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Abstract. We show how to efficiently solve energy Büchi problems in
finite weighted automata and in one-clock weighted timed automata.
Solving the former problem is our main contribution and is handled by a
modified version of Bellman-Ford interleaved with Couvreur’s algorithm.
The latter problem is handled via a reduction to the former relying on
the corner-point abstraction. All our algorithms are implemented in a
tool based on TChecker and Spot.
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1 Introduction

Energy problems in weighted (timed) automata pose the question whether there
exist infinite runs in which the accumulated weights always stay positive. Since
their introduction in [8], much research has gone into different variants of these
problems, for example energy games [12, 14, 25], energy parity games [11], robust
energy problems [2,3], etc., and into their application in embedded systems [15,17],
satellite control [6,23], and other areas. Nevertheless, many basic questions remain
open and implementations are somewhat lacking.

The above results discuss looping automata [26], i.e., ω-automata which
accept any infinite word. In practice, looping automata do not suffice because
they cannot express all liveness properties. For model checking, formal properties
(e.g., in LTL) are commonly translated into (generalized) Büchi automata [10]
that provide a simple model for the larger class of ω-regular languages.

In this work, we extend energy problems with transition-based generalized
Büchi conditions and treat them for weighted automata as well as weighted timed
automata with precisely one clock. On weighted automata we show that they are
effectively decidable using a combination of a modified Bellman-Ford algorithm
with Couvreur’s algorithm. For weighted timed automata we show that one can
use the corner-point abstraction to translate the problem to weighted (untimed)
automata.
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For looping automata, the above problems have been solved in [8]. (This
paper also treats energy games and so-called universal energy problems, both of
which are of no concern to us here.) While we can re-use some of the methods of
[8] for our Büchi-enriched case, our extension is by no means trivial. First, in the
setting of [8] it suffices to find any reachable and energy positive loop; now, our
algorithm must consider that such loops might not be accepting in themselves
but give access to new parts of the automaton which are. Second, [8] mostly
treat the energy problem with unlimited upper bound, whereas we consider that
energy has a (“weak”) upper bound beyond which it cannot increase. [8] claim
that the weak-upper-bound problem can be solved by slight modifications to
their solution of the unbounded problem; but this is not the case. For example,
the typical Bellman-Ford detection of positive cycles might not work when the
energy levels attained in the previous step are already equal to the upper bound.

As a second contribution, we have implemented all of our algorithms in a
tool based on the open-source platforms TChecker1 [20] and Spot2 [13] to solve
generalized energy Büchi problems for one-clock weighted timed automata. We
first employ TChecker to compute the zone graph and then use this to construct
the corner-point abstraction. This in turn is a weighted (untimed) generalized
Büchi automaton, in which we also may apply a variant of Alur and Dill’s Zeno-
exclusion technique [1]. Finally, our main algorithm to solve generalized energy
Büchi problems on weighted finite automata is implemented using a fork of Spot.
Our software is attached to our submission.

In our approach to solve the latter problem, we do not fully separate the energy
and Büchi conditions (contrary to, for example, [11] who reduce energy parity
games to energy games). We first determine the strongly connected components
(SCCs) of the unweighted automaton. Then we degeneralize each Büchi accepting
SCC one by one, using the standard counting construction [18]. Finally, we apply
a modified Bellman-Ford algorithm to search for energy feasible lassos that start
on the main graph and loop in the SCC traversing the remaining Büchi condition.

Due to space restrictions, this paper contains no proofs.

Running example 1. To clarify notation and put the concepts into context, we
introduce a small running example. A satellite in low-earth orbit has a rotation
time of about 90 minutes, 40% of which are spent in earth shadow. Measuring
time in minutes and (electrical) energy in unspecified “energy units”, we may
thus model its simplified base electrical system as shown in Fig. 1a.

This is a weighted timed automaton (the formalism will be introduced in
Sect. 3) with one clock, x, and two locations. The clock is used to model time,
which progresses with a constant rate but can be reset on transitions. The initial
location on the left (modeling earth shadow) is only active as long as x ≤ 35,
and given that x is initially zero, this means that the model may stay here for at
most 35 minutes. Staying in this location consumes 10 energy units per minute,
corresponding to the satellite’s base consumption.

1 See https://github.com/ticktac-project/tchecker
2 See https://spot.lrde.epita.fr/

https://github.com/ticktac-project/tchecker
https://spot.lrde.epita.fr/
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Fig. 1: Satellite example: two representations of the base circuit. (a) as weighted
timed automaton A; (b) as a (finite) weighted automaton.
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Fig. 2: Weighted timed automaton A1 for satellite with work module.

After 35 minutes the model transitions to the “sun” location on the right,
where it can stay for at most 55 minutes and the solar panels produce 50 energy
units per minute, from which the base consumption has to be subtracted. Note
that the transitions can only be taken if the clock shows exactly 35 (resp. 55)
minutes and is reset to zero after the transition as denoted by x ← 0. This
ensures that the satellite stays exactly 35 minutes in the shadow and 55 minutes
in the sun, roughly consistent with the “physical” model.

Figure 1b shows a translation of the automaton of Fig. 1a to a weighted
untimed automaton. State 1 corresponds to the “shadow” location, transitions are
annotated with the corresponding weights, the rate of the location multiplied by
the time spent in it. In Sect. 3 we will show how to obtain a weighted automaton
from a weighted timed automaton with precisely one clock.

One may now pose the following question: for a given battery capacity b and
an initial charge c, is it possible for the satellite to function indefinitely without
ever running out of energy? It is clear that for c < 350 or b < 350, the answer is
no: the satellite will run out of battery before ever leaving Earth’s shadow; for
b ≥ 350 and c ≥ 350, it will indeed never run out of energy.

Now assume that the satellite also has some work to do: once in a while it
must, for example, send some collected data to earth. Given that we can only
handle weighted automata with precisely one clock (see Sect. 3), we model the
combined system as in Fig. 2. That is, work (modeled by the leftmost location)
takes 5 minutes and costs an extra 10 energy units per minute. The colored dot
on the outgoing transition of the work state marks a (transition-based) Büchi
condition which forces us to see the transition infinitely often in order for the
run to be accepted. As a consequence, all accepting runs also visit the “work”
state indefinitely often, consistent with the demand to send data once in a while.
In order to model the system within the constraints of our modeling formalism,
we must make two simplifying assumptions, both unrealistic but conservative:

– work occurs during earth shadow;
– work prolongs earth shadow time.
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The reason for the second property is that the clock x is reset to 0 when entering
the work state; otherwise we would not be able to model that it lasts 5 minutes
without introducing a second clock. It is clear how further work modules may be
added in a similar way, each with their own accepting color.

We will come back to this example later and, in particular, argue that the
above assumptions are indeed conservative in the sense that any behavior admitted
in our model is also present in a more realistic model which we will introduce.

2 Energy Büchi Problems in Finite Weighted Automata

We now define energy Büchi problems in finite weighted automata and show how
they may be solved. The similar setting for weighted timed automata will be
introduced in Sect. 3.

Definition 2 (WBA). A weighted (transition-based, generalized) Büchi au-
tomaton (WBA) is a structure A = (M, S, s0, T ) consisting of a finite set of
colors M, a set of states S with initial state s0 ∈ S, and a set of transitions
T ⊆ S × 2M ×R× S.

A transition t = (s,M,w, s′) ∈ T in a WBA is thus annotated by a set of

colors M and a real weight w, denoted by s
w−→M s′; to save ink, we may omit any

or all of w and M from transitions andM from WBAs. The automaton A is finite
if S and T ⊆ S × 2M × Z× S are finite (thus finite implies integer-weighted).

A run in a WBA is a finite or infinite sequence ρ = s1 → s2 → · · · . We
write first(ρ) = s1 for its starting state and, if ρ is finite, last(ρ) for its final state.
Concatenation ρ1ρ2 of runs is the usual partial operation defined if ρ1 is finite
and last(ρ1) = first(ρ2). Also iteration ρn of finite runs is defined as usual, for
first(ρ) = last(ρ), and ρω = inj limn→∞ ρn denotes infinite iteration.

For c, b ∈ N 3 and a run ρ = s1
w1−−→ s2

w2−−→ · · · , the (c, b)-accumulated weights
of ρ are the elements of the finite or infinite sequence weightsc↓b(ρ) = (e1, e2, . . . )
defined by e1 = min(b, c) and ei+1 = min(b, ei+wi). Hence the transition weights
are accumulated, but only up to the maximum bound b; increases above b are
discarded. We call c the initial credit and b the weak upper bound.

Running example 3. In Fig. 1b, and choosing c = 360 and b = 750, we have

a single infinite run ρ = 1
−350−−−→ 2

2200−−−→ 1
−350−−−→ 2

2200−−−→ 1
−350−−−→ · · · , with

weightsc↓b(ρ) = (360, 10, 750, 400, 750, . . . ).

The run ρ is said to be (c, b)-feasible if weightsc↓b(ρ)i ≥ 0 for all indices i,
that is, the accumulated weights of all prefixes are non-negative. (This is the case
for the example run above.) For a finite run ρ we also define lastweightc↓b(ρ) =
weightsc↓b(ρ)last(ρ).

An infinite run ρ = s1 →M1
s2 →M2

· · · is Büchi accepted if all colors in M
are seen infinitely often along ρ, that is, for all m ∈ M and any index i ∈ N,
there exists j > i such that m ∈Mj .

3 Natural numbers include 0.
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We fix a weak upper bound b ∈ N for the rest of the paper and write c-feasible
instead of (c, b)-feasible.

Definition 4. The energy Büchi problem for a finite WBA A and initial credit
c ∈ N is to ask whether there exists a Büchi accepted c-feasible run in A.

Energy problems for finite weighted automata without Büchi conditions, asking
for the existence of any c-feasible run, have been introduced in [8] and extended
to multiple weight dimensions in [14] where they are related to vector addition
systems and Petri nets. We extend them to (transition-based generalized) Büchi
conditions here but do not consider an extension to multiple weight dimensions.

Degeneralization As a first step to solving energy problems for finite WBAs,
we show that the standard counting construction which transforms generalized
Büchi automata into simple Büchi automata with only one color, see for example
[18], also applies in our weighted setting. To see that, let A = (M, S, s0, T )
be a (generalized) WBA, write M = {m1, . . . ,mk}, and define another WBA
Ā = (M̄, S̄, s̄0, T̄ ) as follows:

M̄ = {ma} S̄ = S × {1, . . . , k} s̄0 = (s0, 1)

T̄ =
{

((s, i), ∅, w, (s′, i))
∣∣ (s,M,w, s′) ∈ T,mi /∈M

}
∪
{

((s, i), ∅, w, (s′, i+ 1))
∣∣ i 6= k, (s,M,w, s′) ∈ T,mi ∈M

}
∪
{

((s, k), {ma}, w, (s′, 1))
∣∣ (s,M,w, s′) ∈ T,mk ∈M

}
That is, we split the states of A into levels {1, . . . , k}. At level i, the same
transitions exist as in A, except those colored with mi; seeing such a transition
puts us into level i + 1, or 1 if i = k. In the latter case, the transition in Ā is
colored by its only color ma. Intuitively, this preserves the language as we are
sure that all colors of the original automaton A have been seen:

Lemma 5. For any c ∈ N, A admits a Büchi accepted c-feasible run iff Ā does.

Reduction to lassos An infinite run ρ in A is a lasso if ρ = γ1γ
ω
2 for finite

runs γ1, γ2. The following lemma shows that it suffices to search for lassos in
order to solve energy Büchi problems.

Lemma 6. For any c ∈ N, A admits a Büchi accepted c-feasible infinite run iff
it admits a Büchi accepted c-feasible lasso.

Hence our energy Büchi problem may be solved by searching for Büchi
accepted c-feasible lassos. We detail how to do this in Sect. 4, here we just sum
up the complexity result which we prove at the end of Sect. 4.

Theorem 7. Energy Büchi problems for finite WBA are decidable in polynomial
time.
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3 Energy Büchi Problems for Weighted Timed Automata

We now extend our setting to weighted timed automata. Let X be a finite set of
clocks. We denote by Φ(X) the set of clock constraints ϕ on X, defined by the
grammar ϕ ::= x ./ k | ϕ1 ∧ ϕ2 with x ∈ X, k ∈ N, and ./ ∈ {≤, <,≥, >,=}.
A clock valuation on X is a function v : X → R≥0. The clock valuation v0
is given by v0(x) = 0 for all x ∈ X, and for v : X → R≥0, d ∈ R≥0, and
R : X → (N ∪ {⊥}), we define the delay v + d and reset v[R] by

(v + d)(x) = v(x) + d, v[R](x) =

{
v(x) if R(x) = ⊥,
R(x) otherwise.

Note that in v[R] we allow clocks to be reset to arbitrary non-negative integers
instead of only 0 which is assumed in most of the literature. It is known [22] that
this does not change expressivity, but it adds notational convenience. A clock
valuation v satisfies clock constraint ϕ, denoted v |= ϕ, if ϕ evaluates to true
with x replaced by v(x) for all x ∈ X.

Definition 8 (WTBA). A weighted timed (transition-based, generalized) Büchi
automaton (WTBA) is a structure A = (M, Q, q0, X, I, E, r) consisting of a
finite set of colors M, a finite set of locations Q with initial location q0 ∈ Q, a
finite set of clocks X, location invariants I : Q → Φ(X), a finite set of edges
E ⊆ Q× 2M × Φ(X)× (N ∪ {⊥})X ×Q, and location weight-rates r : Q→ Z.

As before, we may omit M from the signature and colors from edges if they
are not necessary in the context. Note that the edges carry no weights here,
which would correspond to discrete weight updates. In a WTBA, only locations
are weighted by a rate. Even without Büchi conditions, the approach laid out
here would not work for weighted edges [7, 8].

The semantics of a WTBAA as above is the (infinite) WBA JAK = (M, S, s0, T )
given by S = {(q, v) ∈ Q×RX≥0

∣∣ v |= I(q)} and s0 = (q0, v0). Transitions in T
are of the following two types:
– delays (q, v)

w−→d
∅(q, v+d) for all (q, v) ∈ S and d ∈ R≥0 for which v+d′ |= I(q)

for all d′ ∈ [0, d], with w = r(q)d;4

– switches (q, v)
0−→0
M (q′, v′) for all e = (q,M, g,R, q′) ∈ E for which v |= g,

v′ = v[R] and v′ |= I(q′).
Each state in JAK corresponds to a tuple containing a location in A and a

clock valuation X → R≥0. This allows to keep track of the discrete state as well
as the evolution of the clocks. By abuse of notation, we will sometimes write
(q, v) ∈ JAK instead of (q, v) ∈ S, for S as defined above.

We may now pose energy Büchi problems also for WTBAs, but we wish to
exclude infinite runs in which time is bounded, so-called Zeno runs. Formally
an infinite run (q0, v0)→d1 (q1, v1)→d2 · · · is Zeno if

∑
di is finite: Zeno runs

admit infinitely many steps in finite time and are hence considered unrealistic
from a modeling point of view [1,19].

4 Here we annotate transitions with the time d which passes; we only need this to
exclude Zeno runs below and will otherwise omit the annotation.
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Fig. 3: Satellite example. (a) work module W ; (b) product B1 = A ‖W

Definition 9. The energy Büchi problem for a WTBA A and initial credit
c ∈ N is to ask if there exists a Büchi accepted c-feasible non-Zeno run in JAK.

We continue our running example; but to do so properly, we need to introduce
products of WTBAs. Let Ai = (Mi, Qi, q

i
0, Xi, Ii, Ei, ri), for i ∈ {1, 2}, be

WTBAs. Their product is the WTBA A1 ‖A2 = (M, Q, q0, X, I, E, r) with

M =M1 ∪M2, Q = Q1 ×Q2, q0 = (q10 , q
2
0), X = X1 ∪X2,

I((q1, q2)) = I(q1) ∧ I(q2), r((q1, q2)) = r(q1) + r(q2),

E =
{

((q1, q2),M, g,R, (q′1, q2))
∣∣ (q1,M, g,R, q′1) ∈ E1

}
∪
{

((q1, q2),M, g,R, (q1, q
′
2))
∣∣ (q2,M, g,R, q′2) ∈ E2

}
.

Running example 10. Let A be the basic WTBA of Fig. 1a and A1 the combina-
tion of A with the work module of Fig. 2. Now, instead of building A1 as we have
done, a principled way of constructing a model for the satellite-with-work-module
would be to first model the work module W and then form the product A ‖W .
We show such a work module and the resulting product B1 in Fig. 3.

As expected, W expresses that work takes 5 minutes and costs 10 energy units
per minute, and the Büchi condition enforces that work is executed infinitely
often. The product B1 models the shadow-sun cycle together with the fact that
work may be executed at any time, and contrary to our “unrealistic” model A1

of Fig. 2, work does not prolong earth shadow time.
Now B1 has two clocks, and we will see below that our constructions can

handle only one. This is the reason for our “unrealistic” model A1, and we can
now state precisely in which sense it is conservative: if JA1K admits a Büchi
accepted c-feasible non-Zeno run, then so does JB1K. For a proof of this fact, one
notes that any infinite run ρ in JA1K may be translated to an infinite run ρ̄ in
JB1K by adjusting the clock valuation by 5 whenever the work module is visited.
Hence, if A1 is schedulable, then so is B1; and if B1 is not, then neither is A1.

Bounding Clocks As a first step to solve energy Büchi problems for WTBAs,
we show that we may assume that the clocks in any WTBA A are bounded above
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by some N ∈ N, i.e., such that v(x) ≤ N for all (q, v) ∈ JAK and x ∈ X. This is
shown for reachability in [4]; the following lemma extends it to Büchi acceptance.

Lemma 11. Let A = (M, Q, q0, X, I, E, r) be a WTBA and c ∈ N. Let N the
maximum constant appearing in any invariant I(q), for q ∈ Q, or in any guard g,
for (q,M, g,R, q′) ∈ E. There is a WTBA Ā = (M, Q, q0, X, Ī, Ē, r) such that

1. v(x) ≤ N + 2 for all x ∈ X and (q, v) ∈ JĀK, and

2. there exists a c-feasible Büchi accepted run in JAK iff such exists in JĀK.

Corner-point abstraction We now restrict to WTBAs with only one clock
and show how to translate these into finite untimed WBAs using the corner-point
abstraction. This abstraction may be defined for any number of clocks, but it is
shown in [9] that the energy problem is undecidable for weighted timed automata
with four clocks or more; for two or three clocks the problem is open.

Let A = (M, Q, q0, X, I, E, r) be a WTBA with X = {x} a singleton. Using
Lemma 11 we may assume that x is bounded by some N ∈ N, i.e., such that
v(x) ≤ N for all (q, v) ∈ JAK.

Let C be the set of all constants which occur in invariants I(q) or guards g
or resets R of edges (q,M, g,R, q′) in A, and write C ∪ {N} = {a1, . . . , an+1}
with ordering 0 ≤ a1 < · · · < an+1. The corner-point regions [4, 21] of A are the
subsets {ai}, for i = 1, . . . , n + 1, [ai, ai+1[, and ]ai, ai+1], for i = 1, . . . , n, of
R≥0; that is, points, left-open, and right-open intervals on {a1, . . . , an+1}.

These are equivalent to clock constraints x = ai, ai ≤ x < ai+1, and ai <
x ≤ ai+1, respectively, defining a notion of implication r⇒ ϕ for r a corner-point
region and ϕ ∈ Φ({x}).

The corner-point abstraction of A is the finite WBA cpa(A) = (M ∪
{mz}, S, s0, T ), where mz /∈M is a new color, S = {(q, r) | q ∈ Q, r corner-point
region of A, r⇒ I(q)}, s0 = (q0, {0}), and transitions in T are of the following
types:

– delays (q, {ai})
0−→∅ (q, [ai, ai+1[), (q, [ai, ai+1[)

w−→{mz} (q, ]ai, ai+1]) with

w = r(q)(ai+1 − ai), and (q, ]ai, ai+1])
0−→∅ (q, ai+1);

– switches (q, r)
0−→M (q′, r) for e = (q,M, g, (x 7→ ⊥), q′) ∈ E with r⇒ g and

(q, r)
0−→M (q′, {k}) for e = (q,M, g, (x 7→ k), q′) ∈ E with r⇒ g.

The new color mz is used to rule out Zeno runs, see [1] for a similar con-
struction: any Büchi accepted infinite run in cpa(A) must have infinitely many

time-increasing delay transitions (q, [ai, ai+1[)
w−→{mz} (q, ]ai, ai+1]).

Theorem 12. Let A be a one-clock WTBA and c ∈ N.

1. If there is a non-Zeno Büchi accepted c-feasible run in JAK, then there is a
Büchi accepted c-feasible run in cpa(A).

2. If there is a Büchi accepted c-feasible run in cpa(A), then there is a non-Zeno
Büchi accepted c+ ε-feasible run in JAK for any ε > 0.
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{0} [0, 35[ ]0, 35] {35}
−350
•

{0} [0, 35[ ]0, 35] {35} [35, 55[ ]35, 55] {55}1400• 800•

Fig. 4: Corner-point abstraction of base module of Fig. 1a.

The so-called infimum energy condition [8] in the second part above, replacing
c with c+ ε, is necessary in the presence of strict constraints x < c or x > c in
A. The proof maps runs in A to runs in cpa(A) by pushing delays to endpoints
of corner-point regions, ignoring strictness of constraints, and this has to be
repaired by introducing the infimum condition.

Running example 13. We construct the corner-point abstraction of the base
module A of Fig. 1a. Its constants are {0, 35, 55}, yielding the following corner
point regions:

{0}, [0, 35[, ]0, 35], {35}, [35, 55[, ]35, 55], {55}

The corner-point abstraction of A now looks as in Fig. 4, with the states corre-
sponding to the “shadow” location in the top row; the orange-colored transitions
correspond to the ones in which time elapses. Note that this WBA is equivalent
to the one in Fig. 1b.

Using the corner-point abstraction, we may now solve energy Büchi problems
for one-clock WTBAs by translating them into finite WBAs and applying the
algorithms of Sect. 2 and the forthcoming Sect. 4.

4 Implementation

We now describe our algorithm to solve energy Büchi problems for finite WBA;
all of this has been implemented and is attached to our submission.

We have seen in Sect. 2 that this problem is equivalent to the search for Büchi
accepted c-feasible lassos. By definition, a lasso ρ = γ1γ

ω
2 consists of two parts,

the lasso prefix γ1 (possibly empty, only traversed once) and the lasso cycle γ2
(repeated indefinitely). In order for ρ to be Büchi accepted and c-feasible, both
the prefix γ1 and the cycle γ2 must be c-feasible, however only the cycle needs to
be Büchi accepted.

Finding lassos The overall procedure to find lassos is described in Alg. 1. It is
based on two steps. In step one we compute all energy optimal paths starting at
the initial state of the automaton with initial credit c. This step is done on the
original WBA, and we do not take into account the colors. Optimal paths found
in this step will serve as lasso prefixes.
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Algorithm 1 Algorithm to find Büchi accepted lassos in WBA

Input: weak upper bound b
1: function BüchiEnergy(graph G, initial credit c)
2: E ← FindMaxE(G,G.initial state, c) // E : S → N, mapping states to energy
3: SCCs ← Couvreur(G) // Find all SCCs
4: for all scc ∈ SCCs do
5: GS , backedges ← degeneralize(scc)
6: for all t = src

w−→ dst ∈ backedges do
7: E′ ← FindMaxE(GS , dst , E[dst]) // t.dst is in G and GS...
8: e′ ← min(b, E′[src] + w) // ...(see Fig. 5b)
9: if E[dst ] ≤ e′ then

10: return ReportLoop()
11: else // Second iteration (see Fig. 5a)
12: E′′ ← FindMaxE(GS , dst , e′)
13: if e′ ≤ min(b, E′′[src] + w) then
14: return ReportLoop()
15: return ReportNoLoop()

The second step is done individually for each Büchi accepting SCC. The
Couvreur algorithm ignores the weights, and we can use the version distributed
by Spot. We then degeneralize the color accepting SCCs one by one, as described
in Sect. 2; recall that this creates one copy of the SCC, which we call a level,
per color. The first level roots the degeneralization in the original automaton;
transitions leading back from the last to the first level are called back-edges.
These back-edges play a crucial role as they are the only colored transitions in
the degeneralized SCC and represent the accepting transitions.

Hence any Büchi accepting cycle in the degeneralization needs to contain at
least one such back-edge, and we can therefore focus our attention on these. We
proceed to check for each back-edge whether we can embed it in a c-feasible cycle
within the degeneralized SCC. To this end, we compute the energy optimal paths
starting at the destination of the current back-edge (by construction a state in
the first level) with an initial credit corresponding to its maximal prefix energy
(as found in the first step). By comparing the energy of the source state of the
back-edge e while taking into account its weight, one can determine whether
there exists a c-feasible cycle containing e. If this is the case, then we have found
a c-feasible lasso cycle, and by concatenating it with the prefix found in the
first step, we can construct a lasso. Note that we might have to check the loop
a second time (using the energy level calculated in the first iteration as initial
credit), see Example 14. If the answer is negative, we continue with the next
back-edge in the SCC or with the next SCC once all back-edges exhausted.

Example 14. Figure 5a shows an automaton where we have to compute maximal
energy levels twice (lines 11-14 in Alg. 1): with b = 30 and c = 0, the prefix
energy of state 1 is 30, while its optimal energy on the cycle is 20, despite it
being part of a energy positive loop. Hence we cannot conclude that we have
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(b) Degeneralizing SCC {1, 2} with level 1 rooted
in the original WBA. Back-edges colored red.

Fig. 5: Left: WBA (also used in Example 14); right: degeneralization of one SCC
(states named originalstate, level).

found an accepting lasso after the first iteration, but need to run the algorithm
once more with an initial credit of 20.

Finding energy optimal paths We now discuss how to find energy optimal
paths. The problem is equivalent (but inverse) to finding shortest paths in
weighted graphs. This may be done using the well-known Bellman-Ford algorithm
[5, 16], which breaks with an error if it finds negative loops. In our inverted
problem, we are seeking to maximize energy, so positive loops are accepted and
even desired. To take into account this particularity, we modify the Bellman-Ford
algorithm to invert the weight handling and to be able to handle positive loops.
The modified Bellman-Ford algorithm is given in Alg. 2.

The standard algorithm computes shortest paths by relaxing the distance
approximation until the solution is found. One round relaxes all edges and the
algorithm makes as many rounds as there are nodes. Inverting the algorithm
is easy: the relaxation is done if the new weight is higher than the old weight;
additionally the new weight has to be higher than 0 and is bounded from above
by the weak upper bound.

The second modification to Bellman-Ford is the handling of positive loops.
This part is a bit more involved, especially if one strives for an efficient algorithm.
We could run Bellman-Ford until it reaches a fixed point, however this can
significantly impact performance as shown in the following example.

Example 15. Consider the automaton shown in Fig. 6. Here one round of Bellman-
Ford only increases the energy level by 1 at the rightmost state already reached
and possibly reaches the state to its right once the weak upper bound attained.
This means that we need to run (N + 1) · b rounds of Bellman-Ford to reach a
fixed point. Ideally we would like the upper bound to have no influence on the
runtime. To this end we introduce the function PumpAll, which sets the energy
level of all states on positive loops detected by the last round of Bellman-Ford to
the achievable maximum. This way, instead of needing b rounds of Bellman-Ford
to attain the maximal energy, we only need one plus a call to PumpAll.
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Fig. 6: WBA for Example 15

Before continuing, we make the following observation. This stage will be called
from Algorithm 1 that recognizes loops necessary to fulfill the Büchi condition.
Here, we only need to check reachability. Therefore, the only reason to form a loop
is to gain energy, implying that we are only interested in simple energy positive
loops, i.e., loops where every state appears at most once. If we set the optimal
reachable weight in simple loops, then nested loops are updated by Bellman-Ford
in the usual way afterwards.

To improve the runtime of our algorithm, we exploit that Bellman-Ford can
detect positive cycles and handle these cycles specifically. Note however that
contrary to a statement in [8], we cannot simply set all energy levels on a positive
loop to b: in the example of Fig. 5a, starting in state 2 with an initial credit of 10,
the energy level in state 1 will increase with every round of Bellman-Ford but
never above 20 = b− 10.

In order to have an algorithm whose complexity is independent of b, we instead
compute the fixed point from above. We first make the following observation.

Lemma 16. In energy positive loops, there exists at least one state on the loop
that can attain the maximal energy b.

Proof. Since the loop is energy positive we can increase the energy level at any
specific node by cycling through the loop. This can be repeated until a fixed
point is reached. This fixed point is only reached when at one of the states
the accumulated weight reaches b (or surpasses b but is restricted to b). As the
increase of energy with every cycle is a strictly monotone operation, the fixed
point will be reached and no alternation is possible. ut

If we knew the precise state that attains maximal energy, we could set its
energy to b and loop through the cycle once while propagating the energy, causing
every state on the loop to obtain its maximal energy. However, not knowing
which state will effectively attain b, we start with any state on the loop, set
its energy to b and propagate the energy along the loop until a fixed point is
reached. This is the case after traversing the loop at most twice. This is done by
the function PumpLoop.

Lemma 17. PumpLoop calculates the desired fixed point after at most two
cycles through the loop.

Proof. In Alg. 2, lines 9 and 10 ensure that the fixed point check in line 16
does not detect false positives. After setting an arbitrary state’s energy to b, the
algorithm cycles through the states in the loop in forward order.
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Algorithm 2 Modified Bellman-Ford

Shared Variables: E,P
Modified Bellman-Ford algorithm

1: function modBF(weighted graph G)
2: for n ∈ {1, . . . , |S|} do
3: for all t = s

w−→ s′ ∈ T do
4: e′ ← min(E(s) + w, b)
5: if E[s′] < e′ and e′ ≥ 0 then
6: E[s′]← e′

7: P [s′]← t // P : S → T , mapping states to best incoming transition

Helper function assigning the optimal energy to all states on the energy positive
loop containing state s

8: function PumpLoop(weighted graph G, state s)
9: for all s′ ∈ Loop(s) do // Loop returns the states on the loop of s ...

10: E[s′]← −1 // Special value to detect fixed point
11: E[P [s].src]← b
12: while > do // Loops at most twice
13: for all s′ ∈ Loop(s) do // ... in forward order
14: t← P [s′]
15: e′ ← min(b, E[t.src] + t.w)
16: if e′ = E[t.dst] then
17: Mark loop (and postfix) as done
18: return // fixed point reached
19: E[t.dst]← e′

Helper function, pumping all energy positive loops induced by P
20: function PumpAll(weighted graph G)
21: for all states s that changed their weight do
22: t = P [s]
23: if min(b, E[t.src] + t.w) > E[s] then
24: s′ ← s // s can be either on the cycle or in a postfix of one
25: repeat // Go through it backwards to find a state on the cycle
26: s′.mark ← >
27: s′ ← t.src
28: until s′ already marked
29: PumpLoop(G, s′) // Pump it

Function computing the optimal energy for each state
30: function FindMaxE(graph G, start state s0, initial credit c)
31: Init(s0, c) // initialize values in E to −∞ and E(s0) = c
32: while not fixedpoint(E) do // Iteratively search for loops, then pump them
33: modBF(G)
34: PumpAll(G)
35: return copyOf(E)
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Consider w.l.o.g. the positive cycle γ = s1
w1−−→ s2

w2−−→ · · · wN−1−−−−→ sN with
s1 = sN . By Lem. 16 we know that there exists at least one state sj with
0 ≤ j < N whose maximal energy equals b. Before the first energy propagating
traversal of the cycle we set the energy of s1 to b. Two cases present themselves.
If j = 0, then energy is correctly propagated and we reach a fixed point after one
traversal. In the second case, the energy attainable by s1 is strictly smaller than b.
Propagating from this energy level will over-approximate the energies reached by
the states s0 through sj−1 on the cycle, but only until state sj is reached which
actually attains b. As energy is bounded, the energy levels of state sj and its
successors sj+1, . . . , sN are correctly calculated. This means that after traversing

the cycle sj
wj−−→ · · · wN−1−−−−→ sN

w1−−→ s2
w2−−→ · · · wj−1−−−→ sj , all energy levels on the

cycle are correctly calculated and this is guaranteed to happen before traversing
the original cycle twice.

The corresponding fixed point condition is detected by line 16 which will stop
the iteration. Note that we actually need to check for changes in the energy level
on line 16, and not whether some state attained energy b, as we at this point
cannot know whether this energy was reached due to over-approximation. ut

Note that the pseudocode shown here is a simplification, as our implementation
contains some further optimizations. Namely, we implement an early exit in
modBF if we detect that a fixed point is reached, and we keep track of states
which have seen an update to their energy, as this allows to perform certain
operations selectively.

Algorithm Complexity We are now able to conclude our discussion from
Sect. 2 and show that energy Büchi problems for finite WBA are decidable in
polynomial time.

Proof (of Theorem 7). For our decision procedure, the search for strongly con-
nected components can be done in polynomial time. Our modified Bellman-Ford
algorithm also has polynomial complexity. It is called once at the beginning and
once for every back-edge of every strongly connected component. Given that the
number of such back-edges is bounded by the number of edges, we conclude that
our overall algorithm has polynomial complexity. ut

5 Benchmarks

We employ our running example to build a scalable benchmark case. For modeling
convenience we use products of WTBAs as introduced above extended with
standard sender/receiver synchronization via channels. The additional labels s!
and s? are used for synchronization. Edges with s! can always be taken and emit
the signal s; edges with s? can only be taken if a signal s is currently emitted.
This modeling allows multiple work modules to start working at the same time.

As before, we use a base circuit with two states, see Fig. 7. Work module
#i, see Fig. 8, uses 10 energy units while working and spends exactly i time
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Fig. 7: Base circuit
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−10

x← 0, s?

x = i

Fig. 8: Work module #i

# mod # states to cpa [s] sol [s]

1 25 0.01 0.00

3 90 0.03 0.02

5 293 0.06 0.24

7 1012 0.19 3.24

9 3759 0.89 59.52

10 7377 1.87 261.38

11 14582 4.37 1194.81

Table 1: Benchmark results. From left to
right: Number of work modules, Number of
states in cpa, time needed to compute cpa,
time needed to solve energy Büchi problem.
Benchmarks done on an ASUS G14, Ryzen
4800H CPU with 16Gb RAM.

units in the work state. We then combine these models with the specification
that time must pass and that every work module is activated infinitely often.
All the presented instances are schedulable. Table 1 presents the results of our
benchmark, showing that the presented approach scales fairly well. We note that
most of the time for solving the energy Büchi problem (last column) is spent in
our Python implementation of our modified Bellman-Ford algorithm. In fact the
total runtime is (at least for # mod ≥ 5) directly proportional to the number of
times lines 4–7 of ModBF in Alg. 2 are executed. Therefore, the implementation
could greatly benefit from a direct integration into Spot and using its C++ engine.

6 Conclusion

We have shown how to efficiently solve energy Büchi problems, both in finite
weighted (transition-based generalized) Büchi automata and in one-clock weighted
timed Büchi automata. We have implemented all our algorithms in a tool based on
TChecker and Spot. Solving the latter problem is done by using the corner-point
abstraction to translate the weighted timed Büchi automaton to a finite weighted
Büchi automaton; the former problem is handled by interleaving a modified
version of the Bellman-Ford algorithm with Couvreur’s algorithm.

Our tool is able to handle some interesting examples, but the restriction
to one-clock weighted timed Büchi automata without weights on edges does
impose some constraints on modeling. We believe that trying to lift the one-clock
restriction is unrealistic; but weighted edges (without Büchi conditions) have
been treated in [7], and we suspect that their approach should also be viable
here. In passing we should like to argue that, as shown by our running example,
the modeling constraints imposed by only having one clock may be somewhat
circumvented by careful modeling.

Also adopting our approach to the unlimited energy problem, without weak
upper bound, should not pose any problems. In fact, setting b =∞ will facilitate
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the algorithm, as maximal energy levels of nodes on positive loops can directly be
set to ∞ (making PumpLoop obsolete), and also the second iteration in Alg. 1
can be dropped.

Further, we strongly believe that our idea of investigating whether a back-edge
can be embedded in an energy positive cycle is not restricted to (generalized)
Büchi acceptance. In fact, the same methods should be applicable to, for example,
parity acceptance conditions without losing the polynomial runtime.

As a last remark, it is known that multiple clocks, multiple weight dimensions,
and even turning the weak upper bound into a strict one which may not be
exceeded, rapidly leads to undecidability results, see [8, 9, 14, 24], and we are
wondering whether some of these may be sharpened when using Büchi conditions.
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10. J. Richard Büchi. Symposium on decision problems: On a decision method in
restricted second order arithmetic. In Logic, Methodology and Philosophy of Science,
volume 44 of Studies in Logic and the Foundations of Mathematics, pages 1–11.
Elsevier, 1966.



Energy Problems in Finite and Timed Automata with Büchi Conditions 17
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and Fatiha Zäıdi, editors, ICTSS, volume 7019 of Lect. Notes Comput. Sci., pages
115–130. Springer, 2011.

18. Paul Gastin and Denis Oddoux. Fast LTL to Büchi automata translation. In
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