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Abstract—Noise level information is crucial for many image
processing tasks, such as image denoising. To estimate it, it is
necessary to find homegeneous areas within the image which
contain only noise. Rank-based methods have proven to be
efficient to achieve such a task. In the past, we proposed a
method to estimate the noise level function (NLF) of grayscale
images using the tree of shapes (ToS). This method, relying on
the connected components extracted from the ToS computed on
the noisy image, had the advantage of being adapted to the image
content, which is not the case when using square blocks, but is
still restricted to grayscale images. In this paper, we extend our
ToS-based method to color images. Unlike grayscale images, the
pixel values in multivariate images do not have a natural order
relationship, which is a well-known issue when working with
mathematical morphology and rank statistics. We propose to use
the multivariate ToS to retrieve homogeneous regions. We derive
an order relationship for the multivariate pixel values thanks to
a complete lattice learning strategy and use it to compute the
rank statistics. The obtained multivariate NLF is composed of
one NLF per channel. The performance of the proposed method
is compared with the one obtained using square blocks, and
validates the soundness of the multivariate ToS structure for this
task.

I. INTRODUCTION

During acquisition, natural images may be corrupted by
some noise due to physical phenomena. Knowledge of the
parameters of this noise related to the image pixels intensity,
called noise level, is important for image processing applica-
tions such as denoising [1], segmentation [2], super-resolution
[3] or image compression [4] and can greatly improve the
performance of these algorithms. Furthermore, knowledge of
the statistical nature of the noise is also important as it changes
the way these applications are processed.

In the past, several methods to estimate the noise level
have been proposed. Some of them separate the noise from
the image content, either in the case of a signal-independent
noise [5] or a signal-dependent noise such as the Poisson-
Gaussian noise [6], using a variance stabilization method. With
the increasing usage of deep learning based methods for image
processing algorithms, some noise level estimations relying
on convolutional neural networks were recently proposed,
usually in the context of noise removal, for additive Gaussian
noise either independent and identically distributed [7], [8] or
not [9], [10]. Even though these methods are very effective,
they still require knowledge of the statistical nature of the

noise beforehand. Beaurepaire et al. [11] propose to first
identify the nature of the noise and then estimate its level by
analizing statistics on patches of image, but it did not allow
to represent a mixed noise. Finally, Sutour et al. [12] propose
a method to estimate a noise level function (NLF) [13], repre-
sented as a quadratic function, from statistics computed from
homogeneous square patches detected by a non-parametric
statistical test, which is extended by Esteban et al. [14] to
homogeneous regions to fit the image content. However, this
method is still limited to univariate images.

In this paper, we propose to extend our previous method
to color images, solving the issues raised by the multivariate
pixel values such as the lack of natural order relationship using
a rank map resulting from a learned complete lattice [15]
and the usage of the multivariate tree of shapes [16] for the
image simplification. Furthermore, we improve the detection
of homogeneous regions, using the adjacency relationship as
in [12]. Then, we define a noise level function for color
images constrained to the case where the noise is not correlated
between the channels. Finally, we evaluate the performance of
our proposed method on a benchmark of 150 natural color
images.

Thus, this paper is structured as follow: first, we recall the
estimation of the NLF for univariate images in Section II.
Then, its extension to color images is described in Section III.
We measure the performance of this extension by comparing
it with different methods in Section IV. Finally, we conclude
in Section V.

II. ESTIMATION OF THE NLF FOR UNIVARIATE IMAGES

This section recalls the main steps of [14] for the region-
based NLF estimation using the tree of shapes. The noise level
of an image represents the variance of the noise related to
the pixel intensities of this image. It may be represented as a
function, the noise level function (NLF) [13]. This function is
modeled as a quadratic function by Sutour et al. [12], where
each coefficient corresponds to the variance of one type of
statistical noise.

Let θ = (a, b, c) ∈ (R+)3. The noise level function of an
image is defined as

σ2 = NLFθ(x) = ax2 + bx+ c (1)
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Fig. 1: Illustration of the simplification of the ToS

where σ2 is the variance of the noise for a pixel with an
intensity x. The coefficient a is related to a multiplicative
noise, b to a Poisson noise and c to an additive gaussian noise.
Thanks to this representation, it is possible to represent a single
noise (for an additive gaussian noise, (a, b) = (0, 0) and c > 0)
or a mixed one.

A. The tree of shapes

The tree of shapes (ToS) [17], denoted by T , is a hierarchi-
cal representation encoding the inclusion relationship of the
connected components of an image. Let f : Ω → R be an
image defined on a domain Ω ⊂ Z2. The upper level set is
defined as [f ≥ λ] = {x ∈ Ω|f(x) ≥ λ} and the lower level
set as [f < λ] = {x ∈ Ω|f(x) < λ}. A shape C ⊂ Ω is a
connected component belonging to one of these sets with its
holes filled. Fig. 1b illustrates the ToS of the image Fig. 1a.

Furthermore, the contours of the shapes, denoted by ∂C,
represent the level lines in the image. Thus, the ToS also
encodes the inclusion relationship of the level lines of an
image. Finally, the ToS is computed with a linear complexity
[18].

B. Simplification of the ToS

The meaningfulness of a shape can be its importance in
the description of the image. A meaningfulness measure is
the average gradient magnitude along the contour of a shape,
which represents a level line of the image. Thus, removing
meaningless shapes from the ToS is a simplification process.

A mean to simplify the ToS rely on the piecewise-constant
Mumford-Shah functional [19]. It is defined as below:

E(R) =
∑
Ri∈R

∑
x∈Ri

∥f̃(Ri)− f(x)∥22 + λ|∂R| (2)

with R = ⊔Ri for Ri a connected component in the domain
of f , f̃(Ri) is the mean of the values inside a region Ri,
∂R = ∪∂Ri is the union of the boundaries of each region Ri

and λ is a regularization parameter.

When the minimization of this functional is subordinated
to the ToS, the process of simplification consists in selecting
a subset of level lines. Thus, the regions boundaries are then
fixed to the level lines ∂Ci. Formally, the minimization process
is given by:

min
Ts

E(Ts) (3)

where Ts is the simplified ToS. This simplification process
is illustrated Fig. 1c, where the blue dashed lines are related
to the parenthood relationship before the simplification and
the plain blue line to this relationship after. The resulting
reconstructed image Fig. 1d illustrates the impact of the
removal of the node C in T . An algorithm has been proposed
by Xu et al. [20] to simplify the ToS, sorting the level lines
in a meaningful order and iteratively removing the shapes to
decrease the energy of the functional.

C. Detection of homogeneous regions

Once the ToS has been simplified, the connected compo-
nents whose size is above a given threshold are extracted
and their homogeneity is tested. A region is homogeneous
if it contains only noise, meaning that pixel values are not
correlated between them. This correlation is measured using
the Kendall τ rank correlation coefficient [21].

Let (x, y) ∈ (Rn)2 be two sequences of observations of
size n of two random variables X and Y and xi ∈ x is the
ith value of x and yi ∈ y be the ith value of y. The Kendall
τ rank correlation coefficient is defined on the interval [−1, 1]
by:

τ(x, y) =
1

n− 1

∑
1≤i,j≤n

sign(xi − xj) sign(yi − yj) (4)

for xi ̸= xj and yi ̸= yj . Furthermore, the definition of the
Kendall τ has been extended to take into account tied pairs
(xi = xj or yi = yj) [22].

The detection of homogeneous regions relies on a statistical
test associated with the Kendall τ . Under the null hypothesis
H0, stating the absence of correlation between the two se-
quences x and y (τ(x, y) = 0), the z-score associated to the
Kendall τ follows a standard normal distribution N (0, 1). In
contrast with H0, the alternative hypothesis H1 is declared
when τ(x, y) ̸= 0, indicating the fluctuation of the values
cannot be explained by the noise only.

To perform the detection, a region is divided randomly into
two sequences x and y of n pixels several times. The p-value
p = P(τ(X,Y ) > τ(x, y) | H0) is computed for all divisions
and if the second smallest p-value is superior to a predefined
level of detection α, the region is considered homogeneous.
In practice, each region is divided randomly 10 times.

D. Estimation of the NLF

The NLF estimation is a 3 steps process: the segmentation
of the image, the statistical test on the connected components
extracted from these segmentations and the estimation of the
NLF using statistics computed from the homogeneous regions.



The segmentation process is as follow: first, the image is
blurred with a gaussian kernel, reducing the amount of level
lines in the image. Then, a ToS is built on this blurred image.
This ToS is simplified using the Mumford-Shah functional
with various values of the regularization parameter λ. This
allows to obtain image segmentations of various simplification
scales, with regions of different size. The number of removed
shapes in the tree increases with the value of the regularization
parameter λ, resulting in a more simplified reconstructed
image.

Then, the homogeneity of the regions extracted from the
simplified ToS is tested using the Kendall τ , but using the
pixel values of the noisy image to conduct the rank-based
test. The first and second order statistics, denoted respectively
by µ̂ and σ̂2 of those homogeneous regions are computed,
leading to information about the noise. From Eq. 1, the NLF
is the variance of the noise related to pixel intensity. Thus, the
NLF is estimated by minimizing the residual error between the
empirical variance of a region σ̂2

i and the variance predicted
by the relation NLFθ(µ̂i) for all homogeneous region:

θ̂ = ̂(a, b, c) = argmin
θ∈(R+)3

∑
i

∥NLFθ(µ̂i)− σ̂2
i ∥1 (5)

The minimization is performed using the preconditionned
primal-dual algorithm of Chambolle-Pock [23], relying on a
L1 minimization since it is more robust to outliers than a L2

minimization.
Comparative results between the block-based estimation

from Sutour et al. and the estimation described in this section
were presented in [14] and demonstrated the pertinence in
using regions adapted to the image content instead of square
blocks.

III. EXTENSION OF THE ESTIMATION TO COLOR IMAGES

Color images suffer from the multivariate nature of their
values. Rank-based statistics and mathematical morphology
are two fields strongly relying on the rank of the considered
values. However, multivariate values do not have a natural
ordering, which is a well known and studied issue in mathe-
matical morphology [24]. In order to make it possible to esti-
mate the NLF for color images, we use tools from multivariate
mathematical morphology: first, the ToS has been extended
to multivariate images, resulting in the multivariate ToS [16],
its construction depending on the inclusion relationship of the
shapes obtained from the channelwise ToSs. Then, we propose
to construct a total ordering on the pixel color values using
a complete lattice learning approach [15], which allows us
to extend the computation of the Kendall τ rank correlation
coefficient.

A. Rank transform based on complete lattice learning

Let f : Ω → I ⊂ Rn be a multivariate image defined on
a domain Ω and I its pixel values set containing m vectors
of n element in R. A rank transform R : I → [1,m] is a
mapping from an element of I to its rank according to the
order relationship endowing I . This operation requires I to

(a) An image f : Ω → I ⊂ R3 (b) Rank map Rf

(c) Projection hD for the val-
ues in the dictionary D

(d) Projection h for the values
of f

Fig. 2: Illustration of the complete lattice learning to obtain
the rank map Rf

be a complete lattice, denoted by (I,≤), where ≤ is the total
ordering relationship between two elements of I . This ordering
does not exist naturally for multivariate values.

Lezoray [15] proposes to solve this issue by using an
unsupervised h-ordering. A h-ordering, denoted by ≤h, is the
application of a bijective projection h : I → L such that, for
any two elements u, v ∈ I, u ≤h v ⇔ h(u) ≤ h(v). Thus,
I does not need to be a complete lattice anymore, since the
ordering relationship depends on the elements of L.

The construction of the projection h is a three steps process.
First, a dictionary D of p ≪ m elements is extracted out of the
whole amount of data using a vector quantization algorithm
(such as the k-means clustering algorithm for instance). This
quantization is necessary due to the complexity of the manifold
learning algorithm, which is quadratic with the number of
input samples.

The new representation is constructed through dimension-
ality reduction thanks to the Laplacian Eigenmaps [25]. To
this aim, the pairwise similarity between each element of the
dictionary is computed using a Gaussian kernel, resulting in
a similarity matrix SD. The similarity matrix can be seen
as the adjacency matrix of a graph, where each node is an
element of D. The diagonal degree matrix, denoted by DD,
is the sum of the weights of the edges connected to each
node such that (DD)ii =

∑
j(SD)ij . Using these matrices,

the Laplacian matrix is obtained computing LD = DD − SD.
The new representation is finally obtained by computing the
eigenvectors of the normalized Laplacian matrix defined as
follows:

LD = D
− 1

2

D LD D
− 1

2

D (6)

The obtained representation, denoted by hD, is defined by
hD(ci) = (ϕ1

D(ci), ..., ϕ
p
D(ci)) where ci is the ith element
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of D and ϕj
D is the jth eigenvector of LD, with ϕj

D(ci) its
value at index i. However, it is only valid for the dictionary
values resulting from the vector quantization. Consequently, it
needs to be extended to all image values. This is done using
the Nyström extension [26]. For ΦD the matrix of the eigen-
vectors, ΛD the diagonal matrix of eigenvalues obtained by
the eigen-decomposition of the normalized Laplacian matrix
and DI is the diagonal degree matrix computed from I , the
Nyström extension is defined by:

ΦI = D
− 1

2

I ST
DD

− 1
2

D ΦDΛ−1
D (7)

The projection h is defined as h(v) = (ϕ1
I(v), ..., ϕ

p
I(v))

where v ∈ I and ϕi
I is the ith extrapolated eigenvector of the

normalized Laplacian matrix for all the values in I . Finally, the
complete lattice (I,≤) is obtained by using the lexicographic
ordering on this new representation and the rank map Rf

resulting from the application of the rank transform on the
image f is computed. The results of each step of the complete
lattice learning to obtain the rank map are illustrated in Fig.
2. Instead of computing the Kendall τ directly on the image
value, this rank map is used.

B. Multivariate Tree of Shapes

Instead of using the total ordering provided by the rank
map, the ToS is extended to multivariate images by using
the inclusion relationship between the shapes provided by the
channelwise ToSs. This new representation, proposed by Car-
linet et al. [16], is the multivariate tree of shapes (MToS). Its
computation, described below, is composed of two major steps:
the computation of a graph of inclusion and the extraction of
a new tree from this graph.

First, the ToS Ti of each channel fi is computed, with Ci its
associated set of shapes. Then, these trees are merged into a
graph of shapes G, which is a directed acyclic graph. Its edges
represent the inclusion relationship between the connected
components of a given channel as for the ToS, but also the
inclusion of the shapes between the channelwise ToSs. The
root of the trees, representing the whole image, constitutes
the root of this graph. Thus, for C =

⋃
i Ci, the set (C,⊆) is

the cover of G.
The second step consists in extracting a tree from G. First,

the depth attribute is computed. As G is a directed acyclic
graph, this attribute corresponds to the longest path from a

(a) (b) (c) (d) (e)

Fig. 4: Region division schemes into two sequences x and y

node to the root of G. Then, a depth map is built, associating
to each point of the original image the maximum depth value
of the nodes associated to the current point. Finally, a max-
tree is built on the depth map, ensuring that the components
of the upper level set of the map are valid shapes by applying
a hole-filling operator. The resulting tree is MToS. The MToS
computation is summarized in Fig. 3.

C. Estimation of the color noise level function

The NLF defined by (1) is a valid representation
for univariate images, but does not allow to repre-
sent the noise level for color images. Let CNLF(x) =
(NLFθr (xr),NLFθg (xg),NLFθb(xb)) be the color noise level
function (CNLF) where x ∈ R3 is a multivariate pixel
value and subscript r, g, and b correspond respectively to
the red, green and blue channels of the color image. This
representation assumes that the noise is not correlated between
the channels.

The tools described previously are used to extend the
estimation of the NLF to color images. First, the MToS
is used instead of the ToS. It provides the simplifications
to extract the connected components. Then, each connected
component is divided into two sequences using the adjacency
relationship scheme proposed in Sutour et al. [12]. Thus, the
division is processed 4 times, using the adjacent relationship
as illustrated by Fig. 4a to 4d for the horizontal, vertical and
the two diagonal directions, and the Kendall τ rank correlation
coefficient is computed using the rank map obtained from a
rank transform on the original image.

Finally, the empirical mean and variance are computed on
each channel for the detected homogeneous regions and the
minimization problem expressed by equation (5) is solved
channelwise using the Chambolle-Pock algorithm.
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Fig. 5: Comparison of the MRE of the shape-based estimation using a random division and an adjacency-based division For
a matter of style, one point has been removed from the plots, respectively at (5.7, 2.2), (7.8, 10.4) and (6.1, 8.0).

IV. RESULTS

A. Experimental set-up

Following what is done in [12] and [14], we use the mean
relative error (MRE) to compare two CNLF channelwise in the
following experiments. Let NLFθ be the NLF corresponding
to a known set of parameters θ = (a, b, c) and NLFθ̂ be the
estimated NLF. The MRE is defined as:

MRE(θ̂) =
1

|I|
∑
x∈I

|NLFθ(x)− NLFθ̂(x)|
NLFθ(x)

(8)

where I is the set of pixel values of the image. The lower
the MRE, the better the estimation. The experiments are
performed on all 150 images from the Laurent Condat image
database1, where the acquisition noise in the high definition
images can be neglected, making this dataset ideal to experi-
ment on noise estimation tasks.

In the following experiments, the images from the bench-
mark data set are first polluted by a mixed noise with a
given CNLF where the coefficients θi = (ai, bi, ci) are picked
from a standard normal law N (0.01, 0.003). Following what
is done for grayscale images in [12], [14], the minimum
size of the tested regions is set to 250 and the detection
level α to 0.4. The MToS is simplified with a Mumford-Shah
regularization parameter λ empirically set to 200, 500 and 700.
To evaluate in practice the robustness of the proposed method,
this experiment (adding a mixed noise, estimating the NLF,
measuring the MRE) is repeated 20 times per image in the
benchmark, for 20 different drawings of the noise parameters
(a, b, c), and the average MRE for each channel of the image
is computed. In order to present concisely and qualitatively the
results obtained on the whole benchmark, we use 3 scatterplots
(on per channel) where x-axis and y-axis support the average
MRE for the two methods being compared. Thus, a point
above the plotted blue line corresponds to better results for
the method supported by the x-axis in the scatterplot.

B. Evaluation of the division scheme

In [12], Sutour et al. propose to use the adjacency schemes
to perform the division of blocks into sequences x and y.

1https://lcondat.github.io/imagebase.html
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Fig. 6: Summary of the estimation pipeline

Because the regions extracted from the ToS do not have regular
shapes allowing these division schemes, we propose in [14]
to perform a random splitting instead, illustrated by Fig. 4e.
In the current work, we compare the random splitting of
[14] with the adjacency-based division of [12], adapted to
the irregular morphology of the shapes extracted from the
MToS. Even though the random division gave better results
than the adjacency-based division of blocks for grayscale
images, the adjacency relationship improves the accuracy of
the estimation, according to the average channelwise MREs.
Thus, for the red, green and blue CNLF components, the
average MRE of the adjacency-based division scheme is better
for respectively 146, 149 and 147 images.

C. Comparison with a block-based estimation

In order to be concordant with the experiments performed
in [14], we evaluate the accuracy of the proposed CNLF
estimation with an extension of the block-based estimation
proposed in [12]. The difference between the two compared
methods is illustrated in Fig. 6. The block-based estimation
divides the image into several square blocks. Each block is
then split into two sequences of pixels using an adjacency-
based scheme. The statistical test is then performed on these
sequences, but instead of using the rank map resulting from
a rank transform, the Kendall τ rank correlation coefficient
is computed on the pixel intensity values of each channel,
since it turned out to be more efficient for the block-based
estimation. A block is declared homogeneous if all the three
channelwise statistical tests are concordant and in favor of
homogeneity. In order to attain an overall detection level
of α, this detection level is lowered to α/3 for the three
channelwise tests. Futhermore, we extended the automatic

https://lcondat.github.io/imagebase.html
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Fig. 7: Comparison of the MRE between the block-based channelwise estimation and the region-based estimation. For a matter
of style, one point has been removed from the plots, respectively at (3.9, 0.9), (5.0, 1.0) and (2.1, 1.0).

block size decrease by imposing the same criteria as in [12]
for every channel.

Quantitative results between the region-based estimation
and the block-based estimation are shown in Fig. 7. For the
red, green and blue CNLF components, the average MRE
is better for respectively 147, 137 and 139 images. These
results confirm that using the MToS to adapt the detection
of homogeneous areas to the various content of the 150
benchmark images improves the performance of the estimation
compared to the usage of blocks.

Furthermore, the difference between the estimations for
one image is illustrated in Fig. 8. The homogeneous regions
shown in Fig. 8b are extracted from all simplifications. In
the plots of the resulting CNLF in Fig. 8c and 8e, there
is less statistical samples (19 samples) used to estimate the
channelwise NLF for the region-based estimation than for
the block-based estimation (46 samples) but they are more
precise and the estimated channelwise NLFs, in plain lines in
the plot, are closer to the reference NLFs, in dashed lines,
used to add noise to the image. The MREs obtained with
the proposed estimation are for each channel respectively
0.036, 0.039 and 0.048, which are better than the block-
based estimation’s MREs, which are 0.118, 0.067 and 0.115.
This confirms that using content-adapted homogeneous areas
is more efficient than using blocks, even though the number
of statistical samples is fewer. The obtained regions are larger
than the fixed size blocks, resulting in more precise statistical
means and variances used to estimate the CNLF.

The computational time for the block-based estimation
ranges between 1.3 and 102.4 seconds, depending whether
the block size was automatically decreased or not. For our
proposed method, the computational time in around 66.4
seconds in total, decomposed as 10.4 seconds for the MToS
computation and simplifications, 41.8 seconds for the complete
lattice learning resulting in the rank map, 14.2 seconds for
the homogeneous regions detection and 0.007 seconds for the
minimization of Eq. 5.

V. CONCLUSION

In this article, we proposed to extend our previous method
to estimate the NLF with the ToS and rank statistics to color
images. Issues were raised by the multivariate nature of color
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Fig. 8: Illustration of the region-based estimation and the
block-based estimation

pixel values. To solve them, we first used the MToS to get the
simplifications of an image which minimize the Mumford-
Shah functional from which the regions are extracted. The
homogeneity of these regions is tested by computing the
Kendall τ on a rank map resulting from a learned complete
lattice. Finally, we have compared the performance of the
proposed method with other estimations by comparing their
results obtained on a set of 150 benchmark images.

However, this method extracts a partition of the tree which is
optimal in the sense of the Mumford-Shah functional, but this
partition depends on the value of a regularization parameter
which greatly impacts the MToS simplification. Thus, only a
subset of the regions contained in the MToS are effectively
tested. Consequently, in our future work, we will extend
the search for homogeneous areas to all regions contained
in the tree structure. Furthermore, we will consider another
kind of hierarchical structure being hierarchy of partition,
whose construction relies on dissimilarity measures between
neighborhing regions (and not on the absolute values of their
pixels), and which lend themselves better to multivariate data.
As the noise is often correlated between channels in real image
processing applications, we plan to extend our CNLF model
to correlated noise between channel and estimate it using the
detected homogeneous regions, these ones handling the values
of the three channels.
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