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Abstract. The knowledge of the noise level within an image is a valuable
information for many image processing applications. Estimating the
noise level function (NLF) requires the identification of homogeneous
regions, upon which the noise parameters are computed. Sutour et al.
have proposed a method to estimate this NLF based on the search for
homogeneous regions of square shape. We generalize this method to the
search for homogeneous regions with arbitrary shape thanks to the tree
of shapes representation of the image under study, thus allowing a more
robust and precise estimation of the noise level function.

Keywords: Noise level function· Tree of shapes· Non-parametric rank
correlation.

1 Introduction

Natural images are inherently corrupted by digital noise resulting from the
various imperfections occuring during the acquisition chain (such as sensor noise,
quantization noise, and so on). Efficiently handling or removing the noise is a
fundamental task in image processing, but it requires a precise knowledge of
the noise attributes. By providing the relationship between the intensity of the
image pixels and the noise variance, the noise level function [16] (NLF) is a
valuable information to estimate, not only for image denoising purposes [3], but
also for image segmentation [11], image compression [23] or super-resolution [12].
When the noise is signal-independent, classical separation approaches can be
applied to estimate its properties [10,17]. For signal-dependent noise (such as
Poisson and Poisson-Gaussian), variance stabilization techniques have first to
be applied [18,21], but their optimal use requires a certain knowledge of the
noise, leading to a chicken-and-egg situation. As an alternative to separation
techniques, Beaurepaire et al. [2] proposed to first identify some homogeneous
regions in the image, on which the noise parameters can be further evaluated. In
order to be independent of the noise statistical distribution, Sutour et al. [22]
proposed a non-parametric method to detect these homogeneous areas. However,
their definition as square blocks does not facilitate their detection, as their shape
makes them unsuited to the image content. The use of patches adapting locally
to the image morphological content would allow a better identification of these
homogeneous regions, and therefore yield a more robust estimation of the NLF.
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This idea of adaptive patches has already been investigated in the literature for
image denoising purposes [9,8], but to the best of our knowledge, it has never
been implemented to estimate the NLF.
In this article, we extend the NLF estimation method developed by Sutour et
al. [22]. More specifically, we no longer seek for square homogeneous blocks, but
we rather search for arbitrarily shaped homogeneous regions based on the tree
of shapes (ToS) [19,1] representation of the considered image. This hierarchical
representation naturally provides areas whose contours follow the level lines of
the image (seen as a topographic map), thus adapted to its morphological content.
We show that the extraction of the most relevant shapes from the ToS allows to
obtain a more robust NLF estimation than in the case of square blocks.
The present article is organized as follows: Section 2 summarizes the method
proposed by Sutour et al. [22]. In Section 3, we introduce our generalized search for
homogeneous regions of arbitrary shapes, based on a Mumford-Shah simplification
of the ToS representation. Qualitative and quantitative comparisons between the
method proposed by Sutour et al. [22] and ours are presented in Section 4, while
Section 5 concludes and draws some perspectives of our work.

2 NLF estimation with square blocks

The NLF estimation proposed by Sutour et al. [22] is decomposed in two steps:

1. the detection of homogeneous square blocks through a non-parametric statis-
tical test based on Kendall τ rank correlation coefficient,

2. the identification of the NLF, i.e. the relation linking the intensity of the
image pixels to the noise variance.

In the following, f : Ω ⊂ Z2 → R will denote an image that associates a numeric
value xi = f(i) to any pixel i ∈ Ω.

2.1 The Kendall τ coefficient

The ith block of pixels bi ⊂ Ω is said to be homogeneous if its pixel values fluctuate
only because of the noise, and not because of the image content. In order not to
depend on any assumption on the nature of the noise, the homogeneous block
detection step is formulated as a non-parametric hypothesis test using the Kendall
τ rank correlation coefficient [15]. Let x ∈ Rn and y ∈ Rn be two sequences of n
observations of two random variables X and Y . The Kendall τ coefficient τ(x, y)
is defined on the interval [−1, 1] by :

τ(x, y) =
1

n(n− 1)

∑
1≤i,j≤n

sign(xi − xj) sign(yi − yj), (1)

with xi 6= xj and yi 6= yj , ∀i 6= j.
In the associated statistical test, τ(x, y) = 0 constitutes the null hypothesis H0

and indicates an absence of correlation between the values of x and y. Equation (1)
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Fig. 1. First four cases: the tested region has a square shape, its pixel values are divided
in sequences x and y following the horizontal, vertical, diagonal, and anti-diagonal
relationships. When the tested region is extracted from the ToS and has an arbitrary
shape (rightmost case), the splitting in sequences x and y is performed randomly.

can be reformulated to take into account any tied pairs (if xi = xj or yi = yj) [14].
Under H0 (absence of correlation between X and Y ), the z-score associated with
τ(x, y) follows a standard normal distribution N (0, 1) [22, Proposition 3.6].
Conversely, the alternative hypothesis H1 is declared when τ(x, y) 6= 0, that is,
when the fluctuation of the pixel values in bi cannot be explained by the noise
only (because of the presence of an edge within the block for instance).

2.2 Detection of homogeneous blocks

In Sutour et al. [22], the studied image is divided in blocks bi of size 16×16 pixels.
The pixel values of each block bi are split in two sequences x and y for which
the Kendall τ coefficient τ(x, y) is computed. If the p-value p = P(τ(X,Y ) >
τ(x, y)|H0) is greater than a predefined detection threshold α, the null hypothesis
H0 is accepted, meaning that the values of the two sequences x and y are
uncorrelated. The block bi is thus declared homogeneous.
In practice, bi is split in K = 4 sequences x(k) and y(k) following the horizontal,
vertical, diagonal and anti-diagonal neighborhood relationships, as displayed
by Figure 1. bi is then declared homogeneous if all K p-values pk exceed the
detection threshold:

min
k

¶
pk = P

Ä
τ(X,Y ) > τ(x(k), y(k)) |H0

ä©
> α. (2)

2.3 NLF estimation

The NLF defines the relation between the intensity of the image pixels and the
variance of the noise corrupting them. Sutour et al. [22] proposed a positively
increasing second degree polynomial relation for the NLF: σ2

i = NLF(a,b,c)(xi) =
ax2i + bxi + c, with (a, b, c) ∈ (R+)3. This notably allows to model the additive
Gaussian noise (whose NLF σ2

i = c is constant, hence (a, b) = (0, 0)), the Poisson
noise (with linear NLF σ2

i = bxi, thus (a, c) = (0, 0)), the multiplicative/Gamma
noise (whose NLF σ2

i = ax2i is parabolic, hence (b, c) = (0, 0)), and their different
mixtures (such as the Poisson-Gaussian noise for instance).
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Fig. 2. Left: input image; Middle: corresponding tree of shapes; Right: Mumford-Shah
simplification where the optimal partition is composed of the level lines of the nodes
circled in blue.

First, the empirical mean µ̂i = E[bi] and empirical variance σ̂2
i = Var[bi] of each

homogeneous block bi are calculated. Following, the NLF coefficients are estimated
as those minimizing the residual error between the empirical variance σ̂2

i and the
variance predicted by the NLF relation NLF(a,b,c)(µ̂i) for all homogeneous block
bi:

(’a, b, c) = argmin
(a,b,c)∈(R+)3

∑
i

‖NLF(a,b,c)(µ̂i)− σ̂2
i ‖1. (3)

Despite being more complex to solve than a L2 minimization (which could
be solved by classical least-square estimation), the L1 minimization used in
equation (3) is more robust to outliers and is solved in practice thanks to the
preconditioned primal-dual Chambolle-Pock algorithm [6].

3 NLF estimation with the tree of shapes

The drawback of searching for homogeneous square blocks is that their shape is
not adaped to the morphological content of the image. Thus, depending on the
input image, it might be complicated to detect sufficiently enough of these blocks
in order to get a robust and precise estimation of the NLF. Here, we relax the
constraint on the shape of the sought homogeneous regions. For that purpose,
we propose to use regions adapted to the image content, extracted from the ToS
representation of the considered image.

3.1 The tree of shapes

The tree of shape (ToS) is a hierarchical structure belonging to the field of
mathematical morphology [19]. For λ ∈ R, we define the lower level set of
f (of level λ) as [f < λ] = {i ∈ Ω | f(i) < λ} and the upper level set as
[f ≥ λ] = {i ∈ Ω | f(i) ≥ λ}. A shape C ⊂ Ω is a connected component belong-
ing to one of these two sets, with its holes filled [13]. The ToS T of an image
encodes the inclusion relationship between the different shapes of the image in a
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Fig. 3. Input noisy image (left) and examples of Mumford-Shah simplifications applied
to its ToS with regularization parameter ν = 500 (center) and ν = 2000 (right).

hierarchical manner. The border ∂Ci of each shape Ci corresponds to a level line
of the image (when seen as a topographic relief). The ToS therefore represents
the inclusion of all level lines of the image, as displayed in Figure 2.
Note that the ToS can be computed very efficiently: an algorithm with a lin-
ear complexity with respect to the number of pixels exists [5], and it can be
parallelized [7].

3.2 Mumford-Shah simplification of the tree of shape

After its construction, the ToS representation is composed of meaningful shapes (in
terms of image content description), but it also contains small and/or meaningless
shapes (notably the leaves and regions close to the root of the tree). Thus, prior
to conducting the homogeneity test, a simplification of the ToS according to the
Mumford-Shah functional is performed in order to filter out those meaningless
shapes. This ToS simplification procedure is based on the Mumford-Shah image
segmentation principle [20]. If π =

⊔
iRi is a partition of Ω, and if f̄i is the mean

value of f on region Ri ⊂ Ω, the (piecewise constant) Mumford-Shah functional
of f on π is defined as

Eν(f, π) =
∑
Ri∈π

Ç∫∫
Ri

(f̄i − f)2dxdy +
ν

2
|∂Ri|

å
, (4)

where |∂Ri| is the length of the border of Ri and ν is a regularization parameter
of the functional. Finding the partition π that minimizes equation (4) without
any further constraint on π remains an arduous and non-convex optimization
task.
When this energy minimization procedure is subordinated to the ToS structure
however, the region borders ∂Ri are fixed since they are defined as the con-
tours ∂Ci of the shapes Ci ∈ T . It thus becomes possible to find the optimal
segmentation with a greedy algorithm that iteratively removes shapes to decrease
the energy functional (see [24] for more details). In practice, the Mumford-Shah
simplification of T yields a simplified ToS T ?ν where some initial shapes have been
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Fig. 4. Illustration of the stages for the NLF estimation from blocks bi and from shapes
Ci.

filtered out, such that the segmentation ∂T ?ν formed by the union of the level
lines of the remaining shapes in T ? minimizes the Mumford-Shah functional (4)
for a given value of the regularization parameter:

T ?ν = argmin
T ′
ν

Eν (f, ∂T ′ν ) , (5)

where T ′ν is a simplified ToS with some shapes of T have been removed, and
∂T ′ν is the partition of Ω that is obtained by taking the union of the level lines
of all shapes in T ′ν . An example of Mumford-Shah simplification is presented in
Figure 2, where the shapes C3 and C7 have been filtered out from the orignal ToS,
leading to the rightmost partition obtained as the union of the level lines of the
remaining shapes (circled in blue).

3.3 Detection of homogeneous shapes

The ToS representation of the noisy input image f is composed of shapes with
very irregular contours, and with a limited depth of inclusion. Thus, we first
smooth f with a Gaussian filter prior to the construction of its ToS. This yields
an increased number of shapes with regularized contours, and a greater depth of
inclusion in the ToS.
The obtained ToS is simplified according to the Mumford-Shah functional for
several values of the regularization parameter ν, yielding several simplified ToS T ?ν
whose shapes are pooled together in a set of candidate shapes C∪ =

⋃
ν {C ∈ T ?ν }

of various sizes and complexities, as illustrated in Figure 3.
The homogeneity test is then conducted on all candidate shapes Ci ∈ C∪ with the
pixel values of the noisy image f(Ci) and not those of the filtered image. In order
to compute the Kendall τ(x, y) coefficient, it is necessary to divide the values
of the pixels in Ci in two sequences x and y. However, the shape of Ci being
arbitrary (as opposed to a square block of 16× 16 pixels), it does not guarantee
the validity of the neighborhood relationships used by Sutour et al. [22]. The
division into two sequences x and y is therefore done randomly (by imposing that
the two sequences are of the same length, potentially dropping one pixel if the
total number of pixel values to be split is odd). This random splitting strategy, as
opposed to the horizontal, vertical, diagonal, and anti-diagonal splitting applied
to square blocks, is illustrated in Figure 1. In practice, the random division in
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Fig. 5. Images building, city, cobble, monument, shell and wall.

sequences x(k) and y(k) is repeated K times in order to mitigate stochastic effects,
and K p-values pk of coefficients τ(x(k), y(k)) are calculated. The shape Ci is
stated to be homogeneous if the 2nd order statistic (the second smallest p-value)
pk(2) exceeds the detection threshold α (in order to prevent the case where a
test would be rejected only because of a particular arrangement of the division
and not due to the inhomogeneity of the considered shape). The empircal mean
µ̂i and variance σ̂2

i of all homogeneous shapes further lead to the estimation of

the NLF coefficients (’a, b, c) according to Equation (3). These different steps are
illustrated in Figure 4.

4 Results

4.1 Experimental set-up

We evaluate our method on 6 images of dimensions 720× 540 pixels shown in
Figure 5. These are extracted from a high definition image database1, for which
the acquisition noise can be neglected. They were chosen to be as representative
as possible in terms of morphological content, i.e., to feature large homogeneous
areas as well as small details and some textured regions. More precisely, we
evaluate the robustness and the accuracy of the NLF estimated by our approach
and by the method of Sutour et al. [22]. In a first step, we assess the robustness of
the estimated NLF to the nature of the added noise. For that purpose, we add a
non-mixed noise of varying intensity (setting to 0 the other two coefficients of the
NLF), and we evaluate the ability of the NLF estimation method to practically
estimate the right coefficient to be nonzero. If a Gaussian noise was added for
instance, (a, b) = (0, 0) in the corresponding NLF, and we thus check that it is

1 http://www.gipsa-lab.grenoble-inp.fr/̃laurent.condat/imagebase.html
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Table 1. Number of times (among the 6 trials) each NLF estimation method correctly
retrieves the nature of the noise.

building city cobble monument shell wall

With blocks [22] 1/0/1 0/1/3 0/0/0 6/0/0 0/1/0 0/0/1

With shapes 6/4/4 4/3/5 4/2/6 0/5/4 2/3/6 0/0/6

also the case in the estimated NLF.
In a second step, we evaluate the estimation accuracy by artificially adding
a mixed noise whose coefficients a, b and c (controling the NLF) are derived
from a normal law N (0.01, 0.003) with mean 0.01 and standard deviation 0.003
(rounding to 0 negative coefficient). Note that the pixel values have been rescaled
in the [0 : 1] interval beforehand. In order to measure the estimation quality
of NLF parameters, we calculate the mean relative error (MRE) between the
reference NLF(a,b,c) and the estimated NLF

(â,b,c)
by

MRE(’a, b, c) =
1

|I|
∑
xi∈I

|NLF(a,b,c)(xi)−NLF
(â,b,c)

(xi)|
NLF(a,b,c)(xi)

, (6)

where I is a discretization of the pixel intensities interval [0 :1] in the image.
In any case, each noisy image is pre-filtered by a Gaussian filter with variance
σ = 1 on which is built the ToS. The latter is simplified according to the
Mumford-Shah functional, and we set the regularization parameter ν to be
200, 500, 1000, 2000 and 5000. In the resulting simplified images, we consider only
the shapes Ci whose size is greater than 250 pixels, on which the homogeneity test
is conducted. This minimum size guarantees a reliable estimate of the Kendall
coefficient of Ci, as well as its empirical mean µ̂i and variance σ̂2

i (note that
in [22], the minimum size for a block bi is 16× 16 = 256 pixels). For each shape,
the pixel values are randomly split K = 10 times in sequences x(k) and y(k),
therefore leading to K = 10 Kendall tests. The second smallest p-value pk(2) is
used to validate the homogeneity of the shape, namely whether it exceeds or
not the detection threshold α fixed at α = 0.4. This very restrictive detection
threshold allows to really guarantee the homogeneity of all shapes detected as
such.

4.2 Robustness of the estimated NLF

To evaluate the capacity of the NLF estimation method to retrieve the correct
nature of the noise polluting the input image, we add a non-mixed noise of varying
intensity, setting the other two parameters at 0 in the NLF. For each type of
noise (multiplicative, Poisson, Gaussian), its associated parameter in the NLF (a,
b and c, respectively) is set successively to 0.01, 0.015, 0.02, 0.025, 0.03 and 0.5
and we count how many times (among those 6 settings) the two NLF estimation
methods practically estimate only the correct coefficient to be nonzero (note that
we do not focus here on the accuracy of this estimated nonzero coefficient).
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Table 2. Mean and standard deviation (in parenthesis) of the MRE between the
reference NLF and the estimated NLF using square blocks and using shapes from the
ToS. The given percentage corresponds to the number of times (with respect to the
20 draws) the use of shapes yields a NLF estimation with lower MRE than the use of
square blocks.

building city cobble monument shell wall

With blocks [22]
0.0481 0.0926 0.8701 0.2235 0.1212 0.1075

(0.0234) (0.1007) (0.7031) (0.0966) (0.0743) (0.1064)

With shapes

0.0349 0.0462 0.0346 0.0552 0.0385 0.0513
(0.0134) (0.0116) (0.0121) (0.0201) (0.0124) (0.0102)

65% 85% 100 % 95% 100% 75%

Table 1 presents the obtained results, where a x/y/z entry means that the
multiplicative noise ((b, c) = (0, 0)) has been correctly identified x out of 6 times,
the Poisson noise ((a, c) = (0, 0)) has been correctly identified y out of 6 times,
and the Gaussian noise ((a, b) = (0, 0)) has been correctly identified z out of
6 times. Except for the multiplicative noise a on the image monument, our
proposed NLF estimation method consistently obtains better results than the
NLF estimated by square blocks. Note also that, in general, the estimation of
a Gaussian noise seems much easier than for a multiplicative noise or Poisson
noise, for which the L1 minimization seems in general not to succeed nulling the
c coefficient (corresponding to the offset).

4.3 Accuracy of the estimated NLF

To assess the accuracy of the estimated NLF coefficients, we add a mixed noise
whose parameters a, b and c are drawn from a normal law N (0.01, 0.003) with
mean 0.01 and standard deviation 0.003. We then compute the MRE between

the true parameters (a, b, c) and the ones (’a, b, c) that have been estimated using
square blocks and shapes extracted from the ToS. We repeat this experiment
20 times for each image, and report in Table 2 the overall mean and standard
deviation of the obtained MRE for both methods, as well as the percentage of
times (with respect to the 20 draws) the NLF estimation based on shapes yields
a lower (hence, better) MRE than its square blocks counterpart.
For the six studied images, the estimated NLF using shapes from the ToS
consistently outperforms the NLF estimated with square blocks in terms of mean
MRE, and with lower standard deviation. In the tighter case (being the building
image), the proposed method still provides better results than the one of Sutour
et al. [22] 13 times out of the 20 different draw (65%). This confirms sfrom a
quantitative standpoint that the use of shapes adapted to the image content
yields a more reliable and more robust estimation of the NLF.
To get a qualitative insight of this conclusion, Figure 6 presents the square
blocks and shapes detected as homogeneous for the building image polluted
with a mixed noise of coefficients (a, b, c) = (1.22.10−2, 0.82.10−2, 0.82.10−2),
as well as the estimated NLF coefficients in each case. In the first case, 104
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Fig. 6. First row: blocks detected as homogeneous for a mixed noise added to the
building image (left) and estimated NLF compared to the reference NLF (right). Second
row: shapes detected as homogeneous for the same noise (left), and corresponding
estimated NLF compared to the reference NLF (right).

square blocks were detected as homogeneous, leading to the coefficient estimates

(’a, b, c) = (1.12.10−2, 1.07.10−2, 0.85.10−2) and a MRE of 7.56.10−2. In the
second case, 81 homogeneous shapes were detected from the various Mumford-
Shah simplifications of the ToS constructed on the building image, leading to

(’a, b, c) = (0.93.10−2, 0.98.10−2, 0.78.10−2) for the NLF coefficient estimation and
a MRE of 2.96.10−2. While the number of homogeneous regions used to estimate
the NLF coefficients is of the same order of magnitude for both competing
methods (although being smaller when using the ToS), the size of the detected
homogeneous regions drastically differs. In [22], square blocks are limited to
16 × 16 = 256 pixels since the image content is unknown a priori and cannot
be assumed to comprise large homogeneous areas. Since this limitation vanishes
with the use of regions adapting to the image content, shapes of significantly
larger sizes are detected as homogeneous. This lead to a more precise evaluation
of their empirical mean µ̂i and variance σ̂2

i since more samples are used, hence
a less vertically dispersed scatterplot {(µ̂i, σ̂2

i )}, as it can be seen on Figure 6,
resulting in a more accurate and more robust estimation of the NLF coefficients
with fewer regions.
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5 Conclusion

In this article, we have presented an extension of the method of Sutour et al. [22]
to estimate the NLF of some noisy images. The key idea is to replace the search
for homogeneous square blocks by that of homogeneous shapes, extracted from a
tree of shapes simplified using the Mumford-Shah functional. As a consequence,
the computation of the noise statistics is performed on regions adapted to the
morphological content of the image, making the NLF estimation more robust
and more accurate. Eventually, we are able to better identify the nature and
characteristics of the noise polluting the image. A major perspective of our work
is to adapt the NLF estimation to color images, since a definition of the tree of
shapes already exists for multivariate images [4].
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