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Abstract. In the automata theoretic approach to model checking, dhgck
state-space against a linear-time property can be done i (|S| x 2°(+D)
time. When model checking understrong fairness hypotheses expressed as a
Generalized Biichi automaton, this complexity becoéss| x 20(#1+m)),

Here we describe an algorithm to check the emptiness oftB&e®mata, which
allows model checking under strong fairness hypothesesGr{|S| x 2°U¢D x

n). We focus on transition-based Streett automata, becawkuts us to ex-
press strong fairness hypotheses by injecting Streetptamee conditions into
the state-space without any blowup.

1 Introduction

The Automata Theoretic Approach to Model Checking[29, 28] is a way to check
that a modelM verifies some property expressed as a temporal logic forgaula
other words: to check whethédd = . This verification is achieved in four steps,
using automata over infinite words-{automata):
1. Computation of the state space/df. This graph can be seen as@afautomaton
Apr whose language’ (A ) is the set of all possible executions/uf.
2. Translation of the temporal propertyinto anw-automatord-, whose language,
ZL(A-,), is the set of all executions that would invalidate
3. Synchronized product of these two objects. This contrae automatom )y ®
A_, whose language i’ (Axr) N Z(A-,): the set of executions of the model
that invalidate the temporal property
4. Emptiness check of this product. This operation tellstivaied ,; @ A, accepts an
infinite word (a counterexample). The modélverifiesy iff £ (Ay @ A-,) = 0.

On-the-fly algorithms. In practice the above steps are usually tightly tied by rtielé-
mentation, due to transversal optimizations that forbidguential approach. One such
optimization is theon-the-fly model checkingvhere the computation of the product,
state space, and formula automaton are all driven by ther@seipn of the emptiness
check procedure: nothing is computed before it is required.
Being able to work on-the-fly has three practical advantages
— Large parts ofd,; may not need to be built because of the constraint$-gf.
— The emptiness check may find a counterexample without exgl¢and thus con-
structing) the entire synchronized product.



— To save memory we can throw away states that have been cotestiout are not
actually needed. We would rebuild them later should theyd®zlad again. [13]

From an implementation standpoon-the-fly model checkiruts requirements on
the interface of the automata representing the producsttite graph, and the formula.
For instance the interface used in Spot [8] amounts to twotfons: one to obtain the
initial state of the automata, another to get the succeséa@rgiven state. It is common
to say that an emptiness cheskon-the-fly when it iscompatiblewith such an inter-
face. For instance Kosaraju's algorithm [23.5] for computing strongly connected
components (SCC) will not work on-the-fly because it has tovkithe entire graph
to transpose it. The algorithms of Tarjan [25] and Dijkstsa ] are more suited to
compute SCCs on-the-fly, because they perform a single digptisearch.

Fairness hypothese$10] is a way to restrict the verification to a subset of “fa@iX-
ecutions of the model. For instance if we have a model of twacaaent processes
running on the same host, we might want to assume that thelgighes fair and that
both processes will get slices of CPU-time infinitely oft#vhen considering all the
possible executions of the model, this hypothesis amoordgstarding all executions
in which a process is stuck.

Transition-based Biichi and Streett automata We shall consider two kinds af-
automata that are expressively equivalent: Biichi autarmatl Streett automata. Biichi
automata are more commonly used because there exist sirap&ations fromi.TL
formulee to Biichi automata and there exist many emptinesskcilgorithms for these
automata [4]. Readers familiar with Biichi automata mightsoirprised that we use
transition-based acceptance conditions rather thanistesied ones. As noted by several
authors [19, 3, 11, 12, 4, 26] this allols'L formulae to be translated into smaller
automata, and for our purpose it will be useful to show wi@ak(resp.strong fairness
hypothesesan be added to a Buchi (resp. Streett) automaton withguiblamvup.

Streett Automata can also be used as intermediate steps in some methods téeecomp
ment Biichi automata [27]. For instance in the automatar#iteoapproach to model
checking, we could want to express a propértyo verify, not as an LTL formula, but
as a (more expressive) Buchi automatbp (or equivalently, a-regular expression).
To ensure thad! = Ap we should check tha¥’ (A, ® —Ap) = 0. One way to com-
pute—Ap is to use Safra’s construction [21] to construct a Stredtirmaton, and then
convert this Streett automaton back into a Buichi automaton

Our objective is to introduce an on-the-fly emptiness check for transitiased Streett
automata, in order to efficiently verify linear-time profyes under strong fairness hy-
potheses, or simply to check the emptinesd pf® — A p without the cost of converting
-A, into a Buchi automaton. Existing emptiness checks foredtrautomata [20, 15]
share the same asymptotic complexity, but are state-basbdih not work on-the-fly.

Outline. Section 2 briefly reviewkTL and transition-based Biichi automata. Section 3
then introduces fairness hypotheses and Streett autohvataecall that weak fair-
ness hypotheses are free and show that strong fairnesshieggstare less costly to
express with Streett automata. Finally section 4 gives atheffly algorithm to check
the emptiness of a Streett automaton in a way that is onlatigslower (in the number

of acceptance conditions) than the emptiness check of hiBiltomaton.



2 Background

2.1 Linear-time Temporal Logic (LTL)

An LTL formulais constructed from a sétP of atomic propositions, the usual boolean
operators{, Vv, A, —) and some temporal operato¥s{next),U (until), F (eventually),

G (globally). An LTL formula can express a property on the execution of the system
to be checked. Because we focus on fairness properties Weshbe concerned with

the full semantics oE.TL [1, 18], it is enough to describe the following two idioms:

— G F p means that propertyis true infinitely often (i.e., at any instant of the execu-
tion you can always find a later instant so thas true),

— F G p means that propertyis eventually true continuously (i.e., at some instant in
the futurep will stay true for the remaining of the execution).

The size|p| of anLTL formulay is its number of operators plus atomic propositions.

2.2 Bichi Automata

Definition 1 (TGBA) ATransition-based Generalized Buichi Automaton [@2&r ). is

a Bichi automaton with labels and generalized acceptanceitiond on transitions. It
can be defined as a tuplé¢ = (¥, 9, ¢, 6, F) whereX is an alphabetQ is a finite
set of statesq” € Q is a distinguished initial statej C Q x X x Q is the (non-
deterministic) transition relationf C 2° is a set of sets of accepting transitions.

Graphically we represent the elementsfofwhich we callacceptance conditiofs
as small circles such asor © on Fig. 1a, 1b and 1d. We will also merge into a single
transition all transitions between two states with idealtaxcceptance conditions, as if
the transition relation was actually ® x 2% x Q.4

For the purpose of model checking we ha/B equal to the set of all atomic propo-
sitions that can characterize a configuration, and we use tgtomata witl’ = 247
(i.e., each configuration of the system can be mapped inttiea l&f 2). Graphically,
with the aforementioned merging of transitions, it is tfiere equivalent to label the
transitions of the automata by propositional formulee ovéx.

An infinite wordo = o(0)o(1) - - - over the alphabel is accepted by if there
exists an infinite sequenge= (qo, l0, q1)(¢1,!1, ¢2) . . . of transitions ofs, starting at
g0 = ¢°, and such thati > 0,0(i) = I;, andVf € F,Vi > 0,35 > i,p(j) € f.
That is, each letter of the word is recognized, arichverses each acceptance condition
infinitely often.

Given two TGBAsA and B, the synchronous product df and B, denotedd ® B
is a TGBA that accepts only the words that are accepted land B. If we denote
|Als the number of accessible statesAfwe have|A ® B|s < |A|s x |Bls. If we
denote| A|; the number of transitions of, we always haveA|, < |A|? x |X|. Also
|[A® By < (|Als x |B|s)? x |X| < |Al; x |Bl;. Finally if a TGBA C has only one
state and is deterministic, théA ® C|s; < |A|; and|A ® C|; < |Al;.

* This optimization is pretty common in implementations; wiyause it to simplify figures.
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Fig. 1: (a) A TGBA equivalent to theTL formulaG F((—en) V oc); (b),(d) two TGBAs equiv-
alenttop = (GF en — GF oc); (c),(e) two TSAs equivalent tp. T denotes thérue value.

3 Coping with Fairness Hypotheses

Fairness hypotheses are a way to filter out certain behawgiotse model that are

deemed irrelevant. For instance when modeling a commuoicaetween two pro-

cesses over a lossy channel, we might want to assume thatessage will eventually
reach its destination after a finite number of retransmissiélthough there is one be-
havior of the model in which the retransmitted message iaydviost, we may want to
ignore this possibility during verification.

3.1 Weak and Strong Fairness

Let us give a definition of fairness involving a pair of eveatsand oc in a modeli/.
An event could be the progress of some process, the exeaftqguarticular instruction
of the model, or even the fact that an instruction is enabled €ould be executed).

Definition 2 (Unconditional fairness) An eveat is unconditionally fairif it will hap-
pen infinitely often, i.e., il = GF oc.

Definition 3 (Weak fairness) A pair of eventsn, oc) is weakly fair if wheneveren
occurs continuously, these will occur infinitely often:M = (FG en — GF oc).

Because we havEGen — GFoc = GF((—en) V oc) weak fairness can be
handled like unconditional fairness.

Fig. 1a shows an example oflastate TGBA recognizing F((—en) V oc). This
TGBA is deterministic: for any configuration given by a setifth values ofen and
oc, there is only one transition that can be followed. In facly éormula of the form
Ni_1(FGen; — GF oc;), representing a combination efweak (or unconditional)



fairness hypotheses, can be translated intestate deterministic TGBA witB"” tran-
sitions. Note that this “1-state determinism” propertydwboth because we are con-
sideringgeneralizechutomata antransition-basedicceptance conditions, it would not
not hold forstate-baseécceptance conditions.

Definition 4 (Strong fairness) A pair of eventsn, oc) is strongly fairif wheneveren
occurs infinitely often, thenc will occur infinitely often:M = (GF en — GF oc).

Fig. 1b and 1d show two TGBAs corresponding to the fornGilaen — GF oc.
The first, bigger automaton is produced IbYL-to-Bichi translation algorithms such
those of Couvreur [3] or Tauriainen [26]. The smaller one iE@BA adaptation of
an automaton shown by Kesten et al. [14]; we do not know of agyegal LTL-
to-Bichi translation algorithm that would produce thigamaton. Attempts to con-
struct automata for conjunctions of strong fairness hypsdis, i.e. formulae of the form
A1 (GFen; — GF oc;), will lead to a nondeterministic automaton that has either
3" + 1 or 3" states depending on whether we base the construction odlFigr. 1d.
These automata ha@®(™) transitions.

3.2 Fairness in the Automata Theoretic Approach

Given a modelM/ and anLTL formulay, we can check whethél = ¢ by checking
whether the automatas,; ® A-, accepts any infinite word (such a word would be a
counterexample). Becauké-, |, = 2°U¢D, we havg Ay @ A, |, < |Apr|e x 200D,
Checking the emptiness of a TGBA can be done in linear timb wespect to its size,
regardless of the number of acceptance conditions [4],eswtole verification process
requiresO(| A | x 2°U¢D) time.

Verifying ¢ under some fairness hypothesis represented B% hriormulay) amounts
to checking whetheM | (v — ¢), i.e., should hold only for the runs wheigalso
holds. We can see thalty ® A_ () = Ay @ Ayr-p = Ay @ Ay @ A, In Other
words, a fairness hypothesis could be represented by juestteansynchronized product
before doing the emptiness check.

Weak fairness.We have seen that weak fairness hypotheses can be represented
by al-state deterministic TGBA. This means that the operatign® A, is basically
free: it will not add new states to those 4fy;. In practice each transition of,; would
be labelled during its on-the-fly construction with the gute@ce conditions ofd,.
Model checking unden week fairness hypotheses is therefore independent ahd
requiresO(| A |, x 2°U¢D) time.

Strong fairness.Model checking unden strong fairness hypotheses is costly with
Buchi automata: we have seen that thedg/potheses can be represented by a TGBA
with 2°() transitions, the verification therefore requif@§ A |; x 2°U#1+7)) time.

3.3 Streett Automata

Definition 5 (TSA) ATransition-based Streett Automatisa kind of TGBA in which
acceptance conditions are paired. It can be also be definad@slieA = (¥, 9, ¢°,d, F)

5 This is because we assume that we are using a generalizethessptheck [4].



whereF = {(I1,u1), (I2,u2),..., (., u,)} is a set of pairs of acceptance conditions
with l; C ) andui C 9.

The difference between TSA and TGBA lies in the interpretatf 7. An infinite
word o over the alphabekl is accepted bw if there exists an infinite sequenpe=
(q0,10,91)(q1,11,q2) ... of transitions ofd, starting atgy = ¢“, and such thati >
0,0(i) = l;, and¥(l,u) € F, (Vi > 0,35 > i,p(j) €1) = (Vi > 0,35 >1,p(i) €
u). That is, each letter of the word is recognized, and for eaih(h «) of acceptance
conditions, ifp encounters infinitely often, then it encountersinfinitely often.

Given two TSA A and B, it is also possible to define their synchronous product
A® BsuchthatA ® B| = O(]4] x |B]) andZ(A ® B) = Z(A) N Z(B).

Buichi and Streett automata are known to be expressivelyaguat [21]. Obviously
a TGBA with acceptance conditior® = {u1,us,...,u,} can be translated into an
equivalent TSA without changing its structure: we simplg thee acceptance conditions
F' ={(Q,u1),...,(Q,un)}. For instance Fig. 1e shows the TSA resulting from this
rewriting applied to the TGBA of Fig. 1d.

The converse operation, translating Streett automataithiBinduces an exponen-
tial blowup of the number of states [22]. For instance Lgdit7] shows how to trans-
late a state-based Streett automaton@jfstates anad pairs of acceptance conditions
into a state-based Buchi automaton wighj x (4™ — 3™ + 2) states (and acceptance
condition). The following construction shows how to traatsla TSA of Q| states and
n pairs acceptance conditions of into a TGBA 6f x (2™ + 1) states ana acceptance
conditions. (The same construction could be achieved &dediased automata: here
the gain is only due to the use of generalized acceptancetinr )

Given a TSAA = <E, Q, qo,]:, 6> with 7 = {(ll, ul), (12, UQ), ey (ln, un)}, let
N =1{1,2,...,n},and for any(S,t) € 2V x ¢ let pending(S,t) = (SU{i € N |t €
L)\{i € N | t € u;}. Now definethe TGBM' = (X, Q’,¢°, &', F') whereQ' = QU
(Qx2V),8' = 6U{(s,g.(d.0)) | (5,9,d) € §HU{((s,5). g, (d, pending(5, (s, 9,d))) |
(s,9,d) € 6,8 € 2N}, andF’' = {f; | i € 2V} with f; = {((s,9),1,(d, D) € &' |
N\ S =i}.ThenZ(A) = Z(4").

The justification behind this construction is that any runegated by a Streett au-
tomaton can be split in two parts: a finite prefix, where anggition can occur, fol-
lowed by a infinite suffix where it is guaranteed that any titeorsin /; will be even-
tually followed by a transitions im;. The original TGBA is therefore clone2i* + 1
times to construct the corresponding TSA. The first clonegqu® andd, is where the
prefix is read. From there the automaton can non-deternuaiist switch to the clone
that is using states i@ x {(}. From now on the automaton has to remember which
u, it has to expect: this is the purpose of the extra set adddtktetaite. An automaton
is in state(s, S) that follows a transition iri; will therefore reach statés, S U {i}),
and conversely, following a transition iy will reach state(s, S \ {7}). The function
pending(S, t) defined above computes those pending. The acceptance conditions
are defined to complement the set of pendipg to be sure they are eventually fulfilled.

3.4 Strong Fairness with Streett Automata

The TSA of Fig. 1e is however not the most compact way to tedes strong fairness
formula: Fig. 1¢c shows how it can be done with-atate deterministic TSA.



Actually any LTL formula)\}_, GF en — GF oc representing: strong fairness
hypotheses can be translated intd-atate deterministic TSA with pairs of accep-
tance conditions and”™ transitions. It is the TSAA = (247 {q},¢,6, F) where
AP = {oci,o0ca,...,0c,, ent, ena,...ennt, 0 = {(¢,E,q) | E € 24P}, and
F = {(ll,ul), (ZQ,UQ),.. ,(ln,un)} with l; = {(q,E,q) €6 | en; € E} and
u; = {(q,E,q) € 6 | oc; € E}. Again this “1-state determinism” would not hold
for state-based Streett acceptance condition.

Combining this automaton with the construction of secti) @e can represent
strong fairness hypotheses using a TGBR®ft 1 states (and™ (2™ + 1) transitions).
This is better than the TGBA df" states presented in section 3.1, but the complexity
of the verification would remain i) (| A, |, x 20U#1+™)) time.

As when model checking under weak fairness hypotheses,tthetSacceptance
conditions representing strong fairness hypotheses cajdated in the automatas
during its on-the-fly generation: any transition 4f; labelled byE € 247 receives
the acceptance conditiong F). The verification under. strong fairness hypotheses
amounts to checking the emptiness of a TSA of §)e4 |, x 2°U¢D), with n pairs
of acceptance conditions.

We now show how to check this TSA emptines©iff Ay |; x n x 2°0¢D) time by
adapting an algorithm by Couvreur [3, 4] that was origindigigned for the emptiness
check of TGBA.

4 Emptiness Check for Streett Automata

The behavior of the algorithm is illustrated on Fig. 2 on a T®h 2 pairs of ac-
ceptance conditiong®,O) and (m,0). We are looking for runs that visQ (resp.0)
infinitely often if they visit® (resp m) infinitely often.

As its older brother (for TGBA [3, 4]) this algorithm perfoma DFS to discover
strongly connected components (SCC). Each SCC is labeltbdive set of acceptance
conditions that can be found on its edges, and will stop as asit finds an SCC whose
label verifie® — O)A(m — O). Figures 2a—2f show the first steps until a terminal SCC
(i.e. with no outgoing transition) is found. Let us dendte= {(ly,u1), (I2, uz2), ...,
(In, un)} the set of acceptance conditions of the Streett automato,@ C F the set
of acceptance conditions of the terminal SCC encounterden/guch a terminal SCC
is found we can be in one of the three following cases.

1. Either the SCC is trivial (i.e. has no loops): it cannot beespting and all its states
can be ignored from now on.

2. Orthe SCCis acceptinyi,l; € acc = wu; € acc.
In that case the algorithm terminates and reports the existef an accepting run.
It is better to check this condition any time a non-trivial G formed, not only
for terminal SCC: this gives the algorithm more chance toieate early.

3. Ordi,l; € acc Au; € acc.
In that case we cannot state whether the SCC is accepting.dvlagbe it contains
an accepting run that does not use any transitiah. &fig. 2f is an instance of this
caseF = {(®,0),(m,0)} andacc = {®,m 0} so the algorithm cannot conclude
immediately.



To solve third case, the algorithm will revisit the whole S@0t avoiding transi-
tionst such thaBi, t € I; Au; & acc. Practically, we define the setoid = {I; € acc |
u; € acc} of [; that cannot be satisfied, all the states from the SCC are regirfoom
the hash table of visited states, and the algorithm makebsanbFS with the following
changes:

— amongst the outgoing transitions of a state, those who e@megptance condition
of avoid are visited last

— crossing a transition labelled by an avoided acceptanadittomsets up a threshold
(denoted by a dashed vertical line on Fig. 2i)

— if a transition going out from a SCC goes back to another SQidrsearch stack,
then the two SCC will be merged only if the two SCC are behimdaist threshold
set. Fig. 2j shows one case where merging has been allowdd,itp 2k shows a
forbidden attempt to merge two SCCs.
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Fig. 2: Running the emptiness check on a TSA with= {(@,0), (m,0)}.



This new visit will construct smaller SCCs instead of thgoral terminal SCC. The
only way to merge these smaller SCCs would be to accept a agahg a transition
from an acceptance condition (aboid) that cannot be satisfied. For each of these
smaller SCCs we can then decide whether they are triviakct, or if they contain
acceptance conditions (not already listedimid) that cannot be satisfied. In the latter
caseavoid is augmented and the process is repeated. This recursiontoaceedF |
levels since we completevoid at each step with at least one pair/of

Compared to the original emptiness check for TGBA thatsiséch state and tran-
sitions only once, this variant will in the worst case viséich state and transitions
|F| + 1 times. On a TSAA this algorithm therefore works i® (| A|; x |F|) time.

Relation to other algorithms. The basic idea of using strongly connected components
to check strong fairness is old [16, 9], and has been decimedfew algorithms to

1 Input: A Streett automatort = (X, Q, ¢°, 8, F)
Output: T iff £(A) =0
3 Data: SCC:' stack of
(state € Q,root € N,;la C F,acc C F,rem C Q, succ C 4, fsucc C J)
H:map ofQ — N
avoid: stack of(root € N, acc C F)
min: stack ofN

N

mazx «— 0

4 begin

5 main.push()

6 avoid.push(1, 0))

7 DFSpush(®, ¢°)

8 while -SCC.empty()do

9 if SCC.top()succ = () then

10 if SCC.top()fsucc # 0 then

11 swapSCC.top()suce, SCC.top()fsucc)
12 min.pushmaz)

13 else

14 | DFSpop()

15 else

16 pick one(s, e, d) off SCC.top() succ
17 a—{feF|(sed)eEf}

18 if d ¢ H then

19 | DFSpush(a, d)
20 else if H[d] > min.top()then
21 ner ge( a, H[d])
22 acc +— SCC.top()acc
23 if V(l,u) € F, (Il € acc) = (u € acc) then return L
24 return T
25 end

Fig. 3: Emptiness check of a Streett automaton (continueteghpage).
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DFSpush(a C F,q € Q)

max «— max + 1
Hlg] — mazx

end
DFSpop()

maxr «—n—1

| min.pop()

L avoid.pop()

SCC.pop()

end

SCC.push{q, maz,a,0,0,{(s,1,a,d) € d|s=q,anavoid.top()acc = 0},

{(s,1,a,d) € |s = gq,aN avoid.top()acc # 0}))

(g,n,la,acc,rem, _,_) «— SCC.pop()

if n < min.top()then

old_avoid «— avoid.top()acc
if n = avoid.top()root then

new-avoid «— old_avoid U {l | (l,u) € F,lNacc # B,uNacc = (0}
if new_avoid # old_avoid then
foreach s € rem do

| deleteH[s]

avoid.push, new_avoid)
DFSpush( la, q)

else
foreachs € rem do
| Hls]—0
end
merge(a C F,t €N)
r— 0
s+ 0
fe0

while ¢t < SCC.top()root do
a +— aU SCC.top()acc U SCC.top()la
r < rUSCC.top()rem U SCC.top()state
s« sU SCC.top()succ
f < fuscc.top()fsucc

SCC.top()acc «— SCC.top()accUa
SCC.top()rem «— SCC.top()rem U r
SCC.top()succ «— SCC.top()succ U s
SCC.top()fsucc «— SCC.top()fsucc U f

Fig. 3: (Continued from previous page.)



check the emptiness of (state-based) Streett automatd $20But these algorithms
modify the graph before visiting it again, hindering on-thecomputations.

At a high level, our algorithm is close to the one presentetddiyala and Heljanko
[15], who suggests using any algorithm to compute SCCs. Mewee have more
than implementation detail differences. Our algorithmarggeted to transition-based
acceptance conditions, actually shows how to make the aggsticheck on-the-fly, and
uses two tricks that are dependent on the algorithm usedupete SCC. As mentioned
in the introduction, there exists two similar algorithmscmmpute SCCs on-the-fly:
Tarjan’s [25] and Dijkstra’s [5, 6]. The latter is less knovinut better suited to model
checking (it has less overhead and can abort earlier). @bk tv use a threshold to
prevent SCC merges could work with either algorithms, buttie emptiness-check to
be correct we also need to perform the DFS in terms on SCCsaith&if working in
terms of states. This ordering is possible with Dijkstrdgoaithm, but not Tarjan’s.

Implementation. Fig. 3 presents the algorithm. Its structure mimics thahefeémpti-
ness check for TGBA of Couvreur et al. [4], especially it pofrom the idea of per-
forming the DFS in terms of SCCs rather than states: the sta8K serves both as a
stack of connected components and as the DFS stack. Théteents of each entry are
state (the root state of the SCGC)opot (its DFS number)ja (the acceptance conditions
of the incoming transition tetate), acc (the acceptance conditions of the cycles inside
the SCC)yem (the other states of the SCG)cc andfsucce (the unexplored successors
of the SCC).

These unexplored successors are split intec and fsucc to ensure a proper or-
dering with respect to avoided acceptance conditions. Vh&ate is pushed down on
SCC atline 29,fsucc is loaded with all transitions in acceptance conditions thast
be avoided, whilsucc receive the others. The latter will be visited first: the aitpon
always pick the next successor to visit framee (line 16) and will swagsucc andsucc
oncesucc is empty (lignes 9-11).

Thresholds, meant to prevent merging SCCs using a cyclesbald use an un-
satisfiable acceptance condition, are represented by tidernuin DFS order) of the
last state of the SCC from which the threshold transitionoisig out (that i2 on our
example). These numbers form then stack; they are used line 20 before deciding
whether to merge; they are pushed wherrc andsucc are swapped line 12, and are
popped when the state of that number is removed line 35.

The acceptance conditions to avoid are pushed on top of lactdledavoid which
is completed anytime the algorithm needs to revisit an S@@ @3). Each element
of this stack is a paifar, acc) whereroot is the number of the first state of the SCC
starting at which acceptance conditiongif® should be avoided. This stack is popped
when the SCC rooted abot has been visited and has to be removed (lines 37-38).

Correctness.Termination is guaranteed by the DFS and the fact that thebeumf

avoided acceptance conditions cannot exdggdBy lack of space, we only give the
scheme of our proof that this algorithm will retutnif an accepting run exists in the
input TSA, and will returnT otherwise. (A complete proof is available in French [7].)



Let us use the following notations to describe the state@atgorithm:

SCC =(statey, rooty, lag, accy, remyg, succy, fsuccy)

(statey,rooty,lay, accy, remsy, sucey, fsucey)

(staten, 00ty lay, acc,, rem,,, succ,, fsucc,))
min =mingming ... min,

avoid =(ary, accy){ary,acey) . .. {ar,,accy)

Furthermore, let us deno; the set of states represented$yC|i], andy(z) the
index of the SCC containing the state numbered

S; ={s € Q| root; < H[s|] < root;+1} for0<i<mn
S, ={s € Q| root, < H[s]}
o(x) =max{i | root; < x}

Lemma 1 At any time between the execution of lines 8-15, for any (@air, acc;) on
theavoid stack, there exists a unique enteyate;, root;, la;, accj, remy;, succ;, fsucc;)
on theSCC stack such thatr; = root;. In other words, thewoid entries are always
associated to roots of SCCs.

Lemma 2 When line 16 is run to pick a state amongst the successors tphofSCC,
the value ofice, is the same as when this set of successors was created a8line 2
Lemma 3 The values O(TOOti)ie[[O,n]] are strictly increasing and we haveot,, <
max at all times between the execution of lines 8-15.

Lemma 4 Let us calln’ the value ofr at a moment right after lines 11-12 have been
run. The setsucc, andfsucc,,, will never increase.

Lemma 5 The functiong that to anyi € {0,...,p} associates(i) = p(min;) is
injective. In other words, two states numberedh;, andmin,, (withi; # i3) cannot
belong to the same SCC. Furthermorenit> min,, 100t (min,)+1 = miny + 1. In
other wordsymin,, is the number of the last state of the SCC whaege has the number
700t ,(min,)- FiNAllY, 700t , (;min,) < min, < maz.

The state se@ of the TSA to check can be partitioned in three sets:

— active stateqre those which appear i associated to a non-null value,
— removed stateare those which appear i with a null value,
— unexplored stateare not yet inA .

The algorithm can move a state from tin@exploredset to theactiveset, and from there
it can move it either to theemovedset or back to thenexploredset (lines 41-42).

The following invariants are preserved by all the lines @fthain function (lines 8—
15). They need to be proved together as their proofs arediependent.
Invariant 1 For all © < n, the subgraph induced by the states®fis a SCC. Fur-
thermore there exists a cycle in this SCC that visits all ptaece conditions afcc;.
Finally &y, &4, ...,8, is a partition of the set ofctive states



Invariant2 Vi < n,3s € &;,3s' € &1, Ip € 2%, {f € F | (s,p,8') € f} =
la;+1. |.e., there exists a transition between the SCCs indexédhyi + 1 thatis in
all that acceptance conditions &, 1.
Invariant 3 There is exactlynax active statesNo state ofH is associated to a value
greater thanmax. If two different states are associated to the same valuH jthis
value is0. In particular, this means that for any valuebetweenl and maz, there
exists a uniquactive states such thatd [s] = v.
Invariant 4 For all integeri < n, the setrem; holds all the states ab; \ {state;}.
Invariant 5 Anyremoved statg cannot be part of an accepting run.
Invariant 6 There is no state accessible fraitute,, from which we could find an ac-
cepting cycle using a transition in an acceptance conditiom acc, .
Invariant 7 All transitions going fromS(,,in,) t0 &, (min,)+1 are labelled by an
acceptance condition a@icc,. (In particular, la, i, )+1 N ace, # 0.)
Invariant8 Vj > ¢(miny,), acc; Nace, = 0 andVj > p(miny,) + 1, la; Nace, = 0.
In other words, the SCC built after the last threshold, argltriansitions between them,
are not in acceptance conditions framac,., except for the first transition visited after
the last threshold (ida, (min,)+1)-

The first two invariants imply that if the algorithm finds arsuch thatv(l,u) €
F, acc; €1 = ace; € u, thenSCCYi] is an accepting SCC (inv. 1) that is accessible
(inv. 1 & 2), so the algorithm can terminate with Invariant 5 assures that no accepting
run exists once all states have beemovedthe algorithm therefore terminates with

5 Conclusion

We have introduced a new algorithm for the on-the-fly emgneheck of transition-
based Streett automata (TSA), that generalizes the digofdr transition-based Biichi
automata of Couvreur [3]. This algorithm checks the emgsra a TSAA with |Al;
transitions andF| acceptance pairs i0(|A|; x |F|) time. We have seen that this
algorithm allows us to check a linear-time property on a nhadlg undern strong
fairness hypotheses (| A | x 2°0¢D x n) time instead of th© (| A 57| x 20#1+7))
we would have using Blichi automata.

It should be noted that since Buichi automata can be seenesttStutomata without
any structural change, this very same algorithm can alscéeé o check the emptiness
of Blichi automata. In that case SCCs will never have to bisited (theawvoid stack
stays empty) and the algorithms performs the same opesa®the original algorithm
for Blichi automata.

Using Streett automata could also be useful to translatee$drh. properties that
look like strong fairness properties. For instance Seaaistt al. [24] give the following
LTL formula as an example of a property whose negation is haranslate to Buchi



automata (most of the tools blow up):

GFp2 — GFpo)/\

GFpy — GFpa)A
GFps — GF(ps V pa))A

GFp; — G FP?)) — GFps

(GFp0—>GFp1

GFps — GFps

( ) A (
( ) A (
(GFps — GFps3) A (
(GFp7r — GFps) A (

Spot'sLTL-to-Bichitranslator [8] produces a TGBA with 1731 statasthe nega-
tion of this formula. With a dedicated algorithm Sebastietnal. were able to produce
a 1281-state Generalized Buichi automaton. However thisdta has the form) — ¢
where is a combinaison o8 strong fairness hypotheses, ang can be expressed
as a Buchi automaton with states and no acceptance condition. The whole formula
can therefore be expressed as a transition-based Stréatiaton with two states and
8 pairs of acceptance conditio”hdhis reduction should not be a surprise since Streett
automata are exponentially more succinct than Buchi aatarf23], however this ex-
ample shows that it would be useful to have an efficient algorito translate . TL
formulee to Streett automata. Unfortunately we are not aobamy published work in
this area.
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