but they are then named entities, which refer to a
unique element. On contrary, terms are universals in the same way as the types and predicates of an ontology, even
when they are instances (of skos:Concept, crm:E55_Type, or other types). Interestingly, WordNet®? is sometimes
presented, or used, as a terminology. It has been used for structuring the first versions of YAGO?, for instance.
Basically, it is a large and popular lexical database of English, where words are grouped into synsets, each synset
expressing a concept, and synsets are interlinked by means of conceptual-semantic and lexical relations. Last,
Wikidata with its more than 100 millions entities?’ increasingly tends to be used as a terminological resource, as
many thesauri are now aligned with it, or incorporated in it.

5Unified Medical Language System: https://www.nlm.nih.gov/research/umls/index.html
1®Medical Subject Headings: https://www.ncbi.nlm.nih.gov/mesh

17Systematized Nomenclature Of Medicine Clinical Terms: https://www.snomed.org/
18urlhttps://www.fao.org/agrovoc/

Purlhttps://www.backbonethesaurus.eu/

20 Art and Architecture Thesaurus: https://www.getty.edu/research/tools/vocabularies/aat/
A https://pro.europeana.eu/page/europeana-aat
Zhttps://ariadne-infrastructure.eu/Portal/

Bperio.do

24geonames.org

Lhttps://wordnet.princeton.edu/

26 A huge knowledge base of the LOD: https://yago-knowledge.org/getting-started

2 https://www.wikidata.org/

ACM J. Comput. Cult. Herit., Vol. 37, No. 4, Article 111. Publication date: August 2018.

TTProfiler « 111:7

2.3 Terminology Definition, and Implementations on the Web

A terminology is particularly useful for filling in database fields in a consistent manner. In this sense, terms
are data. ISO/TC 37’s ISO 1087:2019 defines a terminology as a set of designations used in a specialty language,
where a designation represents a concept by a sign that denotes it. ISO/TC 37 is also the originator of the TMF
(Terminological Mark-up Framework) and LMF (Lexical Mark-up Framework) standards that inspired the OntoLex-
lemon?® ontology (representation of morpho-syntactic properties of lexical entries and their meanings) and its
extension for terminology (in the process of being defined?’), which is dedicated to documenting information about
terms. This ontology allows to clearly represent the interface between syntax (sign) and semantics using Class
LexicalSense, which can be linked to an ontology in which the concept is described. This question of linking lexical
forms and concepts for the description of terms is also the subject of a proposal called onto-terminology [16]. But
these are not very commonly used implementations for terminologies on the Web. Rather, some of them take the
form of ontologies, like the Dublin Core and DCTerms>, or the quality regions in DOLCE [5], while most of them
are realized with SKOS3!. It is an ontology for defining thesauri, taxonomies, classification schemes or subject
heading systems, used in documentary systems for indexing and information retrieval purposes. Moreover, some
terminologies on the Web are implemented with other Knowledge Organisation System ontologies than SKOS,
which also contain classes for representing terms, for instance Schema.org>? has classes schema:DefinedTermSet
and schema:DefinedTerm, and CIDOC has crm:E55_Type, that we already presented.

2.4 Thesauri Definition, and Purposes

ISO 25964-1 defines a thesaurus as a controlled and structured vocabulary which concepts are represented by
terms, relationships between concepts are made explicit, and preferred terms are completed with synonyms. A
concept is a unit of thought and a term is a word or phrase used to label a concept (ISO 25964-1 sections 2.11
Concept and 2.61 Term). These definitions are similar to those of a terminology. The difference between thesauri
and terminologies, however, lies in their purpose. The aim of defining terminologies is to reach a consensus on
the designations used in a domain, for semantic interoperability. Whereas the main objective of thesauri is to
index and retrieve elements according to their content. The thesaurus is then used as an access structure: the
declarations of synonymy between terms on the one hand, and the hierarchical relationship between concepts
on the other hand, allow the information retrieval system to widen or restrict the queries. For this purpose, the
hierarchy used in a thesaurus covers the subsumption relation, the partition relation, and sometimes also the
instance relation, merged into a single hierarchical relation: Concept A is broader than Concept B if in any search
for A, articles dealing with B should be returned. This usage-based hierarchical relation does not correspond to
any mathematical logic. Large thesauri are organized into facets, which group together hierarchies of concepts
to facilitate information retrieval. As noted by [12], the structure of thesauri can not be used for more general
reasoning than information retrieval, unlike ontologies.

2.5 Ontologies, versus Thesauri

We will not define here what an ontology is in the Web, as the authors of [12] do, but it is important to clarify its
differences with respect to a thesaurus. Formal and consensual model of a shared conceptualization of a domain
of knowledge, it consists of intensional (TBox) and extensional (ABox, gathering instances) descriptions [2]. It
includes a set of entities (classes, or types), roles (properties, or predicates), constructors, and axioms to describe

Burlhttps://www.w3.0rg/2016/05/ontolex/
urlhttps://www.w3.org/community/ontolex/wiki/Terminology

30See https://www.dublincore.org/specifications/dublin-core/dcmi-terms/
31See https://www.w3.org/TR/skos-reference/

32See https://schema.org/

ACM]J. Comput. Cult. Herit., Vol. 37, No. 4, Article 111. Publication date: August 2018.

111:8 « Lamine DIOP, Béatrice Markhoff, and Arnaud Soulet

them. An entity is seen as a class that has instances, the subsumption link between entities being that if A
subsumes B then any instance of B is also an instance of A. Roles are described by their domain and range and
there may be a subsumption link between them. According to the needs, other constraints can be specified on
entities and roles. All these declarations are automatically exploitable by reasoners, which is not the case for thesauri.
It is possible to represent terminologies in ontologies as topic spaces, for instance with DOLCE regions [5] as done
in ontopic®®, an ontology for modeling topics, subjects, or themes of something. This makes it possible to benefit
directly from the reasoner: for instance asking for resources dealing with places will return resources dealing
with all the kinds of places subsumed by the class Place. We recognize here the vocation of a thesaurus, so an
ontology covers the thesaurus purposes. For this reason, the question of transforming the knowledge contained
in a thesaurus into an ontology, in order to exploit it automatically by a reasoner, has been addressed in many
works. Among others, [11] shows why it is not simple by any means. Firstly, the broader-narrower relationship
in a thesaurus covers both the subsumption relation, the partition relation and the instantiating one. Secondly,
the generic associative relation often present in a thesaurus is also complex to transpose automatically into an
ontology. Moreover, it must be decided which concepts of the thesaurus must become classes and which become
data (instances). Nevertheless, there exist versions of SNOMED CT and AGROVOC in the form of OWL ontologies.

This overview of the presence of terms in LOD demonstrates the usefulness of showing them in a KG profile,
because they clearly inform about its content. This also gives an idea of the variety of possible representations for
terms in LOD, which makes their extraction non-obvious. This is why we use Function Term, defined in Section 4,
to subsume the various concrete implementations of term detection.

3 RELATED WORK ON KNOWLEDGE GRAPH PROFILING

To profile a knowledge graph, it is of course possible to use a generic graph profiling method. These methods are
interesting, but they tend to disregard the semantics of the relations and they ignore the distinction between the
schema and the instances. Yet, these two dimensions are exactly what we seek to capture in our profiles. For
this reason, generic graph profiling methods are out the scope of this related work section. As explained earlier,
we want to construct a knowledge graph profile that captures the main usage patterns of the schema across its
instances. First, a task close to knowledge graph profiling is schema discovery [10] from instances. This task aims
at building representative classes from the data. These methods therefore appear rather as a preliminary task to
knowledge graph profiling, as in our setting types are defined in ontologies and are used in the KGs we analyze.
Second, several approaches in the literature propose to summarise a knowledge graph based on the concept of
quotient graph [6, 8]. The key idea of quotient graphs is to define equivalent classes among the original graph
nodes and to assign a representative node for each class. Interestingly, it is possible to answer some queries
from the summary instead of considering the original knowledge graph. In the same way, the characteristic sets
[15], which are other structures to represent node classes, provide an accurate cardinality estimation for RDF
queries with multiple joins. [10] provides a list of potential uses of such discovered structures in KGs exploitation.
Finally, many KG summarization techniques select a small number of nodes and relations benefiting from user
interaction [19, 22] or centrality measures [21, 23]. For instance, RDF digest [20] is a method that selects several
types using a centrality metric. Then, relations with intermediate types are added in order to link the initially
selected types. On the contrary, profiling aims at representing all the information present in the knowledge graph.
Furthermore, to the best of our knowledge, all the methods based on schema discovery or summarization do not
extract patterns describing the main relations between types, but rather focus on classifying nodes. We found
only one exception: ABSTAT. ABSTAT [1, 18] builds a summary by identifying the main relationships between
types, called Abstract Patterns (cf. Figure 1). Compared to TTProfiller, this approach takes into account the type
hierarchy to remove from the resulting profile, which is an intermediate result, some subsumption redundancies.

3 http://www.ontologydesignpatterns.org/ont/dul/ontopic.owl

ACM J. Comput. Cult. Herit., Vol. 37, No. 4, Article 111. Publication date: August 2018.

TTProfiler « 111:9

This leads to a summary. However, redundancies remain because many patterns are incomparable. Also, all facts
of the KG are represented in ABSTAT’s profiles because entities that are not explicitly declared as instances of
some type are grouped in owl:Thing, while TTProfiller ignores these entities for now.

The main weakness of all these approaches proposed in the literature, compared to our aim of highlighting the
topics of a KG, is that they all ignore the terms present in the KG, while terms are often essential to understand
its organization (especially in the case of Cultural Heritage where the use of terms is omnipresent). Of course, it
would still be possible to apply one of these methods by ignoring terms (scenario 1). We could also apply one of
these methods, search for terms, and add a type per term (scenario 2). Scenario 1: As explained in Introduction and
in more detail in Section 2, terms play an important role in general, and in Cultural Heritage knowledge graphs
in particular, especially for those exploiting CIDOC because CIDOC classes and properties are abstract ones for
the purpose of interoperability, and can be further specified by using terminologies. Ignoring the terms for these
KGs is ignoring the real topics of their contents. Scenario 2: Adding a type per term is not straightforward. First,
since the terms are not used as types in the KG, the basic graph patterns devised for profiling cannot be used for
terms. Second, a large number of terms (which is the case in most KGs) would lead to an explosion of nodes and
edges in the profile, with important redundancies.

Contrary to these approaches, we take into account the terms which are very informative entities to describe
the content of a knowledge graph. Taking terms into account has an impact on the design of profiles as we
propose to build virtual nodes allowing to gather several types or terms. This guarantees a compact form of
the output and brings out common relationships. Finally, we propose a method that relies on SPARQL queries
that are simple enough to directly querying public endpoints. This aspect is very important to avoid having to
download and process huge dumps [1, 8], and to propose profiles that are always up-to-date with respect to the
available data.

4 DEFINITIONS AND PROBLEM FORMULATION

Notations defined in this section are summarized in Table 1. We use Description Logics (DL) [2] notion of ABox for
defining our problem: a knowledge base (KB) K is composed of a TBox 7~ (names and assertions about concepts
and roles, respectively called types and predicates in what follows) and a ABox A (assertions about individuals,
called entities and facts). For instance DBpedia®* is a KB K = (7", A), one example of assertion in 7~ is dbo:Artist
E dbo:Person, meaning that the type dbo:Artist is subsumed by the type dbo:Person, i.e. all artists are persons. 7
also includes assertions like 3dbo:birthYear C dbo:Person, meaning that the predicate dbo:birthYear is defined
for persons. On the ABox side, dbo:Person (dbr:Michelle_Obama) declares that entity dor:Michelle_Obama is a
person and birthYear (dbr:Michelle_Obama, 1964) states the fact that Michelle Obama was born in 1964. Also,
some persons are related via the predicate dct:subject to a SKOS concept, for instance we find in DBpedia Person
(dbr:Ringo_Madlingozi), skos:Concept (Category:1964) and dct:subject (dbr:Ringo_Madlingozi, Category:1964).
In the Web all this is written with triples (subject, predicate, object), for instance the two last examples cor-
respond to the two following RDF triples: (Category: 1964, rdf: type, skos:Concept) and (dbr:Ringo_Madlingozi,
dct:subject, Category:1964). Like most of KGs on the Web, DBpedia does not use only its own ontology but
many other ones, as SKOS and DCTerm in the previous examples. This means that entities and facts in Web KGs
instantiate types and predicates coming from many different ontologies.

What are the Knowledge Graphs we want to analyze? The KGs we analyze are ABoxes, which in the Web of data
are in general far bigger than TBoxes. We work with the asserted KG that is queriable via its SPARQL Endpoint.
By default, SPARQL endpoints do not perform entailments. So in this paper, what we call KG is a ABox (i) whose
entities and facts instantiate types and predicates coming from many different ontologies, and (ii) that is not saturated

34The well known hub of the LOD that mirrors for programs the content of Wikipedia; its SPARQL human interface is:
https://dbpedia.org/sparql

ACM]J. Comput. Cult. Herit., Vol. 37, No. 4, Article 111. Publication date: August 2018.

111:10

Lamine DIOP, Béatrice Markhoff, and Arnaud Soulet

Table 1. Notations

Symbol Denotes

?s variable representing subjects

20 variable representing objects

t term

P predicate

C type of an entity (class)

A ABox, assertions about individuals, called entities and facts

T TBox, names and assertions about types and predicates

Term(A) function that returns the set of terms of A

o set of types (classes) appearing together as subject or object into a TT abstract pattern
D set of concepts (terms) appearing together as object into a TT abstract pattern (C, P, D)
P TT profile

K Knowledge base K = (7, A)

w((C,P,D)) | weight of the TT abstract pattern (C, P, D), frequency of (C, P, D) in A

AP TT abstract pattern

C(K) set of types, i.e. entities appearing as object of rdf: type into the knowledge base K
BP basic patterns

PV profile visualization structure

by applying a reasoner. Exploiting the ontologies and thesauri that are used in the KG is out of the scope of this
work, but will be considered as future work. When publicly available, they can be used latter on, for enriching the
information already present in the profile. There may also be cases in which the TBox is limited to few ontologies
that are consistent by themselves and semantically compatible with each other. In those rare cases, a reasoning
step combining the TBox and ABox could also be performed before or during the profile generation.

What we extract from these Knowledge Graphs. We put in evidence all the types and predicates used in the
ABox, whatever the ontologies they belong to. Web KGs frequently use several ontologies, so we do not limit
ourselves to only one given ontology. We also want to show the terms used in the KG, whether they are defined
in the graph itself or come from external resources. Remember that in this paper we call term an element of a
terminology, as defined in ISO 1087:2019. We saw in Section 2 that, in the Web of data, such an element may be
implemented either as a TBox element or as a ABox element. In the first case, if the type characterizes an entity in
the KG then it will appear in the profile. For the second case, as terms are implemented in many different ways in
Web KGs, we define a generic function called Term, implemented by a SPARQL query. For example, it may look
for skos:Concept or crm:E55_Type instances, or for subjects of skos:preflLabel or objects of crm:P2_has_type, or
for declared prefixes that correspond to some known thesauri, or any combination of these features. We consider
three implementations of Function Term in Section 6 (Figure 9), among those many possibilities deriving from
Section 2. Hence, the following definition does not state that Function Term returns all terms of a KG.

Definition 4.1 (Function Term). Given a ABox A, Function Term extracts from A URIs of concepts defined in a
terminology, which are not used as types in A.

Definition 4.2 (Type). Given a ABox A, a type used in A is an entity ¢ that appears as object of Predicate
rdf:type in A, i.e. (s, rdf: type, t) € A.

Definition 4.3 (Predicate). Given a ABox A, a predicate used in A is a resource P that appears as predicate in
A, ie. (s, P, 0)e A.

Definition 4.4 (Term). Given a ABox A, a term appearing in A is an entity ¢ such that t € Term(A).

ACM J. Comput. Cult. Herit., Vol. 37, No. 4, Article 111. Publication date: August 2018.

TTProfiler « 111:11

Fig. 5. Example of a knowledge graph

Example 4.5. Figure 5 shows a toy example of a knowledge graph K = (7, A) in order to illustrate our
approach where the set of types is {C1, Cy, Cs, Cy}, the set of predicates is {a (for rdf: type), Py, P2, P3} and the set
of terms is Term(A) = {t1, t, t3}. The other entities in K are denoted either by ?s; or by ?0;. For instance, the
entity denoted by object in Figure 2 may be represented by ?s4, with C; standing for E22 Human-made Object, P3
standing for P2 has type and t; standing for the entity denoted by term-concept.

The algorithm presented in this paper builds a profile of the KG queried via its SPARQL endpoint. We call A
this KG as it is a ABox. The resulting profile is composed of TT AP (Types and Terms Abstract Patterns), which
are triples whose subjects and objects are sets. This is defined in Definition 4.6. As discussed in Introduction,
APs in [18] are triples (C, P, D), where C and D are types and P is a predicate: we call them basic APs. TT APs
generalise basic APs in two ways: first, objects can be either types or terms. Second, both subjects and objects are
sets (either set of types or set of terms), as illustrated in Figure 3.

Definition 4.6 (TT Abstract Pattern, and represented facts). Given a ABox A, a TT abstract pattern of A is a
triple (C, P, D) such that C is a set of types used in A, P is a predicate used in A, and D is either a set of types
used in A or a set of terms appearing in A. A TT abstract pattern (C, P, D) represents the fact P(a, b) of A ift:

e The entity a occurs in A as an instance of each type in C (i.e., C;(a) € A for C; € C), and there is no other
type in A of which a occurs as an instance, and

o The entity b occurs in A as an instance of each type in D (i.e., D;(b) € A for D; € D) and there is no other
type in A of which b occurs as an instance, or the entity bisatermand b € D (ie, b € (Term(A) & D)).

This definition can be adapted to other cases, depending on what is considered as input. For instance, the subject
and object of an AP could be generalised to types not actually appearing in A but defined using 77, as owl:Thing,
rdfs:Literal and so-called minimal types used in [18]. For terms, one could also use some definitions in their
respective thesaurus. But in our context, as already stated, we do not access external resources. Contrary to [18],
if a or b have several types asserted in A (whether or not linked in 7~ by a subsumption) then by Definition 4.6
the fact P(a, b) is represented by only one AP. Also contrary to [18], a fact P(a, b) having no type asserted for a,
or having neither a type asserted for b nor any clue allowing to detect that b is a term, does not raise any AP.

Example 4.7. Figure 6 depicts the 4 TT abstract patterns stemming for the knowledge graph depicted by Figure 5:

({C1, G2}, P1,{G5}) (in red), ({C1, G5}, P2, {C4}) (in green), ({C1}, Ps, {1, 12}) (in blue) and ({Cs}, P3, {t1, 3}) (in
gray). For instance, ({C1, C2}, P1, {C3}) means that the subjects of types C; and C; are related by P; to the objects

ACM]J. Comput. Cult. Herit., Vol. 37, No. 4, Article 111. Publication date: August 2018.

111:12 - Lamine DIOP, Béatrice Markhoff, and Arnaud Soulet

=S

(e)—
Fig. 6. Abstract of the knowledge graph in Figure 5

of type Cs. Interestingly, some TT abstract patterns group together some terms used in the same way (e.g., {t1, t3}).
As illustration, in Figure 4 the set of terms denoted by “Plain (technique)@en_et_al” sums up some techniques of
silk weaving like brocading weft or two-coloured damask.

Given the set of APs generated from an ABox A according to Definition 4.6, we can associate statistics with
those patterns, leading to the following definition of a TT profile:

Definition 4.8 (TT Profile). Given an ABox A, a TT profile P of A is a set of pairs ((C, P, D), w) such that
(C,P,D) is a TT AP generated from A, and w is a statistic value describing (C, P, D).

There are many ways to define interesting statistics of a KG. We may consider the global number of assertions
C(a) for each type C, the global number of assertions P(a, b) for each predicate P, the global number of assertions
P(a, b) for each term b appearing in A, and so on. In this paper, we deal with the frequency of a TT AP, that is
how many facts of A it represents. We call weight the function that associates with (C, P, D) its frequency in A.

Definition 4.9 (Weight of a TT Abstract Pattern). The weight of the TT abstract pattern (C, P, D), denoted
w((C, P, D)), is the function that associates with (C, P, D) its frequency in A. w((C, P, D)) = |{P(a, b), P(a, b) €
A and P(a, b) is represented by (C, P, D) according to Definition 4.6}|.

Last, to reduce the number of nodes to be displayed in the profile visualization, we perform a little optimisation
by grouping the sets of types and the sets of terms, in such a way that each type, or term, appears in only one set
(node) of the profile.

Example 4.10. If we have in a TT profile P the TT APs AP = ({C1, C2}, P1,{C3})), AP2 = ({C1, C3}, P2, {C4}),
ﬂ?3 = ({Cl}, P3, {tl, tz}) and ;7{?4 = ({Cg}, P3, {tl, t3}), with a)(ﬂ?l) =20, a)(ﬂpz) =18, 6()(;7{?3) =100 and
(AP 4) =50, then we merge sets {C1, C2}, {Cs}, {C1, C3} and {C; } into a maximal set {Cy, Cz, C3} and sets {1, t,}
and {t, 3} into a maximal set {1, t,, 3}, which gives the representation shown in Figure 7°°.

Searching for maximal sets is searching for the components of the graph formed by the profile’s nodes (subjects
and objects of TT APs), with an edge connecting two nodes if and only if there is a non-empty intersection
between these two nodes. The union of component’s nodes is a maximal set. Computing the components of a
graph is generally done by a linear depth-first search, but in Algorithm 1 we incrementally compute the maximal
sets ¢ during the TT profile building. In the profile visualization (cf. Section 6.2), maximal nodes are represented
by the name of one of their types or terms followed by et_al, and the others are shown on demand. In the same
way as in Figure 7, edges are annotated with the corresponding AP and its respective weight.

Problem formulation. Given the assertional part A of a knowledge base K = (77, A), how to efficiently
generate and visualize a TT profile P = {((C, P, D), w)} of A, where w denotes the weight of abstract
patterns and C and D denote maximal sets)?

35The notation (({C1,C2}, P1, {C3}), 20) associates the AP ({C1,Cy}, Py, {C3}) to its weight: 20.

ACM J. Comput. Cult. Herit., Vol. 37, No. 4, Article 111. Publication date: August 2018.

TTProfiler « 111:13

(({C1, G}, P1,{G3}), 20)

(({Cl}a P39 {tla tz})’ 100)

{t1, 12, t3}

{Ca}

T (({C1, C3}, Py, {C4}), 18)

(({Cs}, Ps, {t1,13}), 50)

Fig. 7. Graph with maximal sets

5 TTProriLER ALGORITHM

In this section, we first present the general workflow of our program, that we call TTPROFILER, and then we
focus on the three-step procedure to build a TT profile, formalized in Algorithm 1.

5.1 Workflow of TTPROFILER

Figure 8 presents the workflow of TTPROFILER. Given a knowledge base %, it first extracts the set of concepts
C(K) = {Cy,- - ,Cy,} and that of predicates P = {Py,-- -, P,,} with getClasses and getPredicates respectively.
After that, it computes the basic patterns (i.e. ABSTAT abstract patterns as depicted in Figure 1) that can be obtained
from the combination of the two previous extracted sets: BP = {(Cy,, P;,C;,) : (Ci,, Ci, € C(K)) A (Pj € P)}.
These extractions and computations rely on SPARQL queries. All computations requiring a SPARQL query
are represented by dotted brown lines in Figure 8. The following step consists in computing the weight w of
each pattern (C;,, P, C;,) € BP. Then, it collects the terms of the knowledge base with the getTerms method
in Figure 8, such that for each term ¢ we have a triple (C, P, t) with C € C(K) and P € P. It also computes the
weight for each of these triples. From the union of the sets of weighted concept-based basic abstract patterns
((Cy, P}, Ci,), w) and weighted term-based basic abstract patterns ((C, P, t), w’), we compute the corresponding
TT Abstract Patterns that are contained in the resulting TT profile and the structure to visualize it. This is detailed
in Algorithm 1. Notice that we also collect the data properties that qualify the instances of each profile node, in
order to show them on demand.

5.2 Algorithm of TTPROFILER

TTPROFILER computes a TT profile of an ABox A following a three-step procedure: 1) basic abstract patterns
and statistics recovery, 2) TT profile computing, and 3) TT profile visualization structure building.

Step 1: Basic Abstract Patterns and Statistics Recovery. We mine all basic abstract patterns (C, P, D) with w, their
frequency, i.e. the number of instances of (C, P, D) in A (line 1). An assertion P(a, b) in A is said to be an instance
of the basic abstract pattern (C, P, D) if and only if a is of type C in A (i.e., C(a) € A) and b is either of type D or
a term in A (cf. Definition 4.6). Note that in the case where b is a term, then all elements of D are also terms. In
other words, a type and a term