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Abstract. Checking liveness properties with partial-order reductions
requires a cycle proviso to ensure that an action cannot be postponed
forever. The proviso forces each cycle to contain at least one fully ex-
panded state. We present new heuristics to select which state to expand,
hoping to reduce the size of the resulting graph. The choice of the state to
expand is done when encountering a “dangerous edge”. Almost all exist-
ing provisos expand the source of this edge, while this paper also explores
the expansion of the destination and the use of SCC-based information.

1 Introduction

The automata-theoretic approach to explicit LTL model checking explores a La-
beled Transition System (LTS). Among the various techniques that have been
suggested to tackle the well known state explosion problem, partial-order reduc-
tions (POR) reduce the size of the LTS by exploiting the interleaving semantics
of concurrent systems. Under interleaved execution semantics, n independent
actions (or events) lead to n! possible interleavings. Numerous executions may
only correspond to the permutation of independent actions: POR considers only
some representative executions, ignoring all other ones [12, 9, 3].

The selection of the representative executions is performed on-the-fly while
exploring the LTS: for each state, the exploration algorithm only considers a
nonempty reduced subset of all enabled actions, such that all omitted actions
are independent from those in the reduced set. The execution of omitted actions
is then postponed to a future state. However if the same actions are consis-
tently ignored along a cycle, they may never be executed. To avoid this ignoring
problem, an extra condition called proviso is required. When checking liveness
properties, the proviso forces every cycle of the LTS to contain at least one
expanded state where all actions are considered.

This paper proposes several heuristics that can be combined to build new
original provisos. Since POR reductions aim to reduce the number of states
and transitions, we evaluate each proviso using these two criteria. This analysis
reveals new provisos that outperform the state of the art [1, 9]. After the pre-
liminaries of Section 2, we deconstruct a state-of-the-art proviso [1] in Section 3.
In Section 4, we explore a new way to choose the state to be expanded among
the cycle. Finally Section 5 presents improvements based on SCC information.



2 Preliminaries

A Labeled Transition System (LTS) is a tuple L = 〈S, s0, Act, δ〉 where S is a
finite set of states, s0 ∈ S is a designated initial state, Act is a set of actions and
δ ⊆ S ×Act× S is a (deterministic) transition relation where each transition is
labeled by an action. If (s, α, d) ∈ δ, we note s→ d and say that d is a successor
of s. We denote by post(s) the set of all successors of s.

A path between two states s, s′ ∈ S is a finite and non-empty sequence of
adjacent transitions ρ = (s1, α1, s2)(s2, α2, s3) . . . (sn, αn, sn+1) ∈ δ+ with s1 = s
and sn+1 = s′. When s = s′ the path is a cycle.

A non-empty set C ⊆ S is a Strongly Connected Component (SCC) iff any
two different states s, s′ ∈ C are connected by a path, and C is maximal w.r.t.
inclusion. If C is not maximal we call it a partial SCC.

For the purpose of partial-order reductions, an LTS is equipped with a func-
tion reduced : S → 2S that returns a subset of successors reachable via a re-
duced set of actions. For any state s ∈ S, we have reduced(s) ⊆ post(s) and
reduced(s) = ∅ =⇒ post(s) = ∅. The reduced function must satisfy other
conditions depending on whether we use ample set, stubborn set or persistent
set [see 3, for a survey]. The algorithms we present do not depend on the actual
technique used.

In this paper, we consider a DFS-based exploration of the LTS using a given
reduced function. We survey different provisos that modify the exploration to en-
sure that at least one state of each cycle is expanded. We will first present simple
provisos that capture cycles by detecting back-edges of the DFS (i.e., an edge
reaching a state on the DFS stack), and always expanding one of its extremities.
Then more complex provisos can be presented: to avoid some expansion around
each back-edge, they also have to detect any edge that reachs a state that has
been explored but is no longer on the stack, as this edge may be part of a cycle.

3 Provisos Inspired from Existing Work

This section presents two well known provisos solving the ignoring problem for
liveness properties: the proviso introduced by Peled [9] and implemented in
Spin [2], and the one of Evangelista and Pajault [1]. The latter proviso aug-
ments the former with several mechanisms to reduce the number of expansions.
To show how each mechanism is implemented and its effect on the number of
expansions, we introduce each mechanism incrementally as a new proviso.
Source expansion Algorithm 1, that we call Source, corresponds to the pro-
viso of Peled [9]. The global variable v stores the set of visited states. Each state
on v has a Boolean flag to distinguish states that are on the DFS stack (in) from
those that left it (out).

This proviso expands any state s (the source) that has a successor s′ (the
destination) on the stack. This amounts to augmenting todo (line 11) with all
the successors in post(s) that were skipped by reduced(s). The Boolean e pre-
vents states from being expanded multiple times. Overall, this proviso can be
implemented with two extra bits per state (one for e, and one for in/out).



Algorithm 1. The Source proviso,

adapted from Peled [9].

1 Procedure Source(s ∈ S)
2 todo ← reduced(s)
3 v.add(s)
4 v.setColor(s, in)
5 e← |todo| 6= |post(s)|
6 while (¬todo.empty()) do
7 s′ ← todo.pick()
8 if (¬v.contains(s′)) then
9 Source(s′)

10 else if (e ∧ v.color(s′) = in)
then

11 todo.add(post(s) \ reduced(s))
12 e← false
13 v.setColor(s,out)

Algorithm 2. Conditional source ex-

pansion.

1 Procedure CondSource(s ∈ S)
2 todo ← reduced(s)
3 v.add(s)
4 v.setColor(s, (|todo| 6= |post(s)| ?
5 in : out))
6 while (¬todo.empty()) do
7 s′ ← todo.pick()
8 if (¬v.contains(s′)) then
9 CondSource(s′)

10 else if (v.color(s) = in∧
11 v.color(s′) = in) then
12 todo.add(post(s) \ reduced(s))
13 v.setColor(s,out)
14 v.setColor(s,out)

This proviso relies on the fact that each cycle contains a back-edge, and
therefore expanding the source of each back-edge will satisfy the constraint of
having at least one expanded state per cycle.

Conditional Source Expansion Some expansions performed by Source
could be avoided: the expansion of the source s of a back-edge need only to
be performed when its destination s′ is not already expanded.

Algorithm 2 shows that this conditional expansion can be achieved by simply
changing the semantic of in and out. The in status now means that a state is
on the DFS stack and is not expanded. When a state s is discovered, its color
is set to out instead of in (line 5) whenever reduced(s) did not produce a set
smaller than post(s). Doing so allows getting rid of the e variable.

Fig. 1. If edges 1, 2, 3,
are explored in that or-
der, CondSource will
expand both states. Pri-
oritizing back-edges (i.e.,
3, 1, 2) only expands s.

s s′1

2
3

Prioritizing already known successors In
Source and CondSource, the decision to expand a
state s occurs only when a back-edge has been discov-
ered. However this discovery may occur after having
visited several other successors of s, and the recur-
sive calls on these successors are unaware that s will
eventually be expanded. This may cause superfluous
expansions as shown in Fig. 1.

Algorithm 3 shows how this could be fixed. Among
the successors of s, the known states are processed first, making sure that s is ex-
panded (if it has to) before processing its other successors. CondSourceKnown
forces that ordering by using a set postponed to delay the visit of unknown suc-
cessors; another implementation would be to reorder todo to keep known states
first. This latter implementation does not require additional memory (the set
postponed) but it doubles the number of tests of the form v.contains(s′).

Detecting expanded states on the DFS When a back-edge s → s′ is de-
tected, the DFS stack contains the states forming a path between s′ and s. Some



Algorithm 3. Prioritizing known successors

1 Procedure CondSourceKnown(s ∈ S)
2 todo ← reduced(s)
3 v.add(s)
4 v.setColor(s, (|todo| 6= |post(s)| ? in : out))
5 postponed ← ∅
6 while (¬todo.empty()) do
7 s′ ← todo.pick()
8 if (¬v.contains(s′)) then
9 postponed .add(s′)

10 else if (v.color(s) = in ∧ v.color(s′) = in) then
11 todo.add(post(s) \ reduced(s))
12 v.setColor(s,out)
13 while (¬postponed .empty()) do
14 s′ ← postponed .pick()
15 if (¬v.contains(s′)) then
16 CondSourceKnown(s′)
17 v.setColor(s,out)

Algorithm 4. Detecting expanded states on the DFS using weights

1 Procedure WeightedSource(s ∈ S)
2 todo ← reduced(s)
3 v.add(s)
4 v.setColor(s,orange)
5 v.setWeight(s, w)
6 if (|todo| = |post(s)|) then
7 todo ← Expand(s, todo)
8 while (¬todo.empty()) do
9 s′ ← todo.pick()

10 if (¬v.contains(s′)) then
11 WeightedSource(s′)
12 if (v.color(s) = orange ∧ v.color(s′) = red) then
13 v.setColor(s, purple)

14 else if (v.color(s) ∈ {orange, purple}) then
15 if (v.color(s′) = red) then
16 todo ← Expand(s, todo)
17 else if (v.color(s′) ∈ {orange, purple}) then
18 if (v.weight(s′) = w) then
19 todo ← Expand(s, todo)

20 else
21 v.setColor(s, purple)
22 switch (v.color(s)) do
23 case green : w ← w − 1
24 case orange : v.setColor(s,green)
25 case purple : v.setColor(s,red)

26 Function Expand(s ∈ S, succ ⊆ S)
27 succ.add(post(s) \ reduced(s))
28 v.setColor(s,green) /* scan stack here in WeightedSourceScan */

29 w ← w + 1
30 return succ



of these states could already be fully expanded. A generalization of the optimiza-
tion implemented in CondSource would therefore be to expand s only if there
is no expanded state between s′ and s. A consequence is that we might have
back-edges in which neither the source nor the destination have been expanded.
If we decide not to expand s, there might exist another path between s′ and
s (but not on the current DFS) that will later form a cycle without expanded
state [cf. 1, Fig. 6]. Therefore a different way of ensuring that each cycle contains
an expanded state is required. Evangelista and Pajault [1] fixed this problem by
marking such states as dangerous so that they can trigger an expansion when
encountered on another cycle without expanded state.

Detecting the presence of expanded states along the cycle is done by assign-
ing each state s of the DFS a weight that represents the number of expanded
states seen since the initial state (s excluded). WeightedSource (Algorithm 4)
maintains this count in the global variable w.

The dangerousness of each state is indicated with four colors:
– green means that any cycle through this state already contains an expanded

state, so reaching this state does not require any more extension. A state
can be marked as green if it is expanded or if all its successors are green.

– orange and purple states are unexpanded states on the DFS stack (their
successors have not all been visited). The purple states are those for which
a non-green successor has been seen.

– red states are considered dangerous and should trigger an expansion when
reached. A purple state becomes red once its successors have been all
visited.
In Algorithm 4, two situations trigger an expansion. A source s is expanded

when processing an edge s→ s′ where s′ is marked red (line 16), or when s→ s′

is a back-edge and there is no expanded state between s′ and s (line 18).
While Algorithm 4 stores the weights in v it is only needed for the states on

the DFS. The states on the stack need two bits to store one of the four colors,
but states outside the DFS require only one bit as they are either red or green.

Combining prioritization and detection of expanded states on DFS
The proviso C2Lc presented by Evangelista and Pajault [1] (renamed Weight-
edSourceKnown, see Algorithm 5) corresponds to the combination of the last
two ideas. The main difference is that the second loop (line 21) working on suc-
cessors ignored by the first loop also performs an expansion (line 28) whenever
it discovers a red successor. This was not the case in Algorithm 3 because in
CondSourceKnown the only dangerous successors are those on the DFS stack.

Early propagation of green in the DFS stack Evangelista and Pajault
[1] also introduce a variant of WeightedSourceKnown in which the green
color of a state can be propagated to its predecessors in the DFS stack before
the actual backtrack. This propagation could prevent other states from being
colored in red [cf. 1, Fig. 8]. As soon as a state is expanded (i.e., in the Expand
function), the DFS stack is scanned backward and all orange states that are
ready to be popped (i.e., they do not have any pending successors left to be
processed) can be marked as green. This backward scan stops on the first state



Algorithm 5. Combining WeightedSource and CondSourceKnown [1]

1 Procedure WeightedSourceKnown(s ∈ S)
2 todo ← reduced(s)
3 v.add(s)
4 v.setColor(s,orange)
5 v.setWeight(s, w)
6 if (|todo| = |post(s)|) then
7 todo ← Expand(s, todo) /* defined in Algorithm 4 */

8 postponed ← ∅
9 while (¬todo.empty()) do

10 s′ ← todo.pick()
11 if (¬v.contains(s′)) then
12 postponed .add(s′)
13 else if (v.color(s) ∈ {orange, purple}) then
14 if (v.color(s′) = red) then
15 todo ← Expand(s, todo)
16 else if (v.color(s′) ∈ {orange, purple}) then
17 if (v.weight(s′) = w) then
18 todo ← Expand(s, todo)
19 else
20 v.setColor(s, purple)
21 while (¬postponed .empty()) do
22 s′ ← postponed .pick()
23 if (¬v.contains(s′)) then
24 WeightedSourceKnown(s′)
25 if (v.color(s) = orange ∧ v.color(s′) = red) then
26 v.setColor(s, purple)

27 else if (v.color(s) ∈ {orange, purple} ∧ v.color(s′) = red) then
28 postponed ← Expand(s, postponed)
29 switch (v.color(s)) do
30 case green : w ← w − 1
31 case orange : v.setColor(s,green)
32 case purple : v.setColor(s,red)

that is either green or purple, or that has some unprocessed successors. This
idea can be applied to all Weighted algorithms.

eBecause it has to scan the stack, this algorithm may not be presented as a re-
cursive procedure like we did so far. However if WeightedSource or Weight-
edSourceKnown were implemented as non-recursive procedures, the place to
perform the stack scanning would be in function Expand, as defined on page 4.
The modification also requires keeping track of whether a state is green be-
cause it has been expanded, or because it has been marked during such a stack
scanning: an additional bit is needed for this.

We call these two variants WeightedSourceScan and WeightedSource-
KnownScan. The latter one corresponds to the proviso C2Lc? presented by Evan-
gelista and Pajault [1].

Evaluation We evaluate the above 7 provisos (as well as more provisos we
shall introduce in the next sections) on state-spaces generated from 38 models



Table 1. Comparison of the provisos of section 3. Columns present the number of
states and transitions (by million) summed over all runs, their ratio compared to the
non-reduced graphs, and the number of states investigated per milliseconds. Provisos
with a reference correspond to state-of-the-art algorithms.

states (106) transitions (106) st/ms

Full 784.45 100.00% 2,677.73 100.00% 17.90

Source [9] 303.21 38.65% 679.16 25.36% 12.33
WeightedSource 263.43 33.58% 537.56 20.08% 11.68
WeightedSourceKnown [1] 262.63 33.48% 534.35 19.96% 11.77
CondSource 252.83 32.23% 518.80 19.37% 11.85
CondSourceKnown 251.05 32.00% 510.91 19.08% 11.89
WeightedSourceScan 250.49 31.93% 505.98 18.90% 11.67
WeightedSourceKnownScan [1] 248.11 31.63% 498.68 18.62% 11.70

None 57.58 7.34% 97.65 3.65% 22.65

from the BEEM benchmark [7]. We selected models1 such that every category
of Pelánek’s classification [8] is represented.

We compiled each model using a version of DiVinE 2.4 patched by the
LTSmin team2. This tool produces a shared library that allows on-the-fly explo-
ration of the state-space, as well as all the information required to implement
a reduced function. This library is then loaded by Spot3, in which we imple-
mented all the provisos described here. Our reduced(s) method implements the
stubborn-set method from Valmari [12] as described by Pater [5, p. 21] in a
deterministic way: for any state s, reduced(s) always returns the same set.

Because provisos can be sensitive to the exploration order (Fig. 1 is one such
example), we ran each model 100 times with different transition orders. Table 1
sums these runs for all models, and shows:
– the size of the full (non-reduced) state-space (Full),
– the size of the reduced state-space using each of the above proviso,
– the size of the reduced state-space, applying just reduced without any proviso

(None). Even if this graph that cannot be used for verification in practice
(it ignores too many runs), None was used as a lower bound by Evangelista
and Pajault [1].
In addition to showing the contribution of each individual idea presented in

the above section, Table 1 confirms state-of-the-art results [1]. However, since
these values are sums, they are biased towards the largest models. Section 5 will
present the most relevant provisos after normalizing the results model by model,
in order to be less sensitive to their size.

We observe that WeightedSourceKnownScan outperforms (18% fewer
states) Source as measured by Evangelista and Pajault [1]. We note that

1 The full benchmark can be found at: https://www.lrde.epita.fr/~renault/

benchs/ATVA-2016/results.html
2http://fmt.cs.utwente.nl/tools/ltsmin/#divine
3https://spot.lrde.epita.fr

https://www.lrde.epita.fr/~renault/benchs/ATVA-2016/results.html
https://www.lrde.epita.fr/~renault/benchs/ATVA-2016/results.html
http://fmt.cs.utwente.nl/tools/ltsmin/#divine
https://spot.lrde.epita.fr


Source processes more states per millisecond, because it maintains less in-
formation than WeightedSourceKnownScan.

Surprisingly, CondSource, despite its simplicity, is more efficient than Weight-
edSourceKnown. This might be due to red states introduced in Weight-
edSourceKnown, as they can generate additional expansions. Weighted-
SourceKnown can only be competitive with other provisos when combined
with the scan of the DFS stack as integrated in WeightedSourceKnown-
Scan. The additional implementation complexity required to update the weights
and to scan the stack only provides a very small benefit in term of size; however
it can be seen in the last column that the runtime overhead is negligible: all
provisos process the same number of states per millisecond.

4 New Provisos Based on Destination Expansion

The Source proviso relies on the fact that each cycle contains a back-edge, so ex-
panding the source of this edge guarantees that each cycle will have an expanded
state. This guarantee would hold even if the destination of each back-edge was
expanded instead. This idea, already proposed by Nalumasu and Gopalakrishnan
[4] in a narrower context, brought promising results. This section investigates
this idea more systematically yielding many new proviso variants.

Destination expansion The simplest variant, called Dest (Algorithm 6) is a
modification of Source that expands the destination of back-edges instead of
the source. This requires a new Boolean per state to mark (line 10) whether a
state on the stack should be expanded (line 12) during backtrack.

As previously, it is possible to perform a conditional expansion (not marking
the destination if the source is already expanded) and to prioritize the visit of
some successors. Contrary to Source, where it is preferable to consider known
states first, it is better to visit unknown successors (or self-loops) first with Dest,
since those successors might ultimately mark the current state for expansion,
therefore avoiding the need to expand the destinations of this state’s back-edges.

In Dest, the recursive visit of unknown successors could mark the current
state for later expansion: in this case, successors that are on the DFS stack have
been marked uselessly. The next algorithm avoids these pointless expansions.

Algorithm 7, called CondDestUnknown, implements the prioritization of
successors (lines 8–13) as well as the conditional expansion (line 12). The main
loop investigates new successors first (through recursive calls), handles self-loops,
and postpones the processing of dangerous states. Then, either the current state
is marked and must be expanded, or all the dangerous direct successors of the
current state are marked to be expanded later (when backtracking these states,
after returning from the recursive calls, line 14).

Mixing destination expansion and dangerousness Previous provisos can
still perform useless expansions. When an edge s → d returning to the DFS
is detected, the destination d is marked to be expanded. However during the
backtrack of the DFS stack, we might encounter another marked state q that is



Algorithm 6. Expanding

destination instead of source

1 Procedure Dest(s ∈ S)
2 todo ← reduced(s)
3 v.add(s)
4 v.setMark(s, false)
5 while (¬todo.empty()) do
6 s′ ← todo.pick()
7 if (¬v.contains(s′)) then
8 Dest(s′)
9 else

10 v.setMark(s′,true)

11 if (v.mark(s)) then
12 todo ←
13 post(s) \ reduced(s)
14 while (¬todo.empty())

do
15 s′ ← todo.pick()
16 if (¬v.contains(s′))

then
17 Dest(s′)

Algorithm 7. Prioritizing unknown succes-

sors with conditional expansion of destination

1 Procedure CondDestUnknown(s ∈ S)
2 todo ← reduced(s)
3 v.add(s)
4 v.setMark(s, |todo| = |post(s)|)
5 postponed ← ∅
6 while (¬todo.empty()) do
7 s′ ← todo.pick()
8 if (¬v.contains(s′)) then
9 CondDestUnknown(s′)

10 else if (s = s′) then
11 v.setMark(s,true)

12 else if (¬v.mark(s)∧¬v.mark(s′)) then
13 postponed .add(s′)
14 if (v.mark(s)) then
15 todo ← post(s) \ reduced(s)
16 while (¬todo.empty()) do
17 s′ ← todo.pick()
18 if (¬v.contains(s′)) then
19 CondDestUnknown(s′)

20 else
21 while (¬postponed .empty()) do
22 s′ ← postponed .pick()
23 v.setMark(s′,true)
24 v.setMark(s,true)

expanded because it belongs to another cycle. Thus d and q are both expanded,
but since q belongs to the two cycles, the expansion of d was superfluous.

ColoredDest (Algorithm 8) proposes a solution to this problem. It reuses
the color mechanism introduced in WeightedSource (all Weighted algo-
rithms use colors), but without the weights. Here, useless expansions are also
tracked by propagating green (line 17); the difference is that only the purple
states that are marked will be expanded (lines 19–25), not the orange ones.

As done previously, we can prioritize unknown states, resulting in a new vari-
ant: ColoredDestUnknown. This avoids useless markings (line 14). However,
mixing this variant with the stack scanning technique is not interesting. Indeed,
propagating the green color as early as possible is pointless since the expansion
is done when backtracking (i.e., as late as possible): the color will be naturally
propagated anyway when it has to be used.

Of course, weights can also be used in addition to colors. In WeightedDest
(Algorithm 9), we use a slightly different implementation of weights than in
WeightedSource: instead of storing the number of expanded states seen above
any state of the DFS stack, we store the depth of each state, and maintain a
stack of the depths of all expanded states on the DFS stack. This alternate
representation of weights is not necessary in WeightedDest, but will be useful
for the next extension we present.



Algorithm 8. Mixing destination expansion and dangerousness.

1 Procedure ColoredDest(s ∈ S)
2 todo ← reduced(s)
3 v.add(s)
4 v.setColor(s, (|todo| 6= |post(s)| ? orange : green))
5 v.setMark(s, false)
6 while (¬todo.empty()) do
7 s′ ← todo.pick()
8 if (¬v.contains(s′)) then
9 ColoredDest(s′)

10 if (v.color(s) = orange) ∧ (v.color(s′) = red) then
11 v.setColor(s, purple)

12 else if (v.color(s) ∈ {orange, purple}) ∧ (v.color(s′) 6= green) then
13 v.setColor(s, purple)
14 v.setMark(s′,true)
15 switch (v.color(s)) do
16 case orange :
17 v.setColor(s,green)
18 case purple :
19 if (v.mark(s)) then
20 v.setColor(s,green)
21 todo ← post(s) \ reduced(s)
22 while (¬todo.empty()) do
23 s′ ← todo.pick()
24 if (¬v.contains(s′)) then
25 ColoredDest(s′)

26 else
27 v.setColor(s,red)

In WeightedDest, when a back-edge s → s′ discovers a dangerous state
s′ on the DFS stack (lines 19–21), the algorithm can use the additional stack
e to decide whether s′ actually needs to be marked for expansion: if the depth
of s′ is less than the depth of the last expanded state, then a state has been
expanded between s′ and s, and the marking can be avoided. However, and as in
WeightedSource, when an edge s→ s′ reaches a red state s′, the source has
to be expanded immediately (lines 23–25) since there is no way to know whether
this edge could be part of a cycle without expanded state.

The reason we introduced the depth-based representation of weights is for
another heuristic we call DeepestDest. If a state s has several back-edges s→
s1, s → s2, . . . , s → sn to different states s1, s2, . . . , sn on the DFS stack, then
all these back-edges close cycles that all pass through the deepest of these states,
which is the only one needing to be marked for (possible) expansion. Note that
in this situation (one source, with n back-edges), Source would immediately
expand one state (the source), ColoredDest and WeightedDest would mark
n states for (possible) expansion, while DeepestDest would mark only one.

DeepestDest, which we do not present to save space, can be implemented
by modifying Algorithm 9 as follows: instead of marking a destination for ex-



Algorithm 9. Adapting weights to the expansion of destination states.

1 Procedure WeightedDest(s ∈ S)
2 todo ← reduced(s)
3 v.add(s)
4 v.setColor(s,orange)
5 v.setMark(s, false)
6 d← d + 1
7 v.setDepth(s, d)
8 if (|todo| = |post(s)|) then
9 v.setColor(s,green)

10 e.push(d)
11 while (¬todo.empty()) do
12 s′ ← todo.pick()
13 if (¬v.contains(s′)) then
14 WeightedDest(s′)
15 if (v.color(s) = orange) ∧ (v.color(s′) = red) then
16 v.setColor(s, purple)

17 else if (v.color(s) ∈ {orange, purple}) ∧ (v.color(s′) 6= green) then
18 v.setColor(s, purple)
19 if (v.color(s′) ∈ {orange, purple}) then
20 if (e.empty() ∨ v.depth(s′) > e.top()) then
21 v.setMark(s′,true)

22 else if (v.color(s′) = red) then
23 v.setColor(s,green)
24 e.push(d)
25 todo ← todo ∪ (post(s) \ reduced(s))
26 switch (v.color(s)) do
27 case green :
28 e.pop()
29 case orange :
30 v.setColor(s,green)
31 case purple :
32 if (v.mark(s)) then
33 v.setColor(s,green)
34 e.push(d)
35 todo ← post(s) \ reduced(s)
36 while (¬todo.empty()) do
37 s′ ← todo.pick()
38 if (¬v.contains(s′)) then
39 WeightedDest(s′)
40 e.pop()

41 else
42 v.setColor(s,red)
43 d← d− 1



Table 2. Comparison of the provisos of section 4. For reference, we highlight the
performance of WeightedSourceKnownScan, the best proviso of section 3.

states (106) transitions (106) st/ms

DeepestDestUnknown 276.51 35.25% 570.52 21.31% 11.81
DeepestDest 275.31 35.10% 566.63 21.16% 11.87
WeightedDestUnknown 273.94 34.92% 563.61 21.05% 11.83
Dest 272.79 34.77% 508.17 18.98% 14.48
WeightedDest 272.68 34.76% 559.73 20.90% 11.80
WeightedSourceKnownScan [1] 248.11 31.63% 498.68 18.62% 11.70
CondDest 213.98 27.28% 413.15 15.43% 12.57
CondDestUnknown 213.92 27.27% 412.75 15.41% 12.52
ColoredDest 213.92 27.27% 412.93 15.42% 12.54
ColoredDestUnknown 213.83 27.26% 412.27 15.40% 12.46

pansion at line 21, simply collect the deepest destination, and mark that single
destination in the same block as line 42.

Evaluation Table 2 presents the performance of the provisos presented in this
section. Some provisos measured here, such as CondDest, WeightedDestUn-
known, and DeepestDestUnknown have not been explicitly presented, but
the techniques they combine should be obvious from their name. All Weighted-
Dest and DeepestDest variants could also be combined with the Scan tech-
nique however these combinations did not achieve interesting performances.

As for the Source family of provisos, using a conditional expansion brings
the most benefits. The Unknown variants generally show a very small effect
(slightly positive or slightly negative) on a proviso, so this does not seem to be an
interesting heuristic. The Weighted and Deepest variants are disappointing.
We believe this is due to mixing destination expansions (for back-edges) and
source expansions (for red states). However, next section will show that, when
combined with others techniques, they bring promising results.

The better provisos of this table are therefore CondDest and Colored-
Dest (with or without Unknown) with very close results. Note that both pro-
visos are easy to implement, and have a small memory footprint: CondDest
requires one additional bit per state, while ColoredDest needs three bits. This
is smaller than what WeightedSourceKnownScan requires.

5 Improving Provisos With SCCs

To test the emptiness of the product between a state-space and a specification,
an explicit model checker can use two kinds of emptiness checks: those based on
Nested Depth First Search (NDFS) [11], and those based on enumerating the
Strongly Connected Components (SCC) [10].

All provisos presented so far apply to both NDFS or SCC-based setups. In
this section, we present two ideas that are only relevant to model checkers using
SCC-based emptiness checks, since they exploit the available information about
(partial) SCCs.



In all SCC-based emptiness checks, states may be partitioned in three sets:
live states, dead states, and unknown states. Unknown states are states that
have not yet been discovered. Dead states are states that belong to SCCs that
have been entirely visited. The remaining states are live, and their SCCs might
be only partially known.

Using dead SCCs The first idea is rather trivial. In the Colored or Weighted
provisos presented so far, red states are always considered dangerous. When we
discover an edge s → s′ to a red state s′, we either expand the source s (all
Weighted provisos), or propagate the red color to s (for ColoredDest).
But these actions are superfluous when the state s′ is known to belong to a dead
SCC: in that case s and s′ are in different SCCs so they cannot appear on the
same cycle, and the edge may be simply ignored.

Using live SCCs through highlinks In Weighted provisos, we can derive
additional insights about cycles in live SCCs. When we discover an edge s→ s′

to a red state s′ that is also live, then s′ necessarily belongs to the same SCC as
s. This means that s→ s′ closes at least one cycle, even if s′ is not on the DFS
stack: therefore one state on the cycles including s′ and s has to be marked for
expansion, and only states from the DFS can be marked as such. The default
solution used by Weighted provisos would be to expand the source s, but we
have also seen previously that expanding states that are that are higher (i.e.,
less deep) in the DFS stack improves results.

Fig. 2. White states and
edges with white arrows
denote the DFS stack.
Black states have been
fully visited. The cloud
represents the only (par-
tial, non trivial) SCC that
has been discovered so far.
Dashed-edge has not yet
been visited.

q1

q2

q3

q4

s

s′

In order to expand higher states, we equip each
live state x with a pointer called highlink(x) that
gives a DFS state (preferably the highest) that is
common to all known cycles passing through x. Fig-
ure 2 shows a snapshot of an algorithm computing the
SCC, where a partial SCC is highlighted. In this con-
figuration, highlink(s′) = q3. When an edge s → s′

reaches a state s′ that is live and red, we therefore
have to ensure that some state between highlink(s′)
and s is expanded: since these two states are on the
stack, and s is deeper than highlink(s′), we prefer
to expand the latter. Furthermore, using the same
weight implementation as Algorithm 9, we can eas-
ily check whether there exists an expanded state be-
tween highlink(s′) and s to avoid additional work.

In the example of Figure 2, once s, q4, and q3
are popped from the DFS stack highlink(s′) should be updated to value of
highlink(q3) which is q2. In our implementation, these updates are performed
lazily in a way that is similar to the path-compression technique used in the
union-find data structure [6]: when we query the highlink of a state and find that
it points to a state q that is not on the DFS stack, we update it to highlink(q).

Because it would require introducing an SCC-based algorithm, and because
we consider that the fine details of how to update highlink(x) efficiently in this



Table 3. Comparison of the provisos of section 5. For reference, we recall the perfor-
mances of DeepestDest,WeightedDest that are the support of heuristics presented
in this section, and those of ColoredDest, the best proviso so far.

states (106) transitions (106) st/ms

DeepestDest 275.31 35.10% 566.63 21.16% 11.87
DeadDeepestDest 269.10 34.30% 543.64 20.30% 11.92
WeightedDest 272.68 34.76% 559.73 20.90% 11.80
DeadWeightedDest 270.62 34.50% 554.91 20.72% 11.88
DeadWeightedSourceKnownScan 247.68 31.57% 497.79 18.59% 11.67
ColoredDest 213.92 27.27% 412.93 15.42% 12.54
DeadColoredDest 213.87 27.26% 412.80 15.42% 12.53
HighlinkWeightedDest 207.41 26.44% 393.22 14.68% 12.44
HighlinkWeightedDestScan 206.23 26.29% 391.05 14.60% 12.41
HighlinkWeightedSourceKnown 203.20 25.90% 386.84 14.45% 12.20
HighlinkWeightedSourceKnownScan 203.08 25.89% 386.60 14.44% 12.12
HighlinkDeepestDest 192.84 24.58% 349.89 13.07% 13.20
HighlinkDeepestDestScan 191.78 24.45% 347.95 12.99% 13.21

context is not necessary to reach our conclusion, we have decided to not present
this algorithm formally. Our implementation is however publicly available.1

Evaluation Table 3 presents the performances of the provisos presented in this
section. We prefix by Dead and Highlink the provisos of previous sections
when combined with the two SCC-based heuristics. Note that dead states are
also ignored in Highlink variants.

We observe that the Dead variants only improve the original non-Dead
variants by 3%. On the contrary, the Highlink variants bring an important
benefit. For instance the addition of Highlink to DeadWeightedDest re-
duces the number of states by 25% and the number transitions by 30%. The
improvements are similar when using Highlink on top of the state-of-the-art
WeightedSourceKnown variants. These results confirm that the case where
an edge leading to a (non-dead) red state is well handled by this Highlink.

Note that while DeepestDest combinations did not achieve interesting per-
formances so far, it outperforms all provisos presented in this paper when com-
bined with Highlink and Scan techniques.

Among the 46 provisos we implemented and benched1, we selected the 16
most relevant: all the Source-based strategies (to see the contribution of each
optimization), the bests Dest-based ones (i.e., without weights), and finally the
best of each SCC-based strategy.

Figure 3 shows box plots of standard score computed for selected provisos
and all models. The standardization is performed as follows. For each model M ,
we take the set of 1600 runs generated (100 runs per proviso), and compute a
mean number of states µM and a standard deviation σM . The standard score

of a run r is states(r)−µM

σM
. Therefore a score of 2 signifies that the run is two

standard deviations away from the mean (of selected provisos) for the given
model. Figure 3 shows the distribution of these scores as box plots. Each line



Fig. 3. Distributions of standard scores for a selection of provisos.
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shows a box that spans between the first and third quartiles, and is split by the
median. The whiskers show the ranges of values below the first and above the
third quartile that are not further away from the quartiles than 1.5 times the
interquartile range. Other values are shown as outliers using circles.

The ranking of provisos in Figure 3 differs from previous tables that were
biased toward large models. However, if we omit some permutations between
provisos that have close median standard score, the order stays globally the
same.

If we look at provisos that do not exploit SCCs, the best provisos appear to
be all the CondDest variants, but they are very close to the state-of-the-art
WeightedSourceKnownScan [1]. Introducing SCC-based provisos clearly
brings another level of improvements, where, on the contrary to previous provi-
sos, expanding the source or the destination does not make a serious difference.

6 Conclusion

Starting from an overview of state-of-the-art provisos for checking liveness prop-
erties, we have proposed new provisos based on the expansion of the destination
instead of the source. These new provisos have been successfully combined with
existing heuristics (Scan, (Un)Known, Weighted) and new ones (Colored,
Deepest, Dead, and Highlink).

For source expansion, our results confirm and extend those of Evangelista and
Pajault [1] who have shown that WeightedSourceKnown and Weighted-
SourceKnownScan were better than Source. However when deconstructing
these provisos to evaluate each optimization independently, we discovered that
most of the gain can be obtained by implementing a very simple proviso, Cond-
Source, that does not require maintaining weights or scanning the stack.

Expanding the destination of edges, even in very simple implementations
like CondDest, appears to be competitive with state-of-the-art provisos using
source-based expansions. When using an NDFS-based emptiness check, we rec-
ommend to use CondDest since it remains very simple to implement, requires
small memory footprint and achieves good results.

We have also shown how to exploit SCC-based information to limit the num-
ber of expansions: the use of Highlink brings a solid improvement to all provi-
sos. When using an SCC-based emptiness check, our preference goes to High-
linkWeightedSourceKnown that does not require scanning the stack.



From this extensive analysis, we also observe: (1) the Weighted-variants
ruins the benefits of Dest-based provisos without Highlinks, while they in-
crease performances of Source-based ones, (2) the (Un)Known variants only
bring a modest improvements while they double the number of visited transi-
tions, (3) the Scan heuristic is not of interest when combined with Highlinks
but is efficient otherwise. A scatter plot1 comparing the best of Source-based
provisos with the best of Dest-based ones, shows that they are complementary.

Most of the heuristics presented in this paper are derived from state-of-the-
art provisos which have been proven correct [1, 9]. Since reproducing the proof
schemes for all the 46 provisos we presented in this paper would be laborious,
and considering they were implemented, we opted for an extensive test campaign
checking that, for randomly generated LTS, all provisos produce reduced graphs
containing at least one expanded state per cycle.

Finally, note that Source is for instance implemented in Spin. However, the
reduced function implemented in Spin is different than ours: it returns either a
single transition, or all transitions. With such a reduced function, some of the
variants we presented make no sense (Known, Unknown, Deepest), and the
results might be completely different. We leave the evaluation of the effect of
different reduced functions on the provisos as a future work.
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