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Abstract. We present th&elf-Loop Aggregation Produ¢ELAP), a new hybrid
technique that replaces the synchronized product used in the auttreatatic
approach for LTL model checking. The proposed product is aficixgraph of
aggregates (symbolic sets of states) that can be interpreted iashad&itoma-
ton. The criterion used by SLAP to aggregate states from the Kripke stelistu
based on the analysis of self-loops that occur in tiietB automaton express-
ing the property to verify. Our hybrid approach allows on the one handéo u
classical emptiness-check algorithms and build the graph on-the-flyorathe
other hand, to have a compact encoding of the state space thanks toti@isy
representation of the aggregates. Our experiments show that this teelufign
outperforms other existing (hybrid or fully symbolic) approaches.

1 Introduction

Model checking for Linear-time Temporal Logic (LTL) is udlysbased on converting
the property into a Bchi automaton, composing the automaton and the modeln(give
as a Kripke structure), and finally checking the languagetierags of the composed
system [20]. This verification process suffers from a welhkn state explosion prob-
lem.Among the various techniques that have been suggestetpbaovement, we can
distinguish two large families: explicit and symbolic apaches.

Explicit model checking approachesxplore an explicit representation of the prod-
uct graph. A common optimization builds the graph on-theaflyequired by the empti-
ness check algorithm: the construction stops as soon aswetexample is found [4].

Another source of optimization is to take advantage of stingy equivalence be-
tween paths in the Kripke structure when verifying a stittginvariant property [8]:
this has been done either by ignoring some paths in the Kipkesture [13], or by
representing the property usingesting automatoffil2]. To our knowledge, all these
solutions require dedicated algorithms to check the erapsiof the product graph.

Symbolic model checkingtackles the state-explosion problem by representing the
product automaton symbolically, usually by means of denisiagrams (a concise way
to represent large sets or relations). Various symbolioréttyms exist to verify LTL us-
ing fix-point computations (see [9, 18] for comparisons ah4] for the clarity of the
presentation). As-is, these approaches do not mix well stiittering-invariant reduc-
tions or on-the-fly emptiness checks.



However explicit and symbolic approaches are not excluswene combinations
have already been studied [2, 10, 17, 15] to get the best bfbotids. They are referred
to ashybrid approaches Most of these approaches consist in replacing the Kripke
structure by an explicit graph where each node contain®$states (called aggregates
throughout this paper), that is an abstraction preserviogegrties of the original struc-
ture. For instance in Biere et al.'s approach [2], each agieecontains states that share
their atomic proposition values, and the successor agggegantain direct successors
of the previous aggregate, thus preserving LTL but not breugctemporal properties.
The Symbolic Observation Graph [10] takes this idea onefsteiper in the context of
stuttering invariant properties: each aggregate conteis of consecutive states that
share their atomic proposition values. In both of these @ggres, an explicit product
with the formula automaton is built and checked for empsna#iowing to stop early
(on-the-fly) if a witness trace is found.

Sebastiani et al.'s approach [17] is a bit different, as ildsuwne aggregate for each
state of the Bchi automata (usually few in number), and uses a partiti@yenbolic
transition relation to check for emptiness of the produmtistresorting to a symbolic
emptiness-check (based on a symbolic SCC hull computation)

The hybrid approach we define in this paper is based on eigliaphs of aggre-
gates (symbolic sets of states) that can be interpretedets Butomata. With this com-
bination, we can use classical emptiness-check algoriimdsbuild the graph on-the-
fly, moreover the symbolic representation of aggregatessgig a compact encoding of
the state space along with efficient fixpoint algorithms.

The aggregation criterion is based on the study of the selfid around the current
state of the Bchi automaton. Roughly speaking, consecutive stateseofybtem are
aggregated when they are compatible with the labels oflseffs. We allow to stutter
according to a boolean formula computed as the disjunctidheolabels of self-loops
of the automaton. This aggregation graph is called3bk-Loop Aggregation Product
(SLAP) and preserves fulli®hi expressible properties.

This paper is organized as follows. Section 2 introducesotations and presents
the basic automata-theoretic approach. Section 3 defirresesuhybrid construction
SLAP. We explain how we implemented this approach and howritgares to others
in Section 4.

2 Preliminaries

2.1 Boolean Formulas

Let AP be a set of (atomic) propositions, andIet= { L, T} represent Boolean val-
ues. We denot®(AP) the set of all Boolean formulas over AP, i.e., formulas built
inductively from the propositions AHB, and the connectives, Vv, and—.

An assignment is a functiom: AP — BB that assigns a truth value to each proposi-
tion. We denotdB”P the set of all assignments of AP. Given a forméila B(AP) and
an assignmerq € BAP, we denotep(f) the evaluation of underp.* In particular, we

4 This can be defined straightforwardly @&f A g) = p(f) Ap(g), p(—f) = —p(f), etc.
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will write p = f iff pis a satisfying assignment fdr i.e.,p|=f < p(f)=T. The
setB*(AP) = {f ¢ B(AP) | 3p € BA® p |= f} contains all satisfiable formulas.

We will use assignments to label the states of the model weé twarerify, and the
propositional functions will be used as labels in the autmmaepresenting the property
to check. The intuition is that a behavior of the model (a sege of assignments) will
match the property if we can find a sequence of formulas in thenaaton that are
satisfied by the sequence of assignments.

It is sometimes convenient to interpret an assignnpeas a formula that is only
true for this assignment. For instance the assignniert T,b— T,c+— L} can be
interpreted as the formulaA b A —c. So we may use an assignment where a formula is
expected, as if we were abusively assuming Bt c B(AP).

2.2 TGBA

A Transition-based GeneralizediiBhi Automaton(TGBA) is a Blichi automaton in
which generalized acceptance conditions are expressedindf transitions that must
be visited infinitely often. The reason we use these autoisdteat they allow a more
compact representation of properties than traditioriedr8 automata (even generalized
Bichi automata) [7] without making the emptiness check hdfle

Definition 1 (TGBA). A Transition-based Generalizedi&hi Automatas a tuple A=
<AP7 Qa -.7:; 67 q0> Where

— AP s a finite set of atomic propositions,

— Q is afinite set of states,



— ¥ #0is afinite and non-empty set of acceptance conditions,
-3 C QxB*(AP) x 27 x Q is a transition relation. We will commonly denote

f,ac
g1 — 02 an elementqy, f,ac,qz) €9,
- ¥ € Q is the initial state.

An execution (or arun) chis an infinite sequence of transitionis= (s;, f1,ac;,dp) - -
(s, fi,aq,d) - € 8 with 5 = q® andVi,di = s,1. We shall simply denote it as

f f,, L T
M= =% g 222 ... Such an execution iacceptingiff it visits each accep-

tance condition infinitely often, i.e., fa e #,vi > 0,3j > i,a € acj. We denote
Acc(A) C 8 the set of accepting executionsAf

A behavior of the model is an infinite sequence of assignmpntsps - - - € (BAP)®,
while an execution of the automat@nis an infinite sequence of transitions labeled by

Boolean formulas. The language A&f denotedZ(A), is the set of behaviors compati-
f1,acp S fr,ac

ble with an accepting execution &f £L(A) = {p1pz--- € (BAP)®| 3s;
--- € Acc(A) andvi > 1,p; = fi}

The non-emptiness constraint @nwas introduced into definition 1 to avoid consid-
ering ¥ = 0 as a separate case. If no acceptance conditions exist, oie eatificially
added to some edges, ensuring that every cycle of the TGB# loe@ on at least an
edge. Simply adding this artificial acceptance conditioaltedges might seriously hurt
subsequent verification performance, as some emptiness-eligorithms are sensitive
to the position of acceptance conditions.

Fig. 1a represents a TGBA for the LTL formutaub. The black dot on the self-

loop gy l.—}» g: denotes an acceptance conditions frgra- {®}. The labels on edges
(ab,bandT) represent the Boolean expressions oveFARy, b}. There are many other
TGBA in Fig. 1, that represent product constructions of thiGBA and the Kripke
Structure of Fig. 1b.

2.3 Kripke Structure

For the sake of generality, we ug&ipke StructureqKS for short) as a framework,
since the formalism is well adapted to state-based sensantic

Definition 2 (Kripke structure). A Kripke structurds a4-tuple’T = (AP,I",A,A )
where:

— AP s afinite set of atomic propositions,

— I is afinite set ofstates

— A :T — BAP s a state labeling function,

— ACT xT is atransition relationWe will commonly denotg s+ s, the element

(s1,%) €A
— 5 €I is theinitial state

Fig. 1b represents a Kripke structure overARa, b, c}. The state graph of a system
is typically represented by a KS, where state labels in thgik&the atomic proposition
truth values in a given state of the system.

We now define a synchronized product for a TGBA and a KS, suattifie language
of the resulting TGBA is the intersection of the languagetheftwo automata.



Definition 3 (Synchronized product of a TGBA and a Kripke structure). Let 4 =
(AP, Q, F,58,d°) be a TGBA andl” = (AP,I",\, A, ) be a Kripke structure ovekP D
AP,
Thesynchronized producif 4 and7 is the TGBA denoted §® 7 = (AP, Q,,, ¥ ,5,.,4%)
defined as:
- Q =QxT,
— 8, C Q« x B*(AP) x 27 x Q. where

1= N ANs) = fand
Jdge B*(AP) s.t. q 9 4 ed andA(s1) =9

O = {(ql,sl) fa (B2,%2)

- @) = (¢, %0).
Fig. 1c represents such a product of the TG8Ab of Fig.1a and the Kripke struc-

ture of Fig. 1b. Statésy, qp) is the initial state of the product. Singésy) = abcwe have
A(so0) = ab, successorgs:,sa} of 55 in the KS will be synchronized through the edge

o ﬂ) qo of the TGBA withqp. In state(gp, s4) the product can progress through the

do bi)> g1 edge of the TGBA, sinck(s4) = abc = b. Successass of 54 in the KS is thus
synchronized withg,. The TGBA statay; now only requires states to verify to vali-
date the acceptance conditienso any cycle in th&Sfrom s; will be accepted by the
product. The resulting edge of the product bears the aaeeptzonditions contributed
by the TGBA edge, and the atomic proposition Boolean fornaldel that comes from
the KS. The size of the product in both nodes and edges is leoluoylthe product of
the sizes of the TGBA and the KS.

3 Self-Loop Aggregation Product (SLAP)

This section presents a specialized synchronized protlatiaggregates states of the
KS as long as the TGBA state does not change, angemeacceptance conditions are
visited.

3.1 Definition

The notion of self-loop aggregation is captured by GEc), the Self-loop Formulas
(labeling edges — q) that are weaker in terms of visited acceptance conditibas t
ac.

When synchronizing with an edge of the property TGBA beagndeading toq,
successive states of the Kripke will be aggregated as lotfgegsnodel Sk, ac). More
formally, for a TGBA stateg and a set of accepting conditiaec C 7, let us define

SHg,ac) = V f
fad
g—qgeds.t.adCac

Moreover, foraC I and f € B(AP), we define FSude, f) ={s €l |3s€a,s—
s e AAA(S) = f}. That is, firstFilter a to only keep states satisfying then produce
their Sucessors. We denote by FRe#&ahf ) the least subset df satisfying botha C
FReaclfa, f) and FSuc(FReaclfa, f), f) C FReaclfa, f).



Definition 4 (SLAP of a TGBA and a KS).Given a TGBAZ = (AP, Q, ¥,5,q°) and
a Kripke structureT = (AP,I",\,A, ) over AP O AP’ |, the Self-Loop Aggregation
Productof 4 and 7 is the TGBA denoted X T = (0, Qy, 7 , 8, 0% ) Where:

- Qg=Qx(2"\{0})
3f e BAP) st q 2% qp € 5,
— 8 = { (G,a1) —25 (0, 2) 01 = g2 = ac# 0, and
ap = FReacliFSucday, f), SHap,ac))
— 0 = (a°, FReacti{so}, SHC,0)))

Note that because of the way the product is built, it is notialy what Boolean
formula should label the edges of the SLAP product. Sincaénthis label is irrelevant
when checking Ianguage emptiness, we label aII arcs of tePSkith T and simply

denote(qy,a1) =5 (g, a2) any transition(q, al) (qz, a).

Q x 2" might seem very large but, as we will see in section 4.2 intmadhe
reachable states of the SLAP is a much smaller set than thiegbroductQ x I
Furthermore the FReach operation can be efficiently imphtetkas a symbolic least
fix point.

Fig. 1d represents the SLAP built from our example KS, andtBBA of aub. The
initial state of the SLAP iteratively aggregates successbstates verifying SfE°, 0) =

ab. Then following the edge? LLA 01, states are aggregated with condition( GF0) =
L. Henceq;, is synchronized with successors of state§sf si, sy, S3, 1} satisfyingb
(i.e., successors df4}). Because Sfe1,0) = L the successors ¢bs5} are not gathered

when building(qs, {ss}). Finally, when synchronizing with edga BEA gi1, we have
SHai,{®}) = T, hence all states of the cycles, S5, 5,57} are added.

3.2 Proof of correctness

Our ultimate goal is to establish that, given a KS and a TGBw®, émptiness of the
language of the corresponding SLAP is equivalent to the ievegt of the language of
the original synchronized product (see Theorem 1). Thiglrésprogressively demon-
strated in the following. We proceed by construction, iifethere exists an accepting
run of the SLAP then we build an accepting run of the origimaldoict and vice versa.
In order to ease the proof, we introduce some intermediatenias.

Lemma 1. Let 4 and ‘T be defined as in Definition 4. L(fml,al) (qz,az) € O be
a transition of the SLABZX 7. For any state §e a there exists at Ieast one (possibly

indirect) ancestor s€ & such that(gr,s1) 25 (d,t1) —% (Go,t2) —2 - (02, tn)
(02, s2) is a sequence of the synchronized prodaigt T with Vi, t; € ap, andVvi, a; C ac.

For example conS|dertranS|t|0§q1,a1) (0g2,a2) on F|g 2, and some state dn, say
$. Thens; € a; is an indirect ancestor &b s.t. (ql,sl) (qz,xz) (qz, ).

Proof. Let us define the set of input states of the aggreg@tasln(az) ={secay|
Jse a;,5— § € A}. This set cannot be empty sintm, a;) = (q2,az).



Fig.2: A preflx(ql,al) (qz,az) (qg,az) of a run of some SLAPZX 7 (with
different 2 and‘Z from Fig. 1) is shown using big ellipses and bended arrowg Th
straight lines also shows the underlying connections betvtiee state$di, d2,ds, - - }

of the automatorf and between the statés;, s, ..., X1, %2. ..} of the Kripke structure

T that have been aggregatedasay,as... The acceptance conditions have been de-
picted asag or a; and the labels of the transitions have been omitted fortglarhe
dotted ellipses show the set of input stategd; ), In(ay), In(ag)) as used in the proof
of Lemma 1.

Consider a state; € ap. By construction ofy, s, is reachable from some state in
t1 € In(ay), so there exists a path— t, — --- — s in the Kripke structure.
By definition of 8w, if t1,t2, ..., belong toay, the transitions between these states

of 7 have been synchronized with self- Ioansa—i> g of 4 with a; C ac. Therefore the

sequencéqy, tl) (qz,tz) (G, tn) 2 (g2, 5) is a sequence of the synchronized
productq ® 7.
Moreover, sincé; € In(ay), there exists a sta@ in al such tha(ql,sl) (Op,t1)-
Consequently, the patlo, s1 ) (q27t1) (qz,tz) (qz,tn) % (O2,S2) sat-
isfies the lemma. O

Lemma 2. If there existss € Acc(A4 X 7) an infinite run accepted by the SLAP, then
there exists an accepting rune Acc(ﬂ@ T) in the classical product.

Proof. Let us denote = (ql,al) (qg,az) (C]3,ag) - an accepting run of
ANXT. Let us build an infinite tree in which all nodes (except thetyare states of
A®T. Letus callT the root, at depth 0. The set of nodes at dapth0 is exactly the
finite set of pairs{(an,s) | s€an} C Q xT.

The parent of any node at level 17s For anyi > 0, the parent of a nod@j;1,5)
with § € a1 is the node(q;,s) for is any states € g such that(qg;,s) is a (possibly
indirect) ancestor ofq;1,S) such that we obsenag on the path between these two
states. We know such a stdig,s) exists because of Lemma 1. As a consequence of
this parenting relation, every edge in this tree, exceptdheaving the root, correspond
to a path between two states.afx 7.

Because the set of nodes at depth 0 is finite, this infinite tree has finite branching.
By Kdnig’'s Lemma it therefore contains an infinite branch. Bydwing this branch
and ignoring the first edge, we can construct a patll of 7' that starts inq,s;) for
somes; € aj, and that visits at least all the acceptance conditaansf ¢ in the same



order (and maybe more). To prove that this accepting pathawve tonstructed actually
occurs in a run of2 ® T, it remains to show thatg;,s;) is a state that is accessible
from the initial state ofA ® 7.

Obviouslyaq; = g° becauséqs,a1) = g is the initial state of2 X 7. Furthermore
we haves, € a;, so by definition ofg%, (q°,s1) must be reachable from (or equal to)
(P, 50)inAxT. O

. . o180
Lemma 3. For a given n and a finite patiy = (qo,So) 2% (qu,s1) -~ =222
aG(m-1)

(an,sn) of A® 7, there exists a finite patl, = (o, ao) 20, (g, &) ——
(g, @m) of AR T, with m< n, ¢, = g}, S» € amanddy, : {0,...,m—1} —{0,...,n—1}
is a strictly increasing function such thej (3i,¢n(i) = ] <= ag #0).

Proof. Let us prove this lemma by induction om It is true if n = 0: GivenTtg =
(0o, So), the pathop = (¢/0,a0) = g = (do, FReacli{so}, {A(s0)} NA(co, 0)) satisfies
the conditions (withp being a null function).

Let us now demonstrate that the lemma is truerfar 1 assuming it is true for

n. Given a path,; 1 = T f”ﬁ> (dn+1,Sn+1), we know by hypothesis that we have
a matchingoy, for T1,. Let us consider how to extera}, into 0,1 to handle the new

.. fn,acn
transition(gn, sh) —— (On+1,Sn+1) Of Thta.
There are two cases to consider:

1. If gn = gny1 @andacG, = 0 andA(shi1) = SHn, ac), then by definition of FSucc
and SF the last state of,, (q),,,am) is such thas,;1 € an andq),, = 0h = gn+1- IN
that caser, 1 = Op, anddp 1 = .

2. If On # Ony1 0race # 0 or A(shy1) = SH O, ac), then becausk(s,) = f, ands, —

acq

Shi1, by definition ofdx there existgdp, am) — (Gf,.1,8m+1) such thats, 1 €

ams1 andgqy,, , = gns1. In this case, we can defirg, 1 = oy ¢, (A1, 8@mi1)
with Vi <n, ¢n+1(i) = dn(i) anddn.a(n) =n.
So by induction this lemma is true for alle IN. O

Lemma 4. If there exists an infinite patit€ Acc(4® 7)) accepting in2® 7. Then
there exists an accepting path.ihX 7" as well.

Proof. 2® 7 has a finite number of states, so if Act® 7)) # 0 then it contains at
least one infinite patite Acc(A4 ® 7) that can be represented as a finite prefix followed
by a finite cycle that is repeated infinitely often.

Lemma 3 tells us that any prefix, of 1T corresponds to some prefiy, of a path
in AX 7 in which the acceptance conditionsmf occur in the same order. We have
|on| < || = n but becauset will visit all acceptance conditions infinitely often, and
these transitions will all appear o, (only transition without acceptance conditions
can be omitted fromdy), we can find some value offor which |oy| is arbitrary large.
Becausdop| can be made larger than the size of the SLAP, at some poinfititis
sequence will have to loop in a way that visits the acceptanaoditions exactly in the
same order as they appear in the cycle part @y repeating this cycle part af, we
can therefore construct an infinite patlthat is accepted byt X 7. O



Theorem 1. Let.4 be a TGBA, andl” be a Kripke structure. We have
Acc(A®T)#0 < Acc(ART)#0

In other words, the SLAP ofl and 7 accepts a run if and only if the synchronized
product of these two structures accepts a run.

Proof. < follows from Lemma 2= follows from Lemma 4. O

3.3 Mixing SLAP and Fully Symbolic Approaches

This section informally presents a variation on the SLARELYm, to use a fully sym-
bolic algorithm in cases where the automaton state will mgéo evolve.

The principle is the following: when the product has reachestate where the
TGBA state is terminal (i.e., it has itself as only succegsse proceed to use a fully
symbolic search for an accepted path in the states of thertuaggregate. This variant
is called SLAP-FST, standing for Fully Symbolic search imiimal states. Note that
we suppose here that such a terminal state allows accepitisg otherwise semantic
simplifications would have removed the state from the TGBA.

In this variant, ifq, is a terminal state, i.efq; ﬁ g2 € 8, with 1 # qp, a state
(01,a1) of the product has itself as sole successor through an aetelbT, ) if
and only ifa; admits a solution computed using a fully symbolic algorifttnhas no
successors otherwise.

The fully symbolic search uses the self-loop arcs on the fiteinTGBA state to
compute the appropriate transition relation(s), and takesaccount possibly multiple
acceptance conditions.

The rationale is that discovering this behavior when theeggge is large, and par-
ticularly if there are long prefixes before reaching the SG& bears all acceptance
conditions, tends to create large SLAP structures in eixglwe. The counterpart is that
when no such solution exists, the fully symbolic SCC hulrsbanay be quite costly.

In practice this variation on the SLAP was proposed afteruafiy examining cases
where SLAP performance was disappointing. As discussdtkipérformance section,
this variation is on average more effective than the basisFSalgorithm.

4 Experimentations

4.1 Implementation

We have implemented several hybrid or fully symbolic altforis within our frame-
work to allow fair algorithmic comparisons. The softwareaitable fromddd. | i p6.
fr, builds upon two existing components: Spot and SDD/ITS.

Spot fittp://spot.|ip6.fr)isamodel checking library [7]: it provides bricks to
build your own model checker based on the automata-the@pfgiroach using TGBAs.
It has been evaluated as "the best explicit LTL model-chécdb]. Spot provides
translation algorithms from LTL to TGBA, an implementatioha product between
a Kripke structure and a TGBA (def. 3), and various emptirsdmsck algorithms to



decide if the language of a TGBA is empty (among other thingigg library uses
abstract interfaces, so any object that can be wrapped forcoto the Kripke or TGBA
interfaces can interoperate with the algorithms supplie8mot.

SDD/ITS http://ddd. 1ip6.fr)is a library representing Instantiable Transition
Systems efficiently using Hierarchical Set Decision Diaggd19]. ITS are essentially
an abstract interface for (a variant of) labeled transifgstems, and several input for-
malisms are supported (discrete time Petri nets, autoraathcompositions thereof).
SDD are a particular type of decision diagram that a) allasvdrichy in the state encod-
ing, yielding smaller representations, b) support remgitiules that allow the library to
automatically [11] apply the symbolic saturation algamiti3]. These features allow
the SDD/ITS package to offer very competitive performance.

The fully symbolic OWCTY (One-Way Catch Them Young) and EL @&son-Lei)
algorithms [9, 18] were implemented directly on top of th&lihterface; they use an
ITS representing the TGBA derived from the LTL formula by Epomposed (at the
ITS formalism level) with the ITS representing the systerhe Tesulting ITS is then
analyzed using OWCTY or EL with the forward transition redati

The SOG [10] (Symbolic Observation Graph) and BCZ [2] (Bi€larke-Zhu) are
implemented as objects conforming to Spot’s Kripke integfa hey load an ITS model,
then build the SOG or BCZ on the fly, as required by the empginbseck of the product
with the formula automaton.

The SLAP is implemented as an object conforming to Spot'slypecbd interface.
The SLAP class takes an ITS model and a TGBA (the formula aatom as input
parameters, and builds its specialized product on the flygiby the emptiness-check
algorithm.

4.2 Benchmark

We use here classic scalable Petri net examples taken frard@® benchmark set [3]:
slotted ring, Kanban, flexible manufacturing system, anihgi philosophers. The model
occurences we used had from a few million t¢8feachable states. More details are
available in our technical report [6].

The formulas considered include a selection of random LTinfdas, which were
filtered to have a (basic TGBA/Kripke) product size of at teH300 states. We also
chose to have as many verified formulas (empty products)dated formulas (non-
empty products) to avoid favoring on-the-fly algorithms toach. To produce TGBA
with several acceptance conditions, this benchmark imdu2D0 formulas for each
model built from fairness assumptions of the forf@F p1 AGFpz...) = ¢.

We also used 100 random formulas that use the next operagbthence are not
stuttering invariant (these were not used for SOG that doesupport them).

We killed any process that exceeded 120 seconds of runtinteset the garbage
collection threshold at 1.3GB. Cases where all considerethods performed under
0.1s were filtered out from the results presented here: thiegd cases represent only
4.2% of the entire benchmark, and were too fast to allow amnrn@st comparison.

Table 1 gives a synthetic overview of the results presentéditer. SLAP or
SLAP-FST are the fastest methods in over half of all cased,tiagy are rarely the
slowest. Furthermore, they have the least failure rates Tble also shows that BCZ



OWCTY EL BCZ SOG SLAP  SLAP-FST
empty  Fast 118 (3%) 189 (5%) 53 (1%) 595 (18%) 1359 (42%) 186%6]5
(3227 cases) Slow 259 (8%) 271 (8%) 2909 (90%) 509 (15%) 245 (7993 (2%)
Fail 220 (6%) 252 (7%) 1785 (55%) 301 (9%) 212 (6%) 86 (2%)
nonempty Fast 3 (0%) 10 (0%) 209 (5%) 782 (19%) 2510 (62%) 13066]
(4046 cases) Slow 1869 (46%) 1390 (34%) 1940 (47%) 315 (7%) 1%) (40 (0%)
Fail 803 (19%) 817 (20%) 1069 (26%) 262 (6%) 69 (1%) 33 (0%)
Table 1: On all experiments (grouped with respect to theemxce of a counterexample),
we count the number of cases a specific method has (Fast)gherbe or (Slow) it has
either run out of time or it has the worst time amongst sudaessethods. The Fail line
shows how much of the Lost cases were timeouts. The sum of alay exceed 100%
if several methods are equally placed.
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Fig. 3: Cumulative plots comparing the time of all methodsnMempty products are
shown on the left, and empty products on the right.

has the highest failure rate and that the fully symbolic athms (OWCTY, EL) have
trouble with non-empty products.

Table 1 presents only the best and the worst methods. While3Filows to com-
pare the different methods in a finer manner.

For each experiment (model/formula pair) we first colleetrtreximum time reached
by a technique that did not fail, then compute for the othgrrapches what percent-
age of this maximum was used. The vertical segments visthl®@6 thus show the
number of runs for which this technique was the worst of thbs¢ did not fail. Any
failures are plotted arbitrarily at 120%. This gives us addetalues between 0% and
120% for which we plot the cumulative distribution functidfor instance, if a curve
goes through the (20%,2000) point, it means that for thikrtegie, 2000 experiments
took at most 20% of the time taken by the worst technigue fersdme experiments.

The behavior at 120% represents the “Fail” line of previalnd, while the behavior
at 100% represents the difference between the “Slow” anil"lifes (“Slow” methods
include methods that failed).

The left plot for the non-empty cases shows that the on-thexichanism allows
all hybrid algorithms (SLAP, SLAP-FST, SOG, BCZ) to outparh the symbolic ones
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Fig. 4: Comparison of SLAP-FST against SLAP. Left: time; IRigoroduct size.

(OWCTY, EL). However as seen previously, BCZ still fails mofeen than other meth-
ods. The SLAP and SLAP-FST method take less than 10% of thedirthe slowest
method in 80% of the cases.

The right plot for the empty cases shows that fully symbdijoethm behave rela-
tively far better (all methods have to explore the full protdanyway). BCZ spends too
much time exploring enormous products, and timeouts.

SLAP-FST and SLAP have similar performance, with a sligigestbr SLAP-FST
when the product is empty.

EL appears slightly superior to OWCTY in the non-empty cadeijerthey have
similar performances in the empty case.

SOG shows good results when there is a counterexample, qedfirms better
than BCZ in most cases. However SOG only supports stuttémivagiant properties.

To study the differences between SLAP and SLAP-FST congidescatter plots
from Fig. 4. The performances are presented using a logaidtbcale. Each point rep-
resents an experiment, i.e., a model and formula pair. Weegloeriments that failed
(due to timeout) as if they had taken 360 seconds, so theyleadycseparated from
experiments that didn't fail (by the wide white band).

SLAP is on the average faster (and consume less memory &) $LAP-FST,
but fails more often. Indeed the explicit product size of $-BST is always smaller
than that of SLAP, and often by several orders of magnitutleome cases the SLAP
degenerates to a state-space proportional to size of thieiegpoduct while the SLAP-
FST is able to keep the symbolic advantage.

In Fig. 5 we compare SLAP-FST to the four other methods froeriterature, using
the same kind of logarithmic scatter plots in time. Unswipgly, the only method
that appears competitive is SOG; but to our advantage, S®Gt iable to handle non
stuttering-invariant properties.
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Fig. 5: Comparison of SLAP-FST against the four other meshod

5 Conclusion and Perspectives

We have presented a new hybrid technique, Se#-Loop Aggregation Prodycthat
exploits the self-loops of the property automaton evendbigs not express a stuttering
formula.

During our evaluation, we have found that SLAP (and esplydtalvariant SLAP-
FST) significantly outperforms the other hybrid and symbuoiethods we implemented.
In presence of a counterexample we can benefit from the ofiytimeechanism, while
purely symbolic methods like EL and OWCTY cannot. On emptydpuais, the SLAP-
FST has a small explicit size, allowing to outperform othgorid algorithms.

This work opens several perspectives.

It would be interesting to compare our approach to the piggiiven partition-
ing [17] even if this hybrid algorithm uses a fully symbolimptiness check and is not
based on an aggregation criterion.



Another class of methods we would like to compare against,parely explicit
ones, in particular those based on partial order reductions

The SLAP technigue replaces the product used in the traditmutomata-theoretic
approach to model-checking in order to reduce the prodagtgwhile preserving the
result of the emptiness-check.

We also used this idea to improve the SOG, by working at theymblevel and
reducing the set of observed propositions according to tihesit state of the TGBA.
This technique called Symbolic Observation Product (S®Bgscribed in our technical
report [6].

Another idea would be to take advantage of the inclusion éetwthe aggregates
to detect cycles earlier. This would require a dedicatedtemags check such as those
proposed by Baarir and Duret-Lutz [1].

Finally, since the SOG is a Kripke structure, and the SLARUift hpon a KS, it is
possible to construct the SLAP of SOG. This is something wendt implement due
to technical issues: in this case the aggregates are sattsaffstates.
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