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Abstract
We prove a Kleene theorem for higher-dimensional automata (HDAs). It states that the languages
they recognise are precisely the rational subsumption-closed sets of interval pomsets. The rational
operations include a gluing composition, for which we equip pomsets with interfaces. For our proof,
we introduce HDAs with interfaces as presheaves over labelled precube categories and use tools
inspired by algebraic topology, such as cylinders and (co)fibrations. HDAs are a general model of
non-interleaving concurrency, which subsumes many other models in this field. Interval orders are
used as models for concurrent or distributed systems where events extend in time. Our tools and
techniques may therefore yield templates for Kleene theorems in various models and applications.
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1 Introduction

Higher-dimensional automata (HDAs) were introduced by Pratt and van Glabbeek as a general
geometric model for non-interleaving concurrency [21,23]. HDAs support autoconcurrency and
events with duration or structure, whereas events in interleaving models must be instantaneous.
They subsume, for example, event structures and safe Petri nets [24]. Asynchronous transition
systems and standard automata are two- and one-dimensional HDAs, respectively [12]. We
have recently used van Glabbeek’s (execution) paths [24] to relate HDAs with certain
languages of interval posets [6]. Yet a precise description of these languages in terms of a
Kleene theorem has so far been missing. Our main contribution is the formalisation and
proof of such a theorem.

HDAs consist of cells and lists of events that are active in them. Zero-dimensional cells
represent states in which no event is active; 1-dimensional cells represent transitions in which
exactly one event is active – as in standard automata. Higher n-dimensional cells model
concurrent behaviours with n active events. As an example, Fig. 1 shows an HDA with cells
of dimension ≤ 2. The cells x and y, for instance, have active events [ a

b ] and [ a
c ], respectively.

Cells at any dimension may serve as start and accept cells. In Fig. 1, these are marked
with incoming and outgoing arrows. Lower dimensional cells or faces are attached to higher
dimensional ones using lower and upper face maps. These indicate further when individual
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Figure 1 HDA with two 2-dimensional cells x and y connected along transitions and modelling
parallel execution of a and (bc)∗. Middle: unfolded view; right: three accepting paths.

events start or terminate. In Fig. 1, the lower face δ0
a(x) of x is the lower b-transition in

which a is not yet active; its upper face δ1
a(x) is the upper b-transition in which a is no longer

active. Further, δ1
b (x) = δ0

c (y) and δ1
c (y) = δ0

b (x).
Executions of HDAs are (higher-dimensional) paths [24]: sequences of cells connected

with operations of starting and terminating events. Every path α is characterised by ordering
the events ev(α) that occur in it with respect to precedence. This always yields interval
orders. In addition, ev(α) is equipped with source and target interfaces, which model events
active in the initial and final cell of α, respectively, and a secondary event order, which
captures the list structure of events in cells. We call (isomorphism classes of) such labelled
posets with interfaces and an event order ipomsets. The language of an HDA is then related
to the set of (interval) ipomsets associated with all its accepting paths – from start to
accept cells [6]. Languages of HDAs must in particular be down-closed with respect to less
concurrent executions, modelled by a subsumption preorder. This motivates the definition of
(interval ipomset) languages as subsumption-closed sets of interval ipomsets.

Kleene theorems usually require a notion of rational language. Here it is based on the
union ∪, gluing (serial) composition ∗, parallel composition ∥, and (serial) Kleene plus +

of languages. These definitions are not entirely straightforward, as down-closure and the
interval property must be preserved. In particular, ∗ is more complicated than, for instance,
the standard series composition of pomsets due to interfaces. Without interfaces, it would
reduce to the latter. We consider finite HDAs only and thus can neither include the parallel
Kleene star nor the full serial Kleene star as a rational operation. The latter contains the
identity language, which requires an HDA of infinite dimension.

Our Kleene theorem shows that the rational languages are precisely the regular languages
(recognised by finite HDAs). To show that regular languages are rational, we translate
the cells of an HDA into a standard automaton and reuse one direction of the standard
Kleene theorem. Proving that rational languages are regular is harder. Regularity of ∪ is
straightforward, and for ∥, the corresponding operation on HDAs is simply a tensor product.
But ∗ and + require an intricate gluing operation on HDAs along higher-dimensional cells.

Beyond the Kleene theorem, three further contributions seem of independent interest.
We model HDAs as presheaves on novel precube categories that feature events and labels in
the base category. These are equivalent to standard HDAs [24], but constructions become
simpler and the relation between iposets and precubical sets clearer.

We also introduce iHDAs – HDAs with interfaces – which may assign events to source or
target interfaces. Target events cannot be terminated: they either remain active at the end
of an execution or do not appear at all. By opposition, source events cannot be “unstarted”:
they are either active at the beginning of an execution or do not appear at all. Additionally,
all events of start cells are source events and all events of accept cells, target events. Every
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HDA can be converted into an equivalent iHDA (recognising the same language) and vice
versa, using operations of resolution and closure. Both models play a technical role in our
proofs, and we frequently switch between them.

Another tool used in the Kleene theorem is motivated by algebraic topology. We introduce
cylinder objects and show that every map between (i)HDAs can be decomposed into an
(initial or final) inclusion followed by a (future or past) path-lifting map. This allows us to
“pull apart” start and accept cells of iHDAs when dealing with serial compositions and loops.

In this paper we introduce the concepts needed for formulating and proving the Kleene
theorem, and we outline its proof. Most technical details can be found in the long version [7].

2 Higher-Dimensional Automata

HDAs and iHDAs are particular (pre)cubical sets. Like simplicial sets, they are typically
modelled as presheaves on certain base categories. Here we introduce new labelled precube
categories and variants with interfaces, which tame the combinatorics of concurrent events in
well-structured ways. Their objects are lo-sets, which model concurrent events that are active
in some cell of an HDA, or ilo-sets, which equip lo-sets with interfaces. Their morphisms are
coface maps (opposites of face maps), which insert events into lo-sets and preserve interfaces
if present. Some constructions require isomorphism classes of labelled precube categories
(with interfaces), and we define these as well. Finally, we briefly introduce resolution and
closure functors that translate between HDAs and iHDAs, in preparation for the summary
of our Kleene theorem in Section 5. We contextualise our approach in App. A. Throughout
the paper, we fix an alphabet Σ, finite or infinite.

Lo-sets and ilo-sets. A lo-set (U, 99K, λ) is a finite set U totally ordered by the strict order
99K and labelled by λ : U → Σ. A lo-set with interfaces (ilo-set) is a triple (S,U, T ) of a
lo-set U , a source interface S ⊆ U and a target interface T ⊆ U . Lo-sets are regarded as
ilo-sets with empty interfaces. We write SUT or just U for ilo-sets.

The labels of ilo-sets indicate the actions associated with events. The event order 99K
captures their list structure, which is convenient for regarding ilo-sets as ipomsets in Section 3.

A lo-map is an order and label preserving function between lo-sets. Lo-maps are strict
order embeddings and thus injective, as 99K is total. A lo-isomorphism is therefore a surjective
lo-map. An ilo-map f : U → V must also satisfy SU = f−1(SV ) and TU = f−1(TV ) (and
f(SU ) = SV and f(TU ) = f(TV ) if it is an ilo-isomorphism). We write U ≃ V if (i)lo-sets U
and V are isomorphic – there is at most one isomorphism between (i)lo-sets. Isomorphism
classes of lo-sets are words over Σ. Those of ilo-sets are words over an extended alphabet
Σ• = {a, • a, a •, • a • | a ∈ Σ}, where • a, for example, indicates membership in a source
interface. As in Fig. 1, we represent such words as column vectors.

Each (i)lo-map f : U ↪→ V defines and is defined by a unique A = V \ f(U) ⊆ V .
We write ∂A for this map; it is an isomorphism iff A = ∅. The composite of (i)lo-maps
∂A : U ↪→ V , ∂B : V ↪→W is ∂∂B(A)∪B : U ↪→W . This data defines categories of (i)lo-sets.
Each ∂A : U → V constructs V by inserting the events of A into U , while the face maps in
the introduction delete events and thus map in the opposite direction, see Fig. 2. Linking
(i)lo-maps with face maps and initial and final cells of HDAs requires refinements.

Labelled precube categories. Labelled precube categories account for the active, unstarted
and terminated events in HDAs and equip them with interfaces. The arrows of labelled
precube categories are coface maps. These map in the opposite direction of face maps.

CONCUR 2022
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Figure 2 Composition of morphisms in □. Letters (A) and (B) indicate events that become
unstarted (A) or terminated (B), as defined in the triple (∂A∪B , A,B).

The full labelled precube category with interfaces, I□I□, has ilo-sets as objects and coface
maps dA,B : U → V as arrows. Each dA,B is a triple (∂A∪B , A,B) with A,B ⊆ V disjoint,
A ∩ SV = ∅ = B ∩ TV , and ∂A∪B : U ↪→ V an ilo-map. The composite of dA,B : U → V and
dC,D : V →W is defined as dC,D ◦ dA,B = (∂C∪D ◦ ∂A∪B , ∂C∪D(A) ∪ C, ∂C∪D(B) ∪D).

As an instance, the full labelled precube category □□ with lo-sets as objects and coface
maps dA,B based on lo-maps ∂A∪B is trivially isomorphic to the full subcategory of I□I□ with
empty interfaces SU , TU , for each ilo-set U .

We only need coface map compositions with pairwise disjoint A,B,C,D ⊆ W and
V = W \ (C ∪D). In this case,

dC,D ◦ dA,B = dA∪C,B∪D. (1)

See Fig 2 for an example. We write d0
A for dA,∅ and d1

B for d∅,B. Intuitively, d0
A : U → V

inserts events in A into U that are unstarted in U , whereas d1
B : U → V inserts events B into

U that are terminated in U . See again Fig. 2 for an example. With d1
B , events in TV cannot

terminate in U as TV ∩B = ∅; with d0
A, those in SV cannot be unstarted in U as SV ∩A = ∅.

Both interfaces are preserved in pre-images of ∂A∪B and thus by coface map compositions.
It is standard to work with equivalence classes of events. The labelled precube category with

interfaces I□ is the quotient of I□I□ with respect to ≃. Its objects are words over Σ•. Its coface
maps are equivalence classes of coface maps in I□I□, where dA,B : U → V , dA′,B′ : U ′ → V ′ are
equivalent in I□ if U ≃ U ′ and V ≃ V ′ (hence also A ≃ A′ and B ≃ B′). They insert letters
into words, while remembering whether they correspond to unstarted or terminated actions.

The labelled precube category □ is obtained from □□ in a similar way. The categories I□
and □ are skeletal, and because isomorphisms are unique, the quotient functors I□I□ → I□
and □□→ □ are equivalences of categories. We thus switch freely between full categories and
their skeletons and identify morphisms [U ]→ [V ] with representatives dA,B : U → V .

We often use the involutive reversal functor on these categories. It maps SUT to TUS

and dA,B to dB,A, thus swapping unstarted and terminated events.

Higher-dimensional automata. A precubical set with interfaces (ipc-set) is a presheaf on
I□, that is, a functor X : I□op → Set. We write X[U ] for the value of X on object U of I□.
We write δA,B = X[dA,B] : X[U ] → X[U \ (A ∪ B)] for the face map associated to coface
map dA,B : U \ (A ∪B)→ U . Elements of X[U ] are cells of X – we often view X as a set
of cells.

We write iev(x) = SUT and ev(x) = U if x ∈ X[SUT ], as well as δ0
A = X[d0

A] and
δ1

B = X[d1
B ]. Such face maps attach lower and upper faces to the cells in X[U ].
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A precubical set is defined analogously as a presheaf X on □. We may view it as an
ipc-set X such that X[SUT ] = ∅ whenever S ̸= ∅ or T ̸= ∅. A precubical set or ipc-set X is
finite if it has finitely many cells. The dimension of a cell x ∈ X[U ] is |U |. The dimension of
X is the maximal dimension among its cells.

A higher-dimensional automaton with interfaces (iHDA) is a finite ipc-set X with subsets
X⊥ of start cells and X⊤ of accept cells. These are required to satisfy S = U for all x ∈ X⊥
with iev(x) = SUT , and T = U for all x ∈ X⊤ with iev(x) = SUT . X⊥ and X⊤ are not
necessarily precubical subsets.

Analogously, a higher-dimensional automaton (HDA) is a finite precubical set X equipped
with subsets X⊥ and X⊤ of start and accept cells. HDAs are not simply special cases of
iHDAs due to the above requirements on interfaces.

An ipc-map is a natural transformation f : X → Y of ipc-sets X, Y , an iHDA-map must
preserve start and accept cells as well: f(X⊥) ⊆ Y⊥ and f(X⊤) ⊆ Y ⊤. Precubical maps
and HDA-maps are defined analogously. We write □Set, I□Set, HDA and iHDA for the
resulting categories (of precubical sets, ipc-sets, HDAs and iHDAs, respectively).

The reversal on □ translates to ipc-sets, precubical sets, iHDAs and HDAs. It maps δA,B

to δB,A and exchanges start and accept cells if present. The relationship between HDAs and
iHDAs is studied in [7].

Standard cubes. The standard U-cube □U of lo-set U is the precubical set represented
by U (the Yoneda embedding): □U = □(−, U). For each lo-set V , □U [V ] is the set of all
dA,B : V → U with A,B ⊆ U . We write [A|B] for such a cell. For dA,B : U → V we
denote by □dA,B : □U → □V the induced map given by □dA,B ([C|D]) = [A ∪C|B ∪D]. The
definition of I□U for an ilo-set U is analogous.

▶ Example 1. For U = [ a
b ], □U has the cells occurring as pairs [−|−] in the left-hand cube

below. The first coordinate of the pair lists the unstarted events associated to a cell, the
second one the terminated ones.

[ab|∅] [b|a]

[∅|ab][a|b] [∅|b]

[b|∅]

[a|∅] [∅|a][∅|∅]

[b|a][b|∅]

[∅|a][∅|∅]

The maps □dA,B attach faces to cells. The lower face map □d0
a , for instance, attaches [a|∅]

as the left 1-cell to the 2-cell [∅|∅] and [ab|∅] as the left 0-cell to the 1-cell [b|∅]. Notation
[a|∅] indicates that a has not yet started and no element has terminated in the associated
face, while b is active. An analogous construction of the standard cube I□V , for V = [ • a

b • ],
is shown in the right-hand diagram above. Here • a and b • prevent a from starting and b

from terminating on faces. All lower faces in the left-hand cube containing a on the left of
the | and all upper faces containing b on the right of the | must thus be removed. (We have
omitted some set braces and likewise.)

The notation [A|B] for the cells of □U is useful in later proofs. For any (i)HDA X

and x ∈ X, there exists a unique precubical map, the Yoneda embedding ιx : □U → X

(I□U → X), such that ιx([∅|∅]) = x.

Standard automata. One-dimensional HDAs X are slight generalisations of standard finite
automata. Cells in X[∅] are states of the automaton, those in X[a] are a-labelled transitions.
The face maps δ0

a, δ
1
a : X[a]→ X[∅] attach sources and targets to transitions. Yet transitions

may serve as start and accept cells in X.

CONCUR 2022
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Resolution and closure. The forgetful functor F : I□→ □, SUT 7→ U induces two functors
Res : □Set→ I□Set and Cl : I□Set→ □Set. Resolution Res is given by Res(X) = X ◦ F:
the free functor induced by F, and closure Cl is left adjoint to Res. We extend them to
functors between HDA and iHDA in a natural way.

Intuitively, closure fills in missing cells of ipc-sets: the standard cube □U of Example 1,
for instance, is the closure of I□V . The cells of Res(X) are triples (x, S, T ), where x is a
cell of X and the subsets S, T ⊆ ev(x) are all possible assignments of interfaces. Every cell
x ∈ X[U ] thus produces 4|U | cells in Res(X), for example,

Res
( )

=

We give a detailed description of Res and Cl in [7].

3 Ipomsets

Pomsets are a standard model of non-interleaving concurrency. Ipomsets have been introduced
to model the behaviours of a restricted class of HDAs [6]. Here we recall the basic definitions
and adapt them to general HDAs. A notion of rational ipomset language is related with
HDAs in the Kleene theorem of Section 5.

Ipomsets. A labelled iposet (P,<, 99K, S, T, λ) consists of a finite set P with two strict
(partial) orders: the precedence order < and the event order 99K such that each pair in P

is comparable by either ≤ or 99K. λ : P → Σ is a labelling function, and S, T ⊆ P are
the source and target interfaces of P . Elements of S must be <-minimal and those of T
<-maximal, hence S and T are lo-sets. We write ε for the empty iposet.

A subsumption of labelled iposets P , Q is a bijection f : P → Q for which f(SP ) = SQ,
f(TP ) = TQ, f(x) <Q f(y) implies x <P y, and x 99KP y, x ̸<P y and y ̸<P x imply
f(x) 99KQ f(y). Subsumptions thus respect interfaces, reflect precedence and preserve
essential event order. Our definition adapts the standard one [13] to the presence of event
orders; intuitively, P has more order, and less concurrency, than Q.

An isomorphism of labelled iposets is a subsumption that is an order isomorphism.
The event order makes isomorphisms unique [6, Lem. 34]. We write P ⊑ Q if there is a
subsumption P → Q (Q subsumes P ) and P ∼= Q if P and Q are isomorphic. Isomorphic
iposets have the same order and label structure. An ipomset is an isomorphism class of
labelled iposets. We switch freely between ipomsets and labelled iposets, which is safe due to
uniqueness of isomorphisms.

An ipomset P is discrete if < is empty and hence 99K total. It is an identity if S = P = T .
Discrete ipomsets can therefore be identified with isomorphism classes of ilo-sets. The
singleton ipomsets are the discrete ilo-sets [a] [• a], [a •] and [• a •] for all a ∈ Σ. They
generate the rational ipomset languages in Section 5.

An ipomset P is an interval ipomset if it admits an interval representation [11]: a pair
b, e : P → R such that b(x) ≤ e(x) for all x ∈ P and x <P y iff e(x) < b(y) for all x, y ∈ P .
We write iPoms and iiPoms for the sets of ipomsets and interval ipomsets, respectively.

Ipomset compositions. The parallel composition P ∥ Q of labelled iposets P , Q has the
disjoint union P ⊔Q as carrier set, SP ∥Q = SP ∪SQ, TP ∥Q = TP ∪TQ, <P ∥Q = <P ∪<Q, and
x 99KP ∥Q y iff x 99KP y, x 99KQ y, or x ∈ P and y ∈ Q. It is a straightforward generalisation
of the pomset case, a coproduct of P and Q that extends 99KP and 99KQ.
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The gluing composition P ∗Q is only defined if TP ≃ SQ. Its carrier set is the quotient
(P ⊔Q)/x≡f(x), where f : TP → SQ is the unique isomorphism. The interfaces are SP ∗Q = SP

and TP ∗Q = TQ, 99KP ∗Q is the transitive closure of 99KP ∪ 99KQ, and x <P ∗Q y iff x <P y,
x <Q y, or x ∈ P \ TP and y ∈ Q \ SQ. The structural inclusions P ↪→ P ∗Q←↩ Q preserve
both precedence and event orders.

For ipomsets with empty interfaces, ∗ is serial pomset composition [13]. In general,
matching interface points are glued, see [6,8] for examples. Both ∗ and ∥ respect isomorphisms
and lift to associative, non-commutative operations on ipomsets (∥ is non-commutative due
to the event order). Ipomsets form a category with lo-sets as objects, ipomsets as arrows
and ∗ as composition. Interval ipomsets are closed under ∗ [6], but not under ∥ (a→ b is an
interval ipomset; (a→ b) ∥ (a→ b) is not). Note that all (isomorphism classes of) interval
ipomsets can be generated by gluing ilo-sets [6].

The width w(P ) of ipomset P is the cardinality of a maximal <-antichain; its size is
#(P ) = |P | − 1

2 (|S|+ |T |). We glue ipomsets along interfaces below and hence remove half
of the interfaces when computing #, which thus may be fractional.
▶ Lemma 2. Let P and Q be ipomsets. Then
(a) w(P ∥ Q) = w(P ) + w(Q) and #(P ∥ Q) = #(P ) + #(Q),
(b) if TP = SQ, then also w(P ∗Q) = max(w(P ),w(Q)) and #(P ∗Q) = #(P ) + #(Q),
(c) if P ⊑ Q, then w(P ) ≤ w(Q).
▶ Lemma 3. For lo-sets W ⊆ V ⊆ U, WVV ∗ V UU = WUU . For lo-sets Z ⊆ U, V ⊆W with
Z = U ∩ V and W = U ∪ V, UUZ ∗ ZVV ⊑ UWV . ◀

The second fact is illustrated by the following picture.

S

S

T

∗

S T

T

=

S T

S

T

⊑

S T

S

T

Languages. An interval ipomset language (a language for short) is a subset L ⊆ iiPoms
that is down-closed: if P ⊑ Q and Q ∈ L, then P ∈ L. We introduce the rational operations
∪, ∗, ∥ and (Kleene plus) + for languages:

L ∗M = {P ∗Q | P ∈ L, Q ∈M, TP = SQ}↓, L ∥M = {P ∥ Q | P ∈ L, Q ∈M}↓,

L+ =
⋃

n≥1
Ln, for L1 = L,Ln+1 = L ∗ Ln.

We write A↓ = {P ∈ iiPoms | ∃Q ∈ A. P ⊑ Q} for the down-closure of a set A ⊆ iPoms.
Down-closure is needed because parallel compositions of interval ipomsets may not be interval
and gluing and parallel compositions of down-closed languages may not be down-closed.
▶ Example 4. {[a] ∥ [b]} = {[ a

b ]} = {[ a •
b • ] ∗ [ • a

• b ]} is not down-closed.
Both ∗ and ∥ are associative and non-commutative. The identity of ∥ is {ε}, that of ∗ is the
identity language Id = {UUU | U ∈ □}.

The class of rational languages is the smallest class that contains the empty language,
the empty-pomset language and the singleton pomset languages

∅, {ε}, {[a]}, {[• a]}, {[a •]}, {[• a •]}, a ∈ Σ, (2)

and that is closed under the rational operations ∪, ∗, ∥ and +.
The width of a language is the maximal width among its elements. Lemma 2 shows that

rational languages have finite width; Id has infinite width and is thus not rational.

CONCUR 2022
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4 Paths and Languages of iHDAs

Computations or runs of (i)HDAs are higher-dimensional paths that keep track of the cells
and face maps traversed [24]. In this section we recall their definition. As an important
stepping stone towards a Kleene theorem we then relate paths of (i)HDAs with ipomsets – for
a more general class than [6]. We also introduce notions of path equivalence and subsumption.
The latter corresponds to ipomset subsumption. Finally, we introduce regular languages.

Paths. A path of length n in X ∈ I□Set is a sequence

α = (x0, φ1, x1, φ2, . . . , φn, xn),

where the xk ∈ X[Uk] are cells and, for all k, either
φk = d0

A ∈ I□(Uk−1, Uk), A ⊆ Uk and xk−1 = δ0
A(xk) (up-step), or

φk = d1
B ∈ I□(Uk, Uk−1), B ⊆ Uk−1, δ1

B(xk−1) = xk (down-step).
We write xk−1 ↗A xk for the up-steps and xk−1 ↘B xk for the down-steps in α, generally
assuming A ̸= ∅ ̸= B. We refer to the up- or down-steps (paths (xi, φi+1, xi+1), 0 ≤ i < n)
as steps in α and write PX for the set of all paths on X.

▶ Example 5. Figure 1 (on the right) in the introduction depicts the three paths

α1 = (δ0
ab(x)↗a δ0

b (x)↘a δ
1
ac(y)),

α2 = (δ0
ab(x)↗ab x↘b δ

1
b (x)↗c y ↘ac δ

1
ac(y)),

α3 = (δ0
ab(x)↗b δ0

a(x)↘b δ
0
ac(y)↗ac y ↘ac δ

1
ac(y)).

We equip paths with source and target maps as usual: ℓ(α) = x0 and r(α) = xn for
path α as above. For x, y ∈ X, we write PX(x, y) = {α ∈ PX | ℓ(α) = x, r(α) = y}.
Any ipc-map f : X → Y induces a map f : PX → PY . For α as above it is f(α) =
(f(x0), φ1, f(x1), φ2, . . . , φn, f(xn)). For paths α = (x0, φ1, . . . , xn), β = (y0, ψ1, . . . , ym)
with r(α) = ℓ(β) the concatenation α∗β = (x0, φ1, . . . , xn, ψ1, . . . , ym) is defined as expected.

Cell y ∈ X is reachable from cell x ∈ X, denoted x ⪯ y, if PX(x, y) ̸= ∅. This preorder is
generated by δ0

A(x) ⪯ x ⪯ δ1
B(x) for x ∈ X and A,B ⊆ ev(x). We call X acyclic if ⪯ is a

partial order. The reversal on ipc-sets reverses paths and ⪯.

From paths to ipomsets. Next we introduce a map ev that computes ipomsets of paths.
The interval ipomset ev(α) of path α ∈ PX is computed recursively:

If α = (x) has length 0, then ev(α) = ev(x)ev(x)ev(x).
If α = (y ↗A x), then ev(α) = ev(x)\Aev(x)ev(x).
If α = (x↘B y), then ev(α) = ev(x)ev(x)ev(x)\B .
If α = β1 ∗ · · · ∗ βn is a concatenation of steps βi, then ev(α) = ev(β1) ∗ · · · ∗ ev(βn).

Interfaces and gluings of ipomsets are essential for this construction. It would not have
worked with regular pomsets.

▶ Example 6. The ipomset of path α1 in Example 5 is computed recursively as ev(α1) =
ev(δ0

ab(x) ↗a δ0
b (x)) ∗ ev(δ0

b (x) ↘a δ
1
ac(y)) = ∅aa ∗ aa∅ = a. Those of the other two paths

are ev(α2) = a ∥ (b→ c) and ev(α3) = b ∗ [ a
c ].

The following fact is immediate from the definition of ev.

▶ Lemma 7. For α, β ∈ PX with r(α) = ℓ(β) and an ipc-map f : X → Y , ev(α ∗ β) =
ev(α) ∗ ev(β) and ev(f(α)) = ev(α). ◀
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a b

c

d

x0

x1 x2 x3

x4

x5 x6
α = (x0 ↗ac x1 ↘a x2 ↗b x3 ↘c x4 ↗d x5 ↘b x6)

a

c

b

d
T

ev(α) =

Figure 3 Example of a path α in an iHDA and its interval ipomset ev(α). Solid arrows show
the precedence on ev(α), dashed arrows the event order. The start interface is empty, the target
interface contains the single event d.

Path equivalence and subsumption. Path equivalence is the congruence ≃ on PX generated
by (z ↗A y ↗B x) ≃ (z ↗A∪B x), (x↘A y ↘B z) ≃ (x↘A∪B z) and γ ∗ α ∗ δ ≃ γ ∗ β ∗ δ
whenever α ≃ β. Further, path subsumption is the transitive relation ⊑ on PX generated by
(y ↘A w ↗B z) ⊑ (y ↗B x↘A z), for disjoint A,B ⊆ ev(x), γ ∗ α ∗ δ ⊑ γ ∗ β ∗ δ whenever
α ⊑ β, and α ⊑ β whenever α ≃ β. We say that β subsumes α if α ⊑ β.

This means that β is more concurrent than α. Both relations preserve sources and targets
of paths; they translate to ipomsets as follows (the proof uses Lemmas 3 and 7).

▶ Lemma 8. If α, β ∈ PX , then α ⊑ β ⇒ ev(α) ⊑ ev(β) and α ≃ β ⇒ ev(α) = ev(β). ◀

▶ Example 9. It is easy to check that path α3 in Example 5 is subsumed by α2, and so are
the corresponding pomsets in Example 6: ev(α3) = b ∗ [ a

c ] ⊑ a ∥ (b→ c) = ev(α2).

Regular languages. A path α ∈ PX of an (i)HDA X is accepting if ℓ(α) ∈ X⊥ and
r(α) ∈ X⊤. Let L(X) = {ev(α) | α ∈ PX is accepting} be the set of ipomsets recognised
by X.

▶ Proposition 10. L(X) is a language (a down-closed set of interval ipomsets).

▶ Proposition 11. HDAs and iHDAs recognise the same languages.

A language is regular if it is recognised by an HDA (or an iHDA).
Prop. 10 extends [6, Thm. 95]; see [7] for a proof. The proof of Prop. 11 in [7] uses

resolution and closure.
Lem. 2 implies the following.

▶ Lemma 12. Regular languages have finite width. ◀

An (i)HDA map f : X → Y is a weak equivalence if for every accepting path β ∈ PY

there exists an accepting path α ∈ PX with f(α) = β. The next lemma is shown in [7].

▶ Lemma 13. If f : X → Y is an (i)HDA-map, then L(X) ⊆ L(Y ). If f is a weak
equivalence, then L(X) = L(Y ).
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5 Kleene Theorem

In this section we state the Kleene theorem for HDAs and ipomset languages and provide a
road-map towards its proof. Technical details are explained in the rest of the paper.

▶ Theorem 14 (Kleene theorem). A language is regular if and only if it is rational.

Proof. By Prop. 16 and Cor. 29 below. ◀

Regular languages are rational. This follows from a translation to the standard automata-
theoretic Kleene theorem. It uses the following property which is proved in Section 6 after
introducing cylinders.

▶ Proposition 15. If L is regular, then so is L \ Id.

▶ Proposition 16. Regular languages are rational.

Proof. Suppose L = (L ∩ Id) ∪ (L \ Id) is regular. First, L ∩ Id is a finite set of identity
ipomsets and thus rational. Second, L \ Id is regular by Prop. 15; we show that it is rational.
Let X be an HDA that recognises L \ Id. Then X⊥ ∩ X⊤ = ∅ (otherwise, X accepts an
identity ipomset). Let G be an automaton with alphabet I□ whose states are cells of X and
whose transitions are, for all x ∈ X[U ], A ⊆ U ∈ □,

δ0
A(x)→ x labelled with (U\A)UU

x→ δ1
A(x) labelled with UU(U\A).

Start and accept states of G are start and accept cells of X. Accepting runs of G are then
exactly accepting paths of X. Every such run of G contains at least one transition. Hence, if
U1U2 · · ·Un ∈ I□∗ is the word of a run of G, then U1 ∗ U2 ∗ · · · ∗ Un is the interval ipomset
of the corresponding path in X. By the standard Kleene theorem, L(G) is represented by
a regular expression w(U1, . . . , Un) with operations ∪, ∗ and (−)+ for Ui ∈ I□. But each
Ui = e1

i ∥ · · · ∥ e
k(i)
i , a parallel composition of singleton ipomsets. Thus L(X) is represented

by w(e1
1 ∥ · · · ∥ e

k(1)
1 , . . . , e1

n ∥ · · · ∥ e
k(n)
n ) and therefore rational. ◀

Rational languages are regular. We need to show, as usual, that the generating languages
are regular and that the rational operations preserve regularity.

▶ Proposition 17. All languages in (2) are regular.

Proof. The languages in (2) are recognised by the HDAs

∅ a a a a

◀

▶ Proposition 18. Unions of regular languages are regular.

Proof. L(X ⊔ Y ) = L(X) ∪ L(Y ), where X ⊔ Y is coproduct. ◀

In order to show the same for parallel compositions of regular languages, we introduce
tensor products of HDAs. For HDAs X and Y , X ⊗ Y is the HDA defined, for U, V,W ∈ □,
x ∈ X[V ], y ∈ Y [W ], A,B ⊆ U , by

(X ⊗ Y )[U ] =
⋃

V ∥W =U

X[V ]× Y [W ], δA,B(x, y) = (δA∩V,B∩V (x), δA∩W,B∩W (y)),

and (X ⊗ Y )⊥ = X⊥ × Y⊥, (X ⊗ Y )⊤ = X⊤ × Y ⊤.
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▶ Proposition 19. L(X ⊗ Y ) = L(X) ∥ L(Y ) for all HDAs X,Y . As a consequence, parallel
compositions of regular languages are regular.

A proof for a restricted class of HDAs is in [6]; we show a complete proof in [7].
Analogous proofs for ∗ and + are much harder. They need gluing operations on HDAs

and additional machinery.
An ipomset P is separated if P \ (SP ∪ TP ) ̸= ∅ (some of its elements are not in an

interface). A language is separated if its elements are separated.
An (i)HDA X is start simple if it has exactly one start cell, accept simple if it has exactly

one accept cell, and simple if it is both start and accept simple. A regular language is simple
if it is recognised by a simple iHDA. Yet this reduces expressivity.

▶ Example 20. The HDA X with a single 0-cell x, a 1-loop labelled a, and X⊥ = X⊤ = {a}
is simple and recognises the language of all ipomsets [• a · · · a •], but no simple iHDA does.

Next we prove two lemmas about simple and separated languages.

▶ Lemma 21. Regular languages are unions of simple regular languages.

Proof. Prop. 11 allows us to work with an iHDA X, say. Denote X⊥ = {xi
⊥}m

i=1 and
X⊤ = {x⊤

j }n
j=1. For each tuple (i, j) let Xj

i be the iHDA with the same underlying ipc-set
as X and (Xj

i )⊥ = {xi
⊥}, (Xj

i )⊤ = {x⊤
j }. We have L(X) =

⋃
i,j L(Xj

i ). ◀

▶ Lemma 22. For L of finite width with L∩ Id = ∅, and n sufficiently large, Ln is separated.

Proof. For every Q ∈ Ln there exists P = P1 ∗ . . . ∗ Pn such that Pk ∈ L and Q ⊑ P .
As #(Pk) ≥ 1

2 , additivity of size implies #(Q) = #(P ) = #(P1) + . . . + #(Pn) ≥ n
2 and

therefore |SQ|, |TQ| ≤ w(Q) ≤ w(P ) = maxk w(Pk) ≤ w(L), since gluing composition does
not increase width. Eventually, |SQ| + |TQ| ≤ 2 w(L) < n ≤ 2 #(Q) = 2|Q| − |SQ| − |TQ|
holds for n ≥ 2 w(L) + 1 and therefore |SQ|+ |TQ| < |Q|. ◀

Let X,Y be simple HDAs with X⊤ = {x⊤}, Y⊥ = {y⊥}, and ev(x⊤) = ev(y⊥) = U . The
gluing composition of X and Y is the HDA

X ∗ Y = colim
(
X

ι
x⊤←−− □U ιy⊥−−→ Y

)
with (X ∗ Y )⊥ = X⊥, (X ∗ Y )⊤ = Y ⊤. In other words, we identify the accept cell of X
with the start cell of Y , as well as their corresponding faces. In general, L(X ∗ Y ) is a strict
superset of L(X) ∗ L(Y ); but in Sect. 6 we will introduce properties of start and accept proper
which ensure the following.

▶ Proposition 23. Let X, Y be simple iHDAs. If X is accept simple and accept proper, and
Y is start simple and start proper, then L(Cl(X) ∗ Cl(Y )) = L(X) ∗ L(Y ).

Proof. This is a special case of Prop. 52 which is shown in [7]. ◀

▶ Proposition 24. Every simple regular language is recognised by a start simple and start
proper iHDA as well as by an accept simple and accept proper iHDA.

The proof can be found in the next section.

▶ Proposition 25. Gluing compositions of simple regular languages are regular.

CONCUR 2022
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Proof. Let X, Y be simple iHDAs recognising L and M , respectively. We can assume that
X is accept simple and accept proper and Y is start simple and start proper (Prop. 24).
Thus, by Prop. 23, L(Cl(X) ∗ Cl(Y )) = L(X) ∗ L(Y ) = L ∗M. ◀

▶ Proposition 26. The Kleene plus of a separated regular language is regular.

The proof is in [7]. Below we show that the additional assumptions above may be removed,
finishing the proof of the Kleene theorem.

▶ Proposition 27. Gluing compositions of regular languages are regular.

Proof. Suppose L and M are regular. By Lem. 21, L =
⋃

i Li and M =
⋃

j Mj for simple
regular languages Li and Mj . Then L ∗M =

( ⋃
i Li

)
∗

( ⋃
j Mj

)
=

⋃
i

⋃
j Li ∗Mj is regular

by Propositions 18 and 25. ◀

▶ Proposition 28. The Kleene plus of a regular language is regular.

Proof. Suppose L is regular. If L ∩ Id = ∅, then Ln is separated for sufficiently large n by
Lem. 22. In this case, L+ =

⋃n
i=1 L

i ∪
( ⋃n

i=1 L
i
)
∗ (Ln)+ is regular by Propositions 18, 27

and 26. Otherwise, if L ∩ Id ̸= ∅, then L+ = ((L ∩ Id) ∪ (L \ Id))+ = (L ∩ Id) ∪ (L \ Id)+ is
regular by Prop. 15 and Prop. 18. ◀

▶ Corollary 29. Every rational language is regular.

Proof. By Propositions 17, 18, 19, 27, and 28 ◀

The remaining proofs (Prop. 15, 25, 26). Prop. 15 needs translations between HDAs and
iHDAs via resolution and closure, established in the next section.

Next we briefly explain the proof of Prop. 25. Sequential compositions X ∗ Y of standard
automata require some care. When accept states of X have outgoing transitions or start
states of Y have incoming ones, one cannot simply identify accept states of X with start states
of Y . The language of the resulting automaton may contain more words than L(X)∗L(Y ). To
alleviate this, one usually replaces X and Y by equivalent “proper” automata without such
transitions. We proceed along similar lines for iHDA. Suppose X,Y are simple iHDA with
X⊤ = {x⊤}, Y⊥ = {y⊥} and ev(x⊤) = ev(y⊥) (ev(x⊤) ̸= ev(y⊥) implies L(X) ∗ L(Y ) = ∅).

We show that any iHDA may be converted into a start proper or target proper iHDA that
recognises the same language. Start-properness implies that any start cell is ⪯-minimal and
that different start cells do not share any faces. Target-properness is defined similarly.

We introduce cylinders in Sec 6 to perform this conversion. For ipc-sets X, Y , Z and
image-disjoint maps f : Y → X, g : Z → X, we construct an ipc-set C(f, g) together with
maps f̃ : Y → C(f, g), g̃ : Z → C(f, g) and p : C(f, g) → X, see Fig. 4. The image of f̃ is
⪯-minimal, that of g̃ is ⪯-maximal, and p ◦ f̃ = f and p ◦ g̃ = g. This construction is inspired
by algebraic topology: f̃ and g̃ are reminiscent of cofibrations and p of a trivial fibration.
Here we only show that p has suitable lifting properties. We also use cylinders for Prop. 15.

We may therefore assume that X is accept proper and Y start proper. Gluing iHDAs is
intricate due to the missing faces of start and accept cells. So, after rearranging iHDAs, we
convert them back into HDAs using closure. Then we show that the gluing of Cl(X) and
Cl(Y ) along their accept and start cells yields an HDA that recognises L(X) ∗ L(Y ).

Finally, the proof of Prop. 26 is similar but more sophisticated. Cylinders allow us to
separate start cells from each other (same for accept cells), but we are not able to separate
start cells from accept cells. Thus, we require the separability assumption.

The tools needed for gluing closures of proper iHDAs are developed in [7].
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6 Cylinders

In the final technical section of this paper we describe the cylinder construction mentioned
above, as it may be of independent interest. Omitted proofs are shown in [7].

Initial and final inclusions. A sub-ipc-set Y ⊆ X is initial if it is down-closed with respect
to the reachability preorder ⪯. Equivalently, δ1

B(x) ∈ Y implies x ∈ Y for all x ∈ X[U ]
and B ⊆ U \ TU . By reversal, Y is final if it is up-closed with respect to ⪯ or, equivalently,
δ0

A(x) ∈ Y implies x ∈ Y . An initial (final) inclusion is an injective ipc-map whose image is
an initial (final) sub-ipc-set.

▶ Lemma 30. If f : Y → X is an initial or final inclusion, then so is Cl(f) : Cl(Y )→ Cl(X).

Proper iHDAs. The start and accept maps of iHDA X are the ipc-maps

ιX⊥ =
∐

x∈X⊥

ιx :
∐

x∈X⊥

I□iev(x) → X, ι⊤X =
∐

x∈X⊤

ιx :
∐

x∈X⊤

I□iev(x) → X.

We call an iHDA start proper if its start map is an initial inclusion, accept proper if its accept
map is a final inclusion, and proper if it is start proper, accept proper and the images of the
start map and the accept map are disjoint.

▶ Lemma 31. All start cells of start proper iHDAs are ⪯-minimal; all accept cells of accept
proper iHDAs are ⪯-maximal.

The condition of Lem. 31 is not sufficient for properness. The diagrams show examples of
iHDAs that are not start proper; edges marked with x are identified.

x

x

Lifting properties. An ipc-map f : Y → X has the future lifting property (FLP) if for
every up-step α = (δ0

A(x)↗A x) in X and every y ∈ Y such that f(y) = δ0
A(x) there is an

up-step β = (y ↗A z) in Y such that f(β) = α. The past lifting property (PLP) is defined
by reversal. FLP and PLP are equivalent to the lifting property for the following diagrams.

FLP: I□U\A Y

I□U X

I□d0
A

ιy

ιx

fιz

PLP: I□U\B Y

I□U X

I□d1
B

ιy

ιx

fιz

The next lemma is immediate from the definitions.

▶ Lemma 32. An ipc-map f : Y → X has the FLP if and only if, for every α ∈ PX and
y ∈ f−1(ℓ(α)), there exists a path β ∈ PY such that ℓ(β) = y and f(β) = α. An analogous
property holds for PLP. ◀

Let f : Y → X be an ipc-map, let S, T ⊆ X (subsets, but not necessarily sub-ipc-sets).
Then f has the total lifting property (TLP) with respect to S and T if for every path α ∈ PX

with ℓ(α) ∈ S and r(α) ∈ T and every y ∈ f−1(ℓ(α)) and z ∈ f−1(r(α)), there exists a path
β ∈ PY (y, z) such that f(β) = α.
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f̃(Y )Y
f̃ g̃

jp

f g

g̃(Z) Z

j(X)

X

C(f, g)

(I□dA,B )−1(K) I□V (I□dA,B )−1(L)

K I□U L

Y X Z

I□dA,B I□dA,B I□dA,B

φ ιx ψ

f g

Figure 4 The cylinder C(f, g) and a diagram defining its cell.

▶ Proposition 33. Let f : Y → X be an iHDA map such that the functions Y⊥ → X⊥ and
Y ⊤ → X⊤ induced by f are surjective. Assume that one of the following holds.
(a) f has the FLP and Y ⊤ = f−1(X⊤),
(b) f has the PLP and Y⊥ = f−1(X⊥),
(c) f has the TLP with respect to X⊥ and X⊤.
Then f is a weak equivalence.

Cylinders. Let X,Y, Z ∈ I□Set and f : Y → X, g : Z → X ipc-maps, assuming f and g

to have disjoint images; this is not used directly in the construction, but crucial in proofs.
The cylinder C(f, g) is the ipc-set such that C(f, g)[U ] is the set of (x,K,L, φ, ψ),

where x ∈ X[U ], K is an initial and L is a final sub-ipc-set of I□U , φ : K → Y and
ψ : L→ Z are ipc-maps satisfying f ◦ φ = ιx|K and g ◦ ψ = ιx|L. For dA,B ∈ I□(V,U) and
(x,K,L, φ, ψ) ∈ C(f, g)[U ], we put

δA,B(x,K,L, φ, ψ) = (δA,B(x), (I□dA,B )−1(K), (I□dA,B )−1(L), φ ◦ I□dA,B , ψ ◦ I□dA,B ).

Equivalently, C(f, g)[U ] is the set of commutative diagrams of solid arrows in Fig. 4 and
the face map δA,B composes the diagram with the dashed arrows. The following is then clear
(recall that f(Y ) ∩ g(Z) = ∅).

▶ Lemma 34. For every (x,K,L, φ, ψ) ∈ C(f, g) we have K ⊆ (ιx)−1(f(Y )) and L ⊆
(ιx)−1(g(Z)). Thus K ∩ L = ∅, x ∈ f(Y ) implies L = ∅, and x ∈ g(Z) implies K = ∅.

C(f, g) is equipped with the ipc-maps shown in Fig. 4. They are defined by
j(x) = (x, ∅, ∅, ∅, ∅), p(x,K,L, φ, ψ) = x, f̃(y) = (f(y), I□iev(y), ∅, ιy, ∅), g̃(z) =
(g(z), ∅, I□iev(z), ∅, ιz). Below we collect some of their properties.

▶ Lemma 35.
(a) p ◦ f̃ = f , p ◦ g̃ = g, p ◦ j = idX .
(b) f̃ is an initial inclusion and f̃(Y ) = {(x,K,L, φ, ψ) ∈ C(f, g) | K = I□iev(x), L = ∅}.
(c) g̃ is a final inclusion and g̃(Z) = {(x,K,L, φ, ψ) ∈ C(f, g) | L = I□iev(x), K = ∅}.
(d) j is an inclusion and j(X) = {(x, ∅, ∅, ∅, ∅) ∈ C(f, g)}.
(e) f̃(Y ), g̃(Z) and j(X) are pairwise disjoint.

▶ Proposition 36. The projection p : C(f, g)→ X has the FLP and PLP, and the TLP with
respect to f(Y ) and g(Z).
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Proof of Prop. 24. We show only the first claim; the second follows by reversal. Let L be
recognised by a simple iHDA X with start cell x⊥ ∈ X[U ]. Let Y be the iHDA with underlying
precubical set C(ιX⊥ , ∅) (∅ : ∅ → X is the empty map). Let y⊥ = (x⊥, I□U , ∅, idI□U , ∅) be the
only start cell of Y and Y ⊤ = p−1(X⊤). Since ιY⊥ = ι̃X⊥ , Y is start proper (Lem. 35(b)). The
projection p : Y → X has the FLP (Prop. 36); thus L(Y ) = L(X) = L (Prop. 33(a)). ◀

Proof of Prop. 15. Suppose first that L is simple. Let X be a start simple and start proper
iHDA recognising L (Prop. 24) and let Y be the iHDA with same underlying ipc-set and start
cells as X and accept cells Y ⊤ = X⊤\X⊥. By Lem. 31, an accepting path α ∈ PX is accepting
in Y iff it has positive length (ev(α) is not an identity), thus L(Y ) = L(X) \ Id = L \ Id is
regular. If L is not simple, then let L =

⋃
i Li be a finite sum of simple languages. Then

L \ Id = (
⋃

i Li) \ Id =
⋃

i(Li \ Id) is regular by the first case and Prop. 18. ◀

7 Conclusion

Automata accept languages, but higher-dimensional automata (HDAs) have so far been an
exception to this rule. We have proved a Kleene theorem for HDAs, connecting models to
behaviours through an equivalence between regular and rational languages.

Showing that regular languages are rational was quite direct, but the converse direction
required some effort. One reason is that HDAs may be glued not only at states, but also at
higher-dimensional cells. This in turn led us to consider languages of pomsets with interfaces
(ipomsets) and to equip HDAs with interfaces (iHDAs), too. After showing that HDAs
and iHDAs recognise the same languages, we used topology-inspired constructions to glue
(i)HDAs and show that rational operations on languages can be reflected by operations on
(i)HDAs.

Kleene theorems build bridges between machines and languages, and there is a vast
literature on the subject. In non-interleaving concurrency, one school considers (Mazurkiewicz)
trace languages. Zielonka introduces asynchronous automata and shows that languages are
regular iff they are recognisable [26]. Droste’s automata with concurrency relations have
similar properties [4]. Yet not all rational trace languages (generated from singletons using
union, concatenation and Kleene star) are recognisable [3]. Trace languages use a binary
notion of independence and already 2-dimensional HDAs may exhibit behaviour that cannot
be captured by trace languages [12].

Another school studies Kleene theorems for series-parallel pomset languages and automata
models for these, such as branching and pomset automata [17,19], and for Petri automata [2].
Series-parallel pomsets are incomparable to the interval orders accepted by Petri nets or
HDAs, see [8, 25].

HDAs have been developed first of all with a view on operational, topological and
geometric aspects, see [10] and the extensive bibliography of [24]. Languages have only
been introduced recently [6]. Topological intuition has also guided our work, for example
in the cylinder construction. Partial HDAs [9] were introduced for defining open maps and
unfoldings on HDAs. HDAs with interfaces are a special case of partial HDAs, and our tools
and techniques should be useful for those as well.

Our new formalisation of (i)HDAs as presheaves over a category of labelled ordered sets
opens up connections to presheaf automata [22], coalgebra, and open maps [16], which we
intend to explore. Finally, our introduction of iHDA morphisms akin to cofibrations and
trivial fibrations hints at factorisation systems for HDAs. Weak factorisation systems and
model categories have been considered in a bisimulation context, for example in [18], so we
wonder about the connection.
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A Definitions of HDAs

Precubical sets and HDAs are used in a few different incantations in the literature, all more
or less equivalent. We expose some of these here in order to relate them to the setting in
this paper; we make no claim as to completeness.

Precubical sets. according to Grandis [14,15] are presheaves on a small category □G which
is generated by the following data:

objects are {0, 1}n for n ≥ 0;
elementary coface maps dν

i : {0, 1}n → {0, 1}n+1, for i = 1, . . . , n+ 1 and ν = 0, 1, are
given by dν

i (t1, . . . , tn) = (t1, . . . , ti−1, ν, ti, . . . , tn).
Elementary coface maps compose to coface maps {0, 1}m → {0, 1}n for n ≥ m. See also [5].

□G-sets, i.e., elements X ∈ Set□
op
G , are then graded sets X = {Xn}n≥0 (where Xn =

X[{0, 1}n]) together with face maps Xn → Xm for n ≥ m. The elementary face maps are
denoted δν

i = X[dν
i ], and they satisfy the precubical identity

δν
i δ

µ
j = δµ

j−1δ
ν
i (i < j) (3)

for ν, µ ∈ {0, 1}.
The above elementary description of □G-sets may be taken as definition, allowing one to

avoid any talk about presheaves. For example, van Glabbeek [24] defines a precubical set
Q = (Q, s, t) as a family of sets (Qn)n≥0 and maps si : Qn → Qn−1, 1 ≤ i ≤ n, such that
αi ◦ βj = βj−1 ◦ αi for all 1 ≤ i < j ≤ n and α, β ∈ {s, t}; this is evidently equivalent to the
above.

The paper [6] introduces another base category, □□Z, given as follows:
objects are totally ordered sets (S, 99KS);
morphisms S → T are pairs (f, ε), where f : S ↪→ T is an order preserving injection and
ε : T → {0, , 1} fulfils f(S) = ε−1( ).

(The element stands for “executing”.) Letting A = ε−1(0) and B = ε−1(1), the above
notion of morphisms is equivalent to having triples (f,A,B) consisting of f : S ↪→ T (order
preserving and injective) and A,B ⊆ T such that T = A⊔ f(S)⊔B (disjoint union). Except
for the labelling, this is the same as our definition of □□ in Section 2. ( [6] also makes a
connection to [1].)

Then [6] goes on to show that the full subcategory of □□Z spanned by objects ∅ and
{1, . . . , n} for n ≥ 1 is skeletal and equivalent to □□Z. Moreover, this subcategory, □Z, is
shown to be isomorphic to □G, and that the presheaf categories on □□Z and on □Z (and thus
also on □G) are uniquely naturally isomorphic. It is clear that □Z is a representative of the
quotient of □□Z under isomorphisms, so except for the labelling, this is again the same as our
□ of Section 2.
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The advantage of □□Z, and of our □□, over the skeleton versions is that the precubical
identity (3) is automatic and that there is a built-in notion of events, i.e., in a □□Z-set X, a
cell x ∈ X[U ] has events U .

HDAs. are, generally speaking, labelled precubical sets (on the alphabet Σ) with specified
start and accept cells. The labelling may be obtained using the labelling object !Σ [12]. This
is the precubical set with !Σn = Σn and δν

i ((a1, . . . , an)) = (a1, . . . , ai−1, ai+1, . . . , an), and
a labelled precubical set is then a precubical map X → !Σ: an object of the slice category of
precubical sets over !Σ.

A labelling λ : X → !Σ induces a function λ1 : X1 → Σ with the property that for all
x ∈ X2, λ1(δ0

1(x)) = λ1(δ1
1(x)) and λ1(δ0

2(x)) = λ1(δ1
2(x)). Conversely, any such function

extends uniquely to a precubical map X → !Σ [6, Lem. 14], so that λ1 may be taken as the
definition of labelling instead. This is the approach taken in [24], where an HDA is defined
as a precubical set Q equipped with a function λ1 → Σ such that λ1(si(q)) = λ1(ti(q)) for
all q ∈ Q2 and i = 1, 2, and subsets of start and accept states I, F ⊆ Q0.

Another observation made in [6] is that regarded as a presheaf, !Σ(S) = Set(S,Σ), hence
!Σ is representable in Set via the forgetful functor □□Z → Set. This means that the labelling
may be integrated into the base category, turning □□Z into our □□ with objects being labelled
totally ordered sets. Using □□ instead of □□Z allows us to avoid working in the slice category:
everything is labelled from the outset.

To sum up, let X be an HDA in our sense, then the corresponding HDA (Q, s, t, λ1, I, F )
in the sense of [24] is given as follows.

Qn =
∐

U∈□, |U |=n X[U ].
If x ∈ X[U ], then si(x) = δ0

u(x) and ti(x) = δ1
u(x), where u ∈ U is the i-th smallest

element of U in the order 99KU .
If x ∈ X[U ] ⊆ Q1 with U = ({e}, ∅, λ(e) = a), then λ1(x) = a.
I = X⊥, F = X⊤.

Conversely, let (Q, s, t, λ1, I, F ) be an HDA as in [24]. There exist unique labelling
functions λn : Qn → Σn such that λn−1(αi(q)) = δi(λn(q)) [6, Lem. 14], where α ∈ {s, t}
and δi skips the i-th element of a sequence. We construct an HDA X as follows.

X[U ] = {q ∈ Qn | λn(q) = U} for U ∈ □□ and |U | = n.
δ0

a(q) = si(q) and δ1
a(q) = ti(q) for q ∈ X[U ] and a ∈ U the i-th smallest element of U in

the order 99KU . The remaining face maps are compositions of these.
X⊥ = I, X⊤ = F .

Finally, the only difference between van Glabbeek’s HDAs and ours is that we allow start
and accept cells that are not necessarily vertices. Our definition of HDAs, based on lo-sets,
treats the elements of these sets as labelled events that are regarded either as unstarted,
executed, or terminated. In this way, they incorporate events in a direct manner. This makes
our definition of HDAs into a model that combines event-based and state-based models of
concurrency.
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