
In the Proceedings of the 2nd International Symposium on Generative and Component-Based
Software Engineering (GCSE 2000), Young Researchers Workshop (published in

”Net.ObjectDays2000”; ISBN 3-89683-932-2), pages 653-659, Erfurt, Germany, October 2000.

Olena: a Component-Based Platform for Image
Processing, mixing Generic, Generative and OO

Programming

Alexandre Duret-Lutz (supervisor: Thierry Géraud)
EPITA Research and Development Laboratory

14-16 rue Voltaire, F-94276 Le Kremlin-Bicêtre cedex, France
{Alexandre.Duret-Lutz,Thierry.Geraud}@lrde.epita.fr

Keywords: generic programming, lazy compilation, bridge static-dynamic.

1 Introduction

This paper presents Olena, a toolkit for programming and designing image processing
chains in which each processing is a component. But since there exist many image
types (different structures such as 2D images, 3D images or graphs, as well as different
value types) the platform has been designed with genericity and reusability in mind:
each component is written as a generic C++ procedure,la STL.

Other libraries, such as Khoros [Kon94] have a different approach where a process-
ing component contains an implementation for each type supported by the library. This
makes code maintenance hard and prevents easy addition of new image types.

Still, Olena is not only a generic component library [Jaz95], it shall contain ad-
ditional tools such as a visual programming environment (VPE). Those tools may be
programmed in a classical object-oriented fashion (using operation and inclusion poly-
morphism) which may seems antagonist with the generic programming paradigm used
in the library.

Section2 outlines the architecture of Olena and elaborates more on the design
problems resulting from the use of generic components. Section3 presents the solution
chosen to address these problems.

2 Overview of the platform architecture

Figure 1 shows the various parts of the architecture. A text-mode shell interface is
needed to call the components and to prototype a processing, either interactively or via
a script. Alternatively, a visual programming environment can be used to define the
data flow diagrams for a processing chain. In each of these environment, components

1

C++
program

uses

uses

uses

usesuses

uses

uses

uses

uses

describes

uses

uses

uses code generation
and lazy compilation

component
textual descriptions

generic
components

library

text−mode
shell

execution
engine

visual
programming
environment

documentation

other tools...

Figure 1: The Olena architecture.

can be grouped to form reusable composites components (such as the one shown in
figure2); and once a processing has been successfully prototyped, the corresponding
C++ code can optionally be generated.

Moreover, for each component the representation in the environment (visual aspect
in the VPE, option switches in the shell) as well as on-line help shall be generated
automatically. To this end additional information is recorded by a database of textual
description of each components.

The kernel of the platform is a generic library which provides generic components
and data. A component is a processing, and is written as a C++ generic procedure. Data
are the entities that transit between components in the processing chain; the library
provides image classes, neighborhoods, value types, histograms, etc. This library can
be used directly by the end user in a C++ program, independently of the other tools of
the platform. A component that adds a constant value to an image can be written as
follows.

template< class Aggregate_Model >
void add (Aggregate_Model& input, typename Aggregate_Model::data_type value)
{

typename Aggregate_Model::iterator_type iter = input.create_iterator ();

for (iter.first (); !iter.is_done (); iter.next ())
iter.current_item () += value;

}

The library is written fully in generic programming in order to achieve good perfor-
mances, using techniques such a those described in [Vel99]. The iterator pattern used
in the sample code is an adaptation to generic programming of the classical OO design

minima

gradient watershed

a composite component

Figure 2: An image processing chain example ; here, a composite component made of
three atomic components.

pattern, and is well know in generic programming; but other design patterns can also
be adapted [Ger00a].

An issue with generic components is that they lead to many instances, i.e., several
variants of binary code will be generated.. As long as it is used directly in a C++
program this is not a problem because the compiler will determinate and compile only
the needed variants. But in interpreted environments such as the VPE, needed instances
are not known until run-time. Moreover the number of available image types prevents
the compilation of all variants once and for all (anyway since we want to allow user
types, this would not be satisfying). We detail our solution in the next section. Type
constraints on the argument types are also described for each component, because the
interpreted environments will perform type checking at run-time.

3 Technical Solutions environment

As we said, at the VPE (or any other use interface) level only abstract data are handled.
The only requirement is that in order to perform type checking, we need atype()

method which returns the real type of the data as a string.
The abstract type used is not part of the generic library since it makes sense only

for the VPE. Figure3 shows how a set of concrete data types can be grouped in a
hierarchy. We encapsulate each data of typeT in a classDataProxy<T> which inherits
from the superclassAbstractData . This an application of theexternal polymorphism
pattern[Cle96].

Thus, the VPE can handle abstract data, but in order to apply the algorithm, the
data should be downcast back to its concrete type. If the set of types is short and fixed,
this can be done using aswitch statement. Unfortunately neither conditions are true:
there exists a lot of types and the users can add new ones. Our solution is to use lazy
compilation.

Data flow is managed by an Execution Engine Figure2. When all the inputs of a
component are ready (i.e. the upstream components have completed their work) the
processing can start. But before it begins, several steps must be performed:

AbstractData

+ type(): string

DataProxy

+ type(): string

Tdata
1

T

return data.type();

Figure 3: TheAbstractData andDataProxy classes.

• type checking must be done on the inputs, this is done easily using the string-type
of data and the rules given by the textual description of the component.

• input data must be casted to their real types (which are known as strings, at run-
time).

• the generic algorithm must be instantiated for these types.

The last two steps cannot be done at run-time. Therefore we generate, with help
from the textual description, the code for an intermediate procedure which performs
these two tasks; this code is compiled as a dynamic library, it is then loaded by the
Execution Engine and finally executed.

As an exemple, consider the “add” component. “add” takes two inputs - let’s label
them input1 and input2 - and produce one output - namedoutput . If this com-
ponent receive aImage2D<Float> object and aFloat value as inputs, the following
code will be generated:

void add__Image2D_Float_ (Component& cmp)
{

/* downcast the data */
Image2D<Float> input1& =

static_cast< DataProxy< Image2D< Float > >& >(cmp.entry ("input1")).data;
Float input2& =

static_cast< DataProxy< Float>& > (cmp.entry ("input2")).data;
Image2D<Float> output& =

static_cast< DataProxy< Image2D< Float > >& >(cmp.entry ("output")).data;

/* apply the algorithm */
add (input1, input2, output);

}

This procedure takes the OO version of the component as arguments and extracts
its inputs and output with their concrete types in order to call the right variant of the
“add” component. Finally, compiled variants of algorithms are cached, and therefore
successive calls to these algorithms are not penalized by the slow compilation process.
Moreover caching policies (such as component sharing by a group of users) can be
applied.

4 Conclusion

The design presented here combine three advantages of components oriented designs
(flexibility, reusability) of both dynamic approach (ability to assemble component in-
teractively) and static approach (good performance) thanks to the bridge between static
and dynamic worlds we presented. Still, Olena is a work in progress. So far, our work
has been focused mainly on the generic library [Ger00a] but the solution presented in
the previous paragraph have been tested in practice.

References

[Cle96] Chris Cleeland, Douglas C. Schmidt, and Timothy H. Harrison.External poly-
morphism. In Proceedings of the 3rd Pattern Languages of Programming Confer-
ence, Allerton Park, Illinois, September 4-6, 1996.http://www.cs.wustl.
edu/˜cleeland/papers/ .

[Ger00a] Thierry Géraud, Yoann Fabre, Alexandre Duret-Lutz, Dimitri Papadopoulos-
Orfanos, and Jean-François Mangin.Obtaining genericity for image processing
and pattern recognition algorithms. In Proceedings of the 15th International Con-
ference on Pattern Recognition (ICPR’2000), Barcelona, Spain, September 2000.
To appear.

[Ger00b] Thierry Géraud and Alexandre Duret-Lutz.Generic programming redesign
of patterns. In Proceedings of the 5th European Conference on Pattern Lan-
guages of Programs (EuroPLoP’2000), Irsee, Germany, July 2000.http:
//www.coldewey.com/europlop2000/ .

[Jaz95] Mehdi Jazayeri. Component programming - a fresh look at software com-
ponents. In Procedings of the 5th European Software Engineering Conference
(ESEC’95), 457–478, September 1995.

[Kon94] K. Konstantinides and J.R. Rasure.The Khoros software development envi-
ronment for image and signal processing. IEEE Transactions on Image Process-
ing, vol. 3, no. 3, 1994, 243–252.

[Vel99] Todd L. Veldhuizen. Techniques for scientific C++. August 1999. http:
//extreme.indiana.edu/˜tveldhui/papers/techniques/

http://www.cs.wustl.edu/~cleeland/papers/
http://www.cs.wustl.edu/~cleeland/papers/
http://www.coldewey.com/europlop2000/
http://www.coldewey.com/europlop2000/
http://extreme.indiana.edu/~tveldhui/papers/techniques/
http://extreme.indiana.edu/~tveldhui/papers/techniques/

	1 Introduction
	2 Overview of the platform architecture
	3 Technical Solutions environment
	4 Conclusion

