
Self-Loop Aggregation Product — A New Hybrid
Approach to On-the-Fly LTL Model Checking

Alexandre Duret-Lutz1, Kais Klai2, Denis Poitrenaud3, and Yann Thierry-Mieg3

1 LRDE, EPITA, Kremlin-Biĉetre, France.
2 LIPN, Universit́e Paris-Nord, Villetaneuse, France.

3 LIP6/MoVe, Universit́e Pierre & Marie Curie, Paris, France.

Abstract. We present theSelf-Loop Aggregation Product(SLAP), a new hybrid
technique that replaces the synchronized product used in the automata-theoretic
approach for LTL model checking. The proposed product is an explicit graph of
aggregates (symbolic sets of states) that can be interpreted as a Büchi automa-
ton. The criterion used by SLAP to aggregate states from the Kripke structure is
based on the analysis of self-loops that occur in the Büchi automaton express-
ing the property to verify. Our hybrid approach allows on the one hand to use
classical emptiness-check algorithms and build the graph on-the-fly, and on the
other hand, to have a compact encoding of the state space thanks to the symbolic
representation of the aggregates. Our experiments show that this technique often
outperforms other existing (hybrid or fully symbolic) approaches.

1 Introduction

Model checking for Linear-time Temporal Logic (LTL) is usually based on converting
the property into a B̈uchi automaton, composing the automaton and the model (given
as a Kripke structure), and finally checking the language emptiness of the composed
system [20]. This verification process suffers from a well known state explosion prob-
lem.Among the various techniques that have been suggested as improvement, we can
distinguish two large families: explicit and symbolic approaches.

Explicit model checking approachesexplore an explicit representation of the prod-
uct graph. A common optimization builds the graph on-the-flyas required by the empti-
ness check algorithm: the construction stops as soon as a counterexample is found [4].

Another source of optimization is to take advantage of stuttering equivalence be-
tween paths in the Kripke structure when verifying a stuttering-invariant property [8]:
this has been done either by ignoring some paths in the Kripkestructure [13], or by
representing the property using atesting automaton[12]. To our knowledge, all these
solutions require dedicated algorithms to check the emptiness of the product graph.

Symbolic model checkingtackles the state-explosion problem by representing the
product automaton symbolically, usually by means of decision diagrams (a concise way
to represent large sets or relations). Various symbolic algorithms exist to verify LTL us-
ing fix-point computations (see [9, 18] for comparisons and [14] for the clarity of the
presentation). As-is, these approaches do not mix well withstuttering-invariant reduc-
tions or on-the-fly emptiness checks.

However explicit and symbolic approaches are not exclusive, some combinations
have already been studied [2, 10, 17, 15] to get the best of both worlds. They are referred
to ashybrid approaches. Most of these approaches consist in replacing the Kripke
structure by an explicit graph where each node contains setsof states (called aggregates
throughout this paper), that is an abstraction preserving properties of the original struc-
ture. For instance in Biere et al.’s approach [2], each aggregate contains states that share
their atomic proposition values, and the successor aggregates contain direct successors
of the previous aggregate, thus preserving LTL but not branching temporal properties.
The Symbolic Observation Graph [10] takes this idea one stepfurther in the context of
stuttering invariant properties: each aggregate containssets of consecutive states that
share their atomic proposition values. In both of these approaches, an explicit product
with the formula automaton is built and checked for emptiness, allowing to stop early
(on-the-fly) if a witness trace is found.

Sebastiani et al.’s approach [17] is a bit different, as it builds one aggregate for each
state of the B̈uchi automata (usually few in number), and uses a partitioned symbolic
transition relation to check for emptiness of the product, thus resorting to a symbolic
emptiness-check (based on a symbolic SCC hull computation).

The hybrid approach we define in this paper is based on explicit graphs of aggre-
gates (symbolic sets of states) that can be interpreted as Büchi automata. With this com-
bination, we can use classical emptiness-check algorithmsand build the graph on-the-
fly, moreover the symbolic representation of aggregates gives us a compact encoding of
the state space along with efficient fixpoint algorithms.

The aggregation criterion is based on the study of the self-loops around the current
state of the B̈uchi automaton. Roughly speaking, consecutive states of the system are
aggregated when they are compatible with the labels of self-loops. We allow to stutter
according to a boolean formula computed as the disjunction of the labels of self-loops
of the automaton. This aggregation graph is called theSelf-Loop Aggregation Product
(SLAP) and preserves full B̈uchi expressible properties.

This paper is organized as follows. Section 2 introduces ournotations and presents
the basic automata-theoretic approach. Section 3 defines our new hybrid construction
SLAP. We explain how we implemented this approach and how it compares to others
in Section 4.

2 Preliminaries

2.1 Boolean Formulas

Let AP be a set of (atomic) propositions, and letB = {⊥,⊤} represent Boolean val-
ues. We denoteB(AP) the set of all Boolean formulas over AP, i.e., formulas built
inductively from the propositions AP,B, and the connectives∧, ∨, and¬.

An assignment is a functionρ : AP→ B that assigns a truth value to each proposi-
tion. We denoteBAP the set of all assignments of AP. Given a formulaf ∈B(AP) and
an assignmentρ ∈B

AP, we denoteρ(f) the evaluation off underρ.4 In particular, we

4 This can be defined straightforwardly asρ(f ∧g) = ρ(f)∧ρ(g), ρ(¬ f) = ¬ρ(f), etc.

q0 q1

ab̄

b

⊤

(a) TGBAA for aUb

s0

s1s2

s3 s4 s5

s6s7

ab̄c

ab̄c̄ab̄c

ab̄c̄ abc̄ ab̄c

ābc̄ābc

(b) Kripke structureT

q0,s0

q0,s1q0,s2

q0,s3 q0,s4 q1,s5

q1,s6 q1,s7

q1,s4

ab̄c

ab̄c̄

ab̄c

ab̄c̄ ab̄c abc̄

ab̄c

ābc̄

ābc

abc̄

(c) TGBA of productA⊗T

q0,

{s0 s1
s2 s3
s4

}

q1,{s5}q1,{
s4 s5
s6 s7}

⊤

⊤

⊤

(d) TGBA of the SLAPA⊠T

Fig. 1: Examples

will write ρ |= f iff ρ is a satisfying assignment forf , i.e.,ρ |= f ⇐⇒ ρ(f) =⊤. The
setB⋆(AP) = { f ∈B(AP) | ∃ρ ∈B

AP,ρ |= f} contains all satisfiable formulas.
We will use assignments to label the states of the model we want to verify, and the

propositional functions will be used as labels in the automaton representing the property
to check. The intuition is that a behavior of the model (a sequence of assignments) will
match the property if we can find a sequence of formulas in the automaton that are
satisfied by the sequence of assignments.

It is sometimes convenient to interpret an assignmentρ as a formula that is only
true for this assignment. For instance the assignment{a 7→ ⊤,b 7→ ⊤,c 7→ ⊥} can be
interpreted as the formulaa∧b∧¬c. So we may use an assignment where a formula is
expected, as if we were abusively assuming thatB

AP ⊂B(AP).

2.2 TGBA

A Transition-based Generalized Büchi Automaton(TGBA) is a Büchi automaton in
which generalized acceptance conditions are expressed in term of transitions that must
be visited infinitely often. The reason we use these automatais that they allow a more
compact representation of properties than traditional Büchi automata (even generalized
Büchi automata) [7] without making the emptiness check harder [5].

Definition 1 (TGBA). A Transition-based Generalized Büchi Automatais a tuple A=
〈AP,Q ,F ,δ,q0〉 where

– AP is a finite set of atomic propositions,
– Q is a finite set of states,

– F 6= /0 is a finite and non-empty set of acceptance conditions,
– δ ⊆ Q ×B

⋆(AP)× 2F × Q is a transition relation. We will commonly denote

q1
f ,ac
−−→ q2 an element(q1, f ,ac,q2) ∈ δ,

– q0 ∈ Q is the initial state.

An execution (or a run) ofA is an infinite sequence of transitionsπ=(s1, f1,ac1,d1) · · ·
(si , fi ,aci ,di) · · · ∈ δω with s1 = q0 and ∀i,di = si+1. We shall simply denote it as

π = s1
f1,ac1−−−→ s2

f2,ac2−−−→ s3 · · · . Such an execution isacceptingiff it visits each accep-
tance condition infinitely often, i.e., if∀a ∈ F , ∀i > 0, ∃ j ≥ i, a ∈ acj . We denote
Acc(A)⊆ δω the set of accepting executions ofA.

A behavior of the model is an infinite sequence of assignments: ρ1ρ2ρ3 · · · ∈ (BAP)ω,
while an execution of the automatonA is an infinite sequence of transitions labeled by
Boolean formulas. The language ofA, denotedL(A), is the set of behaviors compati-

ble with an accepting execution ofA: L(A) = {ρ1ρ2 · · · ∈ (BAP)ω | ∃s1
f1,ac1−−−→ s2

f2,ac2−−−→
·· · ∈ Acc(A) and∀i ≥ 1,ρi |= fi}

The non-emptiness constraint onF was introduced into definition 1 to avoid consid-
eringF = /0 as a separate case. If no acceptance conditions exist, one can be artificially
added to some edges, ensuring that every cycle of the TGBA bears one on at least an
edge. Simply adding this artificial acceptance condition toall edges might seriously hurt
subsequent verification performance, as some emptiness-check algorithms are sensitive
to the position of acceptance conditions.

Fig. 1a represents a TGBA for the LTL formulaaUb. The black dot on the self-

loopq1
⊤,{ }
−−−−→ q1 denotes an acceptance conditions fromF = { }. The labels on edges

(ab̄,b and⊤) represent the Boolean expressions over AP= {a,b}. There are many other
TGBA in Fig. 1, that represent product constructions of thisTGBA and the Kripke
Structure of Fig. 1b.

2.3 Kripke Structure

For the sake of generality, we useKripke Structures(KS for short) as a framework,
since the formalism is well adapted to state-based semantics.

Definition 2 (Kripke structure). A Kripke structureis a 4-tupleT = 〈AP,Γ,λ,∆,s0〉
where:

– AP is a finite set of atomic propositions,
– Γ is a finite set ofstates,
– λ : Γ →B

AP is a state labeling function,
– ∆ ⊆ Γ×Γ is a transition relation. We will commonly denote s1 −→ s2 the element

(s1,s2) ∈ ∆.
– s0 ∈ Γ is theinitial state.

Fig. 1b represents a Kripke structure over AP= {a,b,c}. The state graph of a system
is typically represented by a KS, where state labels in the KSgive the atomic proposition
truth values in a given state of the system.

We now define a synchronized product for a TGBA and a KS, such that the language
of the resulting TGBA is the intersection of the languages ofthe two automata.

Definition 3 (Synchronized product of a TGBA and a Kripke structure). LetA =
〈AP′

,Q ,F ,δ,q0〉 be a TGBA andT = 〈AP,Γ,λ,∆,s0〉 be a Kripke structure overAP⊇
AP′.

Thesynchronized productofA andT is the TGBA denoted byA⊗T = 〈AP,Q×,F ,δ×,q0
×〉

defined as:
– Q× = Q ×Γ,
– δ× ⊆ Q××B

⋆(AP)×2F ×Q× where

δ× =

{

(q1,s1)
f ,ac
−−→ (q2,s2)

∣

∣

∣

∣

∣

s1 −→ s2 ∈ ∆, λ(s1) = f and

∃g∈B
⋆(AP) s.t. q1

g,ac
−−→ q2 ∈ δ andλ(s1) |= g

}

– q0
× = (q0,s0).

Fig. 1c represents such a product of the TGBAaUb of Fig.1a and the Kripke struc-
ture of Fig. 1b. State(s0,q0) is the initial state of the product. Sinceλ(s0) = ab̄cwe have
λ(s0) |= ab̄, successors{s1,s4} of s0 in the KS will be synchronized through the edge

q0
ab̄, /0
−−→ q0 of the TGBA withq0. In state(q0,s4) the product can progress through the

q0
b, /0
−→ q1 edge of the TGBA, sinceλ(s4) = abc̄ |= b. Successors5 of s4 in the KS is thus

synchronized withq1. The TGBA stateq1 now only requires states to verify⊤ to vali-
date the acceptance condition, so any cycle in theKS from s5 will be accepted by the
product. The resulting edge of the product bears the acceptance conditions contributed
by the TGBA edge, and the atomic proposition Boolean formulalabel that comes from
the KS. The size of the product in both nodes and edges is bounded by the product of
the sizes of the TGBA and the KS.

3 Self-Loop Aggregation Product (SLAP)

This section presents a specialized synchronized product that aggregates states of the
KS as long as the TGBA state does not change, and nonewacceptance conditions are
visited.

3.1 Definition

The notion of self-loop aggregation is captured by SF(q,ac), theSelf-loop Formulas
(labeling edgesq −→ q) that are weaker in terms of visited acceptance conditions than
ac.

When synchronizing with an edge of the property TGBA bearingac leading toq,
successive states of the Kripke will be aggregated as long asthey model SF(q,ac). More
formally, for a TGBA stateq and a set of accepting conditionac⊆ F , let us define

SF(q,ac) =
∨

q
f ,ac′
−−−→q∈δ s.t.ac′⊆ac

f

Moreover, fora ⊆ Γ and f ∈ B(AP), we define FSucc(a, f) = {s′ ∈ Γ | ∃s∈ a, s→
s′ ∈ ∆∧λ(s) |= f}. That is, firstFilter a to only keep states satisfyingf , then produce
their Successors. We denote by FReach(a, f) the least subset ofΓ satisfying botha⊆
FReach(a, f) and FSucc(FReach(a, f), f)⊆ FReach(a, f).

Definition 4 (SLAP of a TGBA and a KS).Given a TGBAA = 〈AP′
,Q ,F ,δ,q0〉 and

a Kripke structureT = 〈AP,Γ,λ,∆,s0〉 over AP ⊇ AP′ , the Self-Loop Aggregation
ProductofA andT is the TGBA denotedA⊠T = 〈 /0,Q

⊠
,F ,δ

⊠
,q0

⊠
〉 where:

– Q
⊠
= Q × (2Γ \{ /0})

– δ
⊠
=











(q1,a1)
⊤,ac
−−→ (q2,a2)

∣

∣

∣

∣

∣

∣

∣

∃ f ∈B(AP′) s.t. q1
f ,ac
−−→ q2 ∈ δ,

q1 = q2 ⇒ ac 6= /0, and

a2 = FReach(FSucc(a1, f),SF(q2,ac))











– q0
⊠
= (q0,FReach({s0},SF(q0, /0)))

Note that because of the way the product is built, it is not obvious what Boolean
formula should label the edges of the SLAP product. Since in fact this label is irrelevant
when checking language emptiness, we label all arcs of the SLAP with ⊤ and simply

denote(q1,a1)
ac
−→ (q2,a2) any transition(q1,a1)

⊤,ac
−−→ (q2,a2).

Q × 2Γ might seem very large but, as we will see in section 4.2 in practice the
reachable states of the SLAP is a much smaller set than that ofthe productQ × Γ.
Furthermore the FReach operation can be efficiently implemented as a symbolic least
fix point.

Fig. 1d represents the SLAP built from our example KS, and theTGBA of aUb. The
initial state of the SLAP iteratively aggregates successors of states verifying SF(q0, /0) =
ab̄. Then following the edgeq0 b, /0

−→ q1, states are aggregated with condition SF(q1, /0) =
⊥. Henceq1 is synchronized with successors of states in{s0,s1,s2,s3,s4} satisfyingb
(i.e., successors of{s4}). Because SF(q1, /0) =⊥ the successors of{s5} are not gathered

when building(q1,{s5}). Finally, when synchronizing with edgeq1
⊤,
−−→ q1, we have

SF(q1,{ }) =⊤, hence all states of the cycle{s4,s5,s6,s7} are added.

3.2 Proof of correctness

Our ultimate goal is to establish that, given a KS and a TGBA, the emptiness of the
language of the corresponding SLAP is equivalent to the emptiness of the language of
the original synchronized product (see Theorem 1). This result is progressively demon-
strated in the following. We proceed by construction, i.e.,if there exists an accepting
run of the SLAP then we build an accepting run of the original product and vice versa.
In order to ease the proof, we introduce some intermediate lemmas.

Lemma 1. LetA andT be defined as in Definition 4. Let(q1,a1)
ac
−→ (q2,a2) ∈ δ⊠ be

a transition of the SLAPA⊠T . For any state s2 ∈ a2 there exists at least one (possibly

indirect) ancestor s1 ∈ a1 such that(q1,s1)
ac
−→ (q2, t1)

α1−→ (q2, t2)
α2−→ ·· ·(q2, tn)

αn−→
(q2,s2) is a sequence of the synchronized productA⊗T with∀i, ti ∈ a2, and∀i, αi ⊆ ac.

For example consider transition(q1,a1)
ac
−→ (q2,a2) on Fig. 2, and some state ina2, say

s2. Thens1 ∈ a1 is an indirect ancestor ofs2 s.t.(q1,s1)
ac
−→ (q2,x2)

α2−→ (q2,s2).

Proof. Let us define the set of input states of the aggregatea2 as In(a2) = {s′ ∈ a2 |

∃s∈ a1,s−→ s′ ∈ ∆}. This set cannot be empty since(q1,a1)
ac
−→ (q2,a2).

ac1 ac2 ac3

q1 q2 q3

x1

s1

x2 x3

x4 s2

x5

x6

s3

a1 a2 a3

ac1α1 ac2 ac3α2 α3

α4

Fig. 2: A prefix(q1,a1)
ac1−−→ (q2,a2)

ac2−−→ (q2,a2) of a run of some SLAPA⊠T (with
differentA andT from Fig. 1) is shown using big ellipses and bended arrows. The
straight lines also shows the underlying connections between the states{q1,q2,q3, . . .}
of the automatonA and between the states{s1,s2, . . . ,x1,x2 . . .} of the Kripke structure
T that have been aggregated asa1,a2,a3 . . . The acceptance conditions have been de-
picted asaci or αi and the labels of the transitions have been omitted for clarity. The
dotted ellipses show the set of input states (In(a1), In(a2), In(a3)) as used in the proof
of Lemma 1.

Consider a states2 ∈ a2. By construction ofa2, s2 is reachable from some state in
t1 ∈ In(a2), so there exists a patht1 −→ t2 −→ ·· · −→ s2 in the Kripke structure.

By definition ofδ⊠, if t1, t2, . . . ,s2 belong toa2, the transitions between these states
of T have been synchronized with self-loopsq2

αi−→ q2 of A with αi ⊆ ac. Therefore the

sequence(q2, t1)
α1−→ (q2, t2)

α2−→·· ·(q2, tn)
αn−→ (q2,s2) is a sequence of the synchronized

productA⊗T .
Moreover, sincet1 ∈ In(a2), there exists a states1 in a1 such that(q1,s1)

ac
−→ (q2, t1).

Consequently, the path(q1,s1)
ac
−→ (q2, t1)

α1−→ (q2, t2)
α2−→ ·· ·(q2, tn)

αn−→ (q2,s2) sat-
isfies the lemma.

Lemma 2. If there existsσ ∈ Acc(A ⊠T) an infinite run accepted by the SLAP, then
there exists an accepting runπ ∈ Acc(A⊗T) in the classical product.

Proof. Let us denoteσ = (q1,a1)
ac1−−→ (q2,a2)

ac2−−→ (q3,a3)
ac3−−→ ·· · an accepting run of

A ⊠ T . Let us build an infinite tree in which all nodes (except the root) are states of
A⊗T . Let us call⊤ the root, at depth 0. The set of nodes at depthn> 0 is exactly the
finite set of pairs{(qn,s) | s∈ an} ⊆ Q ×Γ.

The parent of any node at level 1 is⊤. For anyi > 0, the parent of a node(qi+1,s′)
with s′ ∈ ai+1 is the node(qi ,s) for is any states∈ ai such that(qi ,s) is a (possibly
indirect) ancestor of(qi+1,s′) such that we observeaci on the path between these two
states. We know such a state(qi ,s) exists because of Lemma 1. As a consequence of
this parenting relation, every edge in this tree, except those leaving the root, correspond
to a path between two states ofA⊗T .

Because the set of nodes at depthn> 0 is finite, this infinite tree has finite branching.
By König’s Lemma it therefore contains an infinite branch. By following this branch
and ignoring the first edge, we can construct a path ofA ⊗T that starts in(q1,s1) for
somes1 ∈ a1, and that visits at least all the acceptance conditionsaci of σ in the same

order (and maybe more). To prove that this accepting path we have constructed actually
occurs in a run ofA ⊗T , it remains to show that(q1,s1) is a state that is accessible
from the initial state ofA⊗T .

Obviouslyq1 = q0 because(q1,a1) = q0
⊠

is the initial state ofA⊠T . Furthermore
we haves1 ∈ a1, so by definition ofq0

⊠
, (q0,s1) must be reachable from (or equal to)

(q0,s0) in A⊗T .

Lemma 3. For a given n and a finite pathπn = (q0,s0)
f0,ac0−−−→ (q1,s1) · · ·

fn−1,acn−1
−−−−−−→

(qn,sn) of A ⊗ T , there exists a finite pathσn = (q′0,a0)
acϕ(0)
−−−→ (q′1,a1) · · ·

acϕ(m−1)
−−−−−→

(q′m,am) ofA⊠T , with m≤ n, qn = q′m, sn ∈ am andϕn : {0, . . . ,m−1}→{0, . . . ,n−1}
is a strictly increasing function such that∀ j (∃i,ϕn(i) = j ⇐⇒ aci 6= /0).

Proof. Let us prove this lemma by induction onn. It is true if n = 0: Given π0 =
(q0,s0), the pathσ0 = (q′0,a0) = q0

⊠
= (q0,FReach({s0},{λ(s0)}∩λ(q0, /0)) satisfies

the conditions (withϕ being a null function).
Let us now demonstrate that the lemma is true forn+ 1 assuming it is true for

n. Given a pathπn+1 = πn
fn,acn
−−−→ (qn+1,sn+1), we know by hypothesis that we have

a matchingσn for πn. Let us consider how to extendσn into σn+1 to handle the new

transition(qn,sn)
fn,acn
−−−→ (qn+1,sn+1) of πn+1.

There are two cases to consider:
1. If qn = qn+1 andaccn = /0 andλ(sn+1) |= SF(qn,ac), then by definition of FSucc

and SF the last state ofσn, (q′m,am) is such thatsn+1 ∈ am andq′m = qn = qn+1. In
that caseσn+1 = σn, andϕn+1 = ϕn.

2. If qn 6= qn+1 or accn 6= /0 or λ(sn+1) 6|=SF(qn,ac), then becauseλ(sn) |= fn andsn −→

sn+1, by definition ofδ⊠ there exists(q′m,am)
accn−−→ (q′m+1,am+1) such thatsn+1 ∈

am+1 andq′m+1 = qn+1. In this case, we can defineσn+1 = σn
accn−−→ (q′m+1,am+1)

with ∀i < n, ϕn+1(i) = ϕn(i) andϕn+1(n) = n.
So by induction this lemma is true for alln∈N.

Lemma 4. If there exists an infinite pathπ ∈ Acc(A ⊗T) accepting inA ⊗T . Then
there exists an accepting path inA⊠T as well.

Proof. A ⊗T has a finite number of states, so if Acc(A ⊗T) 6= /0 then it contains at
least one infinite pathπ∈Acc(A⊗T) that can be represented as a finite prefix followed
by a finite cycle that is repeated infinitely often.

Lemma 3 tells us that any prefixπn of π corresponds to some prefixσn of a path
in A ⊠T in which the acceptance conditions ofπn occur in the same order. We have
|σn| ≤ |πn| = n but becauseπ will visit all acceptance conditions infinitely often, and
these transitions will all appear inσn (only transition without acceptance conditions
can be omitted fromδ⊠), we can find some value ofn for which |σn| is arbitrary large.
Because|σn| can be made larger than the size of the SLAP, at some point thisfinite
sequence will have to loop in a way that visits the acceptanceconditions exactly in the
same order as they appear in the cycle part ofπ. By repeating this cycle part ofσn we
can therefore construct an infinite pathσ that is accepted byA⊠T .

Theorem 1. LetA be a TGBA, andT be a Kripke structure. We have

Acc(A⊗T) 6= /0 ⇐⇒ Acc(A⊠T) 6= /0

In other words, the SLAP ofA and T accepts a run if and only if the synchronized
product of these two structures accepts a run.

Proof. ⇐= follows from Lemma 2;=⇒ follows from Lemma 4.

3.3 Mixing SLAP and Fully Symbolic Approaches

This section informally presents a variation on the SLAP algorithm, to use a fully sym-
bolic algorithm in cases where the automaton state will no longer evolve.

The principle is the following: when the product has reacheda state where the
TGBA state is terminal (i.e., it has itself as only successor), we proceed to use a fully
symbolic search for an accepted path in the states of the current aggregate. This variant
is called SLAP-FST, standing for Fully Symbolic search in Terminal states. Note that
we suppose here that such a terminal state allows accepting runs, otherwise semantic
simplifications would have removed the state from the TGBA.

In this variant, ifq1 is a terminal state, i.e.,∄q1
f ,ac
−−→ q2 ∈ δ, with q1 6= q2, a state

(q1,a1) of the product has itself as sole successor through an arc labeled (⊤,F) if
and only ifa1 admits a solution computed using a fully symbolic algorithm, or has no
successors otherwise.

The fully symbolic search uses the self-loop arcs on the formula TGBA state to
compute the appropriate transition relation(s), and takesinto account possibly multiple
acceptance conditions.

The rationale is that discovering this behavior when the aggregate is large, and par-
ticularly if there are long prefixes before reaching the SCC that bears all acceptance
conditions, tends to create large SLAP structures in explicit size. The counterpart is that
when no such solution exists, the fully symbolic SCC hull search may be quite costly.

In practice this variation on the SLAP was proposed after manually examining cases
where SLAP performance was disappointing. As discussed in the performance section,
this variation is on average more effective than the basic SLAP algorithm.

4 Experimentations

4.1 Implementation

We have implemented several hybrid or fully symbolic algorithms within our frame-
work to allow fair algorithmic comparisons. The software, available fromddd.lip6.
fr, builds upon two existing components: Spot and SDD/ITS.

Spot (http://spot.lip6.fr) is a model checking library [7]: it provides bricks to
build your own model checker based on the automata-theoretic approach using TGBAs.
It has been evaluated as ”the best explicit LTL model-checker” [16]. Spot provides
translation algorithms from LTL to TGBA, an implementationof a product between
a Kripke structure and a TGBA (def. 3), and various emptiness-check algorithms to

decide if the language of a TGBA is empty (among other things). The library uses
abstract interfaces, so any object that can be wrapped to conform to the Kripke or TGBA
interfaces can interoperate with the algorithms supplied by Spot.

SDD/ITS (http://ddd.lip6.fr) is a library representing Instantiable Transition
Systems efficiently using Hierarchical Set Decision Diagrams [19]. ITS are essentially
an abstract interface for (a variant of) labeled transitionsystems, and several input for-
malisms are supported (discrete time Petri nets, automata,and compositions thereof).
SDD are a particular type of decision diagram that a) allow hierarchy in the state encod-
ing, yielding smaller representations, b) support rewriting rules that allow the library to
automatically [11] apply the symbolic saturation algorithm [3]. These features allow
the SDD/ITS package to offer very competitive performance.

The fully symbolic OWCTY (One-Way Catch Them Young) and EL (Emerson-Lei)
algorithms [9, 18] were implemented directly on top of the ITS interface; they use an
ITS representing the TGBA derived from the LTL formula by Spot composed (at the
ITS formalism level) with the ITS representing the system. The resulting ITS is then
analyzed using OWCTY or EL with the forward transition relation.

The SOG [10] (Symbolic Observation Graph) and BCZ [2] (Biere-Clarke-Zhu) are
implemented as objects conforming to Spot’s Kripke interface. They load an ITS model,
then build the SOG or BCZ on the fly, as required by the emptiness check of the product
with the formula automaton.

The SLAP is implemented as an object conforming to Spot’s product interface.
The SLAP class takes an ITS model and a TGBA (the formula automaton) as input
parameters, and builds its specialized product on the fly, driven by the emptiness-check
algorithm.

4.2 Benchmark

We use here classic scalable Petri net examples taken from Ciardo’s benchmark set [3]:
slotted ring, Kanban, flexible manufacturing system, and dining philosophers. The model
occurences we used had from a few million to 1066 reachable states. More details are
available in our technical report [6].

The formulas considered include a selection of random LTL formulas, which were
filtered to have a (basic TGBA/Kripke) product size of at least 1000 states. We also
chose to have as many verified formulas (empty products) as violated formulas (non-
empty products) to avoid favoring on-the-fly algorithms toomuch. To produce TGBA
with several acceptance conditions, this benchmark includes 200 formulas for each
model built from fairness assumptions of the form:(GF p1∧GF p2 . . .) =⇒ ϕ.

We also used 100 random formulas that use the next operator, and hence are not
stuttering invariant (these were not used for SOG that does not support them).

We killed any process that exceeded 120 seconds of runtime, and set the garbage
collection threshold at 1.3GB. Cases where all considered methods performed under
0.1s were filtered out from the results presented here: thesetrivial cases represent only
4.2% of the entire benchmark, and were too fast to allow any pertinent comparison.

Table 1 gives a synthetic overview of the results presented hereafter. SLAP or
SLAP-FST are the fastest methods in over half of all cases, and they are rarely the
slowest. Furthermore, they have the least failure rate. This table also shows that BCZ

OWCTY EL BCZ SOG SLAP SLAP-FST
empty Fast 118 (3%) 189 (5%) 53 (1%) 595 (18%) 1359 (42%) 1811 (56%)

(3227 cases) Slow 259 (8%) 271 (8%) 2909 (90%) 509 (15%) 245 (7%) 93 (2%)
Fail 220 (6%) 252 (7%) 1785 (55%) 301 (9%) 212 (6%) 86 (2%)

non empty Fast 3 (0%) 10 (0%) 209 (5%) 782 (19%) 2510 (62%) 1406 (34%)
(4046 cases) Slow 1869 (46%) 1390 (34%) 1940 (47%) 315 (7%) 70 (1%) 40 (0%)

Fail 803 (19%) 817 (20%) 1069 (26%) 262 (6%) 69 (1%) 33 (0%)
Table 1: On all experiments (grouped with respect to the existence of a counterexample),
we count the number of cases a specific method has (Fast) the best time or (Slow) it has
either run out of time or it has the worst time amongst successful methods. The Fail line
shows how much of the Lost cases were timeouts. The sum of a line may exceed 100%
if several methods are equally placed.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0 20 40 60 80 100 120

SLAP
SLAP-FST

SOG
BCZ

EL
OWCTY

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 20 40 60 80 100 120

SLAP
SLAP-FST

SOG
BCZ

EL
OWCTY

Fig. 3: Cumulative plots comparing the time of all methods. Non-empty products are
shown on the left, and empty products on the right.

has the highest failure rate and that the fully symbolic algorithms (OWCTY, EL) have
trouble with non-empty products.

Table 1 presents only the best and the worst methods. While Fig. 3 allows to com-
pare the different methods in a finer manner.

For each experiment (model/formula pair) we first collect the maximum time reached
by a technique that did not fail, then compute for the other approaches what percent-
age of this maximum was used. The vertical segments visible at 100% thus show the
number of runs for which this technique was the worst of thosethat did not fail. Any
failures are plotted arbitrarily at 120%. This gives us a setof values between 0% and
120% for which we plot the cumulative distribution function. For instance, if a curve
goes through the (20%,2000) point, it means that for this technique, 2000 experiments
took at most 20% of the time taken by the worst technique for the same experiments.

The behavior at 120% represents the “Fail” line of previous table, while the behavior
at 100% represents the difference between the “Slow” and “Fail” lines (“Slow” methods
include methods that failed).

The left plot for the non-empty cases shows that the on-the-fly mechanism allows
all hybrid algorithms (SLAP, SLAP-FST, SOG, BCZ) to outperform the symbolic ones

 0.01

 0.1

 1

 10

 100

 1000

 0.01 0.1 1 10 100 1000

S
LA

P

SLAP-FST

empty
non-empty

unknown

 1

 10

 100

 1000

 10000

 100000

 1 10 100 1000 10000 100000

S
LA

P

SLAP-FST

empty
non-empty

unknown

Fig. 4: Comparison of SLAP-FST against SLAP. Left: time; Right: product size.

(OWCTY, EL). However as seen previously, BCZ still fails moreoften than other meth-
ods. The SLAP and SLAP-FST method take less than 10% of the time of the slowest
method in 80% of the cases.

The right plot for the empty cases shows that fully symbolic algorithm behave rela-
tively far better (all methods have to explore the full product anyway). BCZ spends too
much time exploring enormous products, and timeouts.

SLAP-FST and SLAP have similar performance, with a slight edge for SLAP-FST
when the product is empty.

EL appears slightly superior to OWCTY in the non-empty case, while they have
similar performances in the empty case.

SOG shows good results when there is a counterexample, and itperforms better
than BCZ in most cases. However SOG only supports stuttering-invariant properties.

To study the differences between SLAP and SLAP-FST considerthe scatter plots
from Fig. 4. The performances are presented using a logarithmic scale. Each point rep-
resents an experiment, i.e., a model and formula pair. We plot experiments that failed
(due to timeout) as if they had taken 360 seconds, so they are clearly separated from
experiments that didn’t fail (by the wide white band).

SLAP is on the average faster (and consume less memory [6]) than SLAP-FST,
but fails more often. Indeed the explicit product size of SLAP-FST is always smaller
than that of SLAP, and often by several orders of magnitude. In some cases the SLAP
degenerates to a state-space proportional to size of the explicit product while the SLAP-
FST is able to keep the symbolic advantage.

In Fig. 5 we compare SLAP-FST to the four other methods from the literature, using
the same kind of logarithmic scatter plots in time. Unsurprisingly, the only method
that appears competitive is SOG; but to our advantage, SOG isnot able to handle non
stuttering-invariant properties.

 0.01

 0.1

 1

 10

 100

 1000

 0.01 0.1 1 10 100 1000

B
C

Z

SLAP-FST

empty
non-empty

unknown

 0.01

 0.1

 1

 10

 100

 1000

 0.01 0.1 1 10 100 1000

E
L

SLAP-FST

empty
non-empty

unknown

 0.01

 0.1

 1

 10

 100

 1000

 0.01 0.1 1 10 100 1000

O
W

C
T

Y

SLAP-FST

empty
non-empty

unknown

 0.01

 0.1

 1

 10

 100

 1000

 0.01 0.1 1 10 100 1000

S
O

G

SLAP-FST

empty
non-empty

unknown

Fig. 5: Comparison of SLAP-FST against the four other methods.

5 Conclusion and Perspectives

We have presented a new hybrid technique, theSelf-Loop Aggregation Product, that
exploits the self-loops of the property automaton even if itdoes not express a stuttering
formula.

During our evaluation, we have found that SLAP (and especially its variant SLAP-
FST) significantly outperforms the other hybrid and symbolic methods we implemented.
In presence of a counterexample we can benefit from the on-the-fly mechanism, while
purely symbolic methods like EL and OWCTY cannot. On empty products, the SLAP-
FST has a small explicit size, allowing to outperform other hybrid algorithms.

This work opens several perspectives.
It would be interesting to compare our approach to the property-driven partition-

ing [17] even if this hybrid algorithm uses a fully symbolic emptiness check and is not
based on an aggregation criterion.

Another class of methods we would like to compare against, are purely explicit
ones, in particular those based on partial order reductions.

The SLAP technique replaces the product used in the traditional automata-theoretic
approach to model-checking in order to reduce the product graph while preserving the
result of the emptiness-check.

We also used this idea to improve the SOG, by working at the product-level and
reducing the set of observed propositions according to the current state of the TGBA.
This technique called Symbolic Observation Product (SOP) is described in our technical
report [6].

Another idea would be to take advantage of the inclusion between the aggregates
to detect cycles earlier. This would require a dedicated emptiness check such as those
proposed by Baarir and Duret-Lutz [1].

Finally, since the SOG is a Kripke structure, and the SLAP is built upon a KS, it is
possible to construct the SLAP of SOG. This is something we did not implement due
to technical issues: in this case the aggregates are sets of sets of states.

References

1. S. Baarir and A. Duret-Lutz. Emptiness check of powerset Büchi automata. InProc. of
ACSD’07, pp. 41–50. IEEE Computer Society.

2. A. Biere, E. M. Clarke, and Y. Zhu. Multiple state and single state tableauxfor combining
local and global model checking. InProc. of CSD’99, volume 1710 ofLNCS, pp. 163–179.
Springer.

3. G. Ciardo, R. Marmorstein, and R. Siminiceanu. Saturation unbound.In Proc. of TACAS’03,
volume 2619 ofLNCS, pp. 379–393. Springer.

4. C. Courcoubetis, M. Y. Vardi, P. Wolper, and M. Yannakakis. Memory-efficient algorithm
for the verification of temporal properties. InProc. of CAV’90, volume 531 ofLNCS, pp.
233–242. Springer.

5. J.-M. Couvreur, A. Duret-Lutz, and D. Poitrenaud. On-the-fly emptiness checks for general-
ized Büchi automata. InProc. of SPIN’05, volume 3639 ofLNCS, pp. 143–158. Springer.

6. A. Duret-Lutz, K. Klai, D. Poitrenaud, and Y. Thierry-Mieg. Combining explicit and sym-
bolic approaches for better on-the-fly LTL model checking. Technical Report 1106.5700,
arXiv, June 2011. Extended version of the present paper, presenting two new techniques
instead of one.http://arxiv.org/abs/1106.5700.

7. A. Duret-Lutz and D. Poitrenaud. Spot: an extensible model checkinglibrary using
transition-based generalized Büchi automata. InProc. of MASCOTS’04, pp. 76–83. IEEE
Computer Society Press.

8. K. Etessami. Stutter-invariant languages,ω-automata, and temporal logic. InProc. of
CAV’99, volume 1633 ofLNCS, pp. 236–248. Springer.

9. K. Fisler, R. Fraer, G. Kamhi, M. Y. Vardi, and Z. Yang. Is there a best symbolic cycle-
detection algorithm? InProc. of TACAS’01, volume 2031 ofLNCS, pp. 420–434. Springer.

10. S. Haddad, J.-M. Ilié, and K. Klai. Design and evaluation of a symbolic and abstraction-
based model checker. InProc. of ATVA’04, volume 3299 ofLNCS, pp. 198–210. Springer.

11. A. Hamez, Y. Thierry-Mieg, and F. Kordon. Hierarchical set decision diagrams and auto-
matic saturation. InProc. of ICATPN’08, volume 5062 ofLNCS, pp. 211–230. Springer.

12. H. Hansen, W. Penczek, and A. Valmari. Stuttering-insensitive automata for on-the-fly de-
tection of livelock properties. InProc. of FMICS’02, volume 66(2) ofElectronic Notes in
Theoretical Computer Science. Elsevier.

13. R. Kaivola and A. Valmari. The weakest compositional semantic equivalence preserving
nexttime-less linear temporal logic. InProc. of CONCUR’92, volume 630 ofLNCS, pp.
207–221. Springer.

14. Y. Kesten, A. Pnueli, and L. on Raviv. Algorithmic verification of linear temporal logic
specifications. InProc. of ICALP’98, volume 1443 ofLNCS, pp. 1–16. Springer.

15. K. Klai and D. Poitrenaud. MC-SOG: An LTL model checker basedon symbolic observation
graphs. InProc. of Petri Nets’08, volume 5062 ofLNCS, pp. 288–306. Springer.

16. K. Y. Rozier and M. Y. Vardi. LTL satisfiability checking. InProc. of SPIN’07, volume 4595
of LNCS, pp. 149–167. Springer.

17. R. Sebastiani, S. Tonetta, and M. Y. Vardi. Symbolic systems, explicitproperties: on hybrid
approches for LTL symbolic model checking. InProc. of CAV’05, volume 3576 ofLNCS,
pp. 350–363. Springer.

18. F. Somenzi, K. Ravi, and R. Bloem. Analysis of symbolic SCC hull algorithms. InProc. of
FMCAD’02, volume 2517 ofLNCS, pp. 88–105. Springer.

19. Y. Thierry-Mieg, D. Poitrenaud, A. Hamez, and F. Kordon. Hierarchical set decision dia-
grams and regular models. InProc. of TACAS’09, volume 5505 ofLNCS, pp. 1–15. Springer.

20. M. Y. Vardi. An automata-theoretic approach to linear temporal logic.In Proc. of Banff ’94,
volume 1043 ofLNCS, pp. 238–266. Springer.

