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Abstract. In digital topology, the use of a pair of connectivities is re-
quired to avoid topological paradoxes. In mathematical morphology, self-
dual operators and methods also rely on such a pair of connectivities.
There are several major issues: self-duality is impure, the image graph
structure depends on the image values, it impacts the way small objects
and texture are processed, and so on. A sub-class of images defined on
the cubical grid, well-composed images, has been proposed, where all
connectivities are equivalent, thus avoiding many topological problems.
In this paper we unveil the link existing between the notion of well-
composed images and the morphological tree of shapes. We prove that
a well-composed image has a well-defined tree of shapes. We also prove
that the only self-dual well-composed interpolation of a 2D image is ob-
tained by the median operator. What follows from our results is that we
can have a purely self-dual representation of images, and consequently,
purely self-dual operators.

Keywords: self-dual operators · tree of shapes · vertex-valued graph ·
well-composed gray-level images · digital topology.

1 Introduction

Having a contrast invariant representation for images is of prime importance
in computer vision. Indeed we often have to deal with illumination changes or
parts of images being very poorly contrasted [6,5]. Some morphological contrast
invariant trees have been successfully used for computer vision tasks; see e.g. [23].

In this paper we consider the settings of “digital topology” a-la Rosenfeld
and Kong [12]. An image is considered as a vertex-valued graph: the underlying
structure is a graph, and an image is a function associating values to vertices [18].
In the following, we only deal with images defined on the nD cubical grid, so on
the square grid for the 2D case. The objective of this paper is to get a self-dual
representation of gray-level images that is free of topological issues. Precisely,
we want to guarantee some strong topological properties, to ensure a “pure”
self-duality, and to be able consequently to process gray-level images easily and
without trouble. Our work has two main motivations. First, we expect to obtain
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Fig. 1. In the image (a), the woman can be considered both as foreground (b) or as
background (c).

a definition of a discrete tree of shapes that is theoretically sound. Indeed, since
this morphological tree-based image representation is self-dual, it is subject to
some topological problems. Second, considering a couple of connectivities has
a deep impact when dealing with small objects and textures. The cornerstone
of our proposal is to handle only one connectedness relationship i.e., a unique
topological structure. Put differently, we will consider that an image is one graph
structure whose vertices are valued.

The contributions presented in this paper are the following. We show that
the tree of shapes is “not purely” self-dual. We prove that, if a gray-level image is
well-composed, then its tree of shapes is well defined. We also prove that, under
some very reasonable assumptions, the only self-dual well-composed subdivision
of a 2D image is obtained by the median operator. Last we propose a purely
self-dual tree of shapes for gray-level images.

First Section 2 recalls the theoretical background of our work. Section 3 ex-
plains what we are looking for, and Section 4 gives the solution we propose.
Section 5 is dedicated to related works. Last we conclude and give some per-
spectives in Section 6.

2 Theoretical Background

2.1 Digital Topology and Self-Duality

A self-dual operator processes the same way the image contents whatever the
contrast (i.e., bright objects over dark background versus dark objects over
bright background). That is often desirable when we cannot make an assump-
tion about contrast, and/or when we do not want to make such an assumption
because the notion of “object v. background” is not the appropriate one. Ac-
tually we often prefer the notion of “subject” (and its related context); this
can be explained because the notions of foreground and background are highly
contextual.

An illustration of this statement is depicted in Figure 1, where the colors
green and red designate respectively the object (foreground) and the background.
In the gray-level image, Fig. 1(a), if we take the woman as subject, then we obtain
the representation of Fig. 1(b), and the image outer part is the background. Yet,



if we take the baby as subject, then we obtain a different interpretation of the
image; in Fig. 1(c), the woman is now the background.

Actually, if we take for granted that every part of the image can be a “sub-
ject”, then we want a unique representation of the image: we do not want a
different behavior based on the subject contrast (bright over dark, or the con-
trary). We thus want to process images in a self-dual way:

u
processing−−−−−−−−−→ ϕ(u)

complementation

y y complementation

{u
processing−−−−−−−−−→ ϕ({u) = {ϕ(u)

In digital topology in the case of images defined on a regular cubical grid,
a “Jordan pair” of connectivities (cα, cβ) are required [12]: one for the object
(foreground), and the other one for the background. Practically, in the 2D case
for instance, the choice is (c4, c8) or (c8, c4) ; in nD, it can be (c2n, c3n−1) or
(c3n−1, c2n). The use of the complementation in a self-dual operator thus forces
to switch from one connectivity to the other one. That contrasts with the asser-
tion of “processing the same way the image contents whatever the contrast...”;
actually we should add “...except for their connectivity”.

2.2 The Morphological Tree of Shapes

The tree of shapes has been defined in [17], even if its origin comes from [13]
in the 2D case. We just briefly recall here its definition. Given an nD image
u : Zn → Z, the lower level sets are defined as [u < λ ] = {x ∈ X | u(x) < λ },
and the upper level sets as [u ≥ λ ] = {x ∈ X | u(x) ≥ λ }. Considering
the connected components of these sets3, one can define a couple of dual trees,
namely the min-tree T<(u) = {Γ ∈ CC([u < λ ]) }λ, and the max-tree T≥(u) =
{Γ ∈ CC([u ≥ λ ]) }λ. The min-tree and the max-tree verify T≥({u) = T<(u) .
They are said to be “dual” trees since the operators defined from them are dual.

With the cavity-fill-in operator, denoted by Sat, we have two new sets of
components; they are the lower shapes S<(u) = { Sat(Γ ); Γ ∈ T<(u) }, and
the upper shapes S≥(u) = {Sat(Γ ); Γ ∈ T≥(u) }. The tree of shapes is then
defined as:

S(u) = S<(u) ∪ S≥(u)

and it (almost4) features:
S({u) = S(u). (1)

Such a tree is called self-dual since many self-dual operators can be derived from
this tree [7,22].

Last let us recall that a quasi-linear algorithm exists to compute the tree of
shapes, that has the property of also working in the nD case [10]. A parallel
version of this algorithm is available [9].

3 CC is an operator that takes a set and gives its set of connected components.
4 We will see in Section 3 that the property S({u) = S(u) is not strictly correct.



2.3 Well-Composed Sets and Images

Let us start by recalling some seminal definitions from the paper [15] by Latecki,
Eckhardt, and Rosenfeld.

A 2D set is weakly well-composed if any 8-component of this set is a 4-
component. A set is well-composed if both this set and its complement are weakly
well-composed. A very easy characterization of well-composed sets is based on
the notion of “critical configurations”; a set is well-composed if the configurations

and do not appear.
The notion of well-composedness has been extended from sets to functions,

i.e., gray-level images. A gray-level image u is well-composed if any set [u ≥ λ] is
well-composed. A straightforward characterization of well-composed gray-level

images is that every block
a d
c b

should verify: intvl(a, b) ∩ intvl(c, d) 6= ∅,

where intvl(v, w) = Jmin(v, w),max(v, w)K.
An image is not a priori well-composed; for instance, the classical “lena”

image contains 38039 critical configurations. Two approaches exist to get a well-
composed image from a primary image: changing its pixel values (yet it can alter
the topology of its contents), or getting a well-composed interpolation. Below
we give an example of an image (left), which is not well-composed, but whose
interpolation (right) is well-composed:
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The notion of well-composedness has also been defined for 3D sets and im-
ages [14], and it has recently been extended to nD [2,4]. Let us now recap those
last results.

Given a point z ∈ Zn and a subset F = {f1, . . . , fk} of the canonical basis
of Zn, with k ∈ J2, nK, a block S(z,F) associated with z and F is defined as:

S(z,F) = { z +
∑k
i=1 λifi

∣∣ λi ∈ {0, 1}, ∀ i ∈ J1, kK }. Just remark that a block
S(z,F) ⊂ Zn actually belongs to a subspace of dimension k. In the following,
we will thus say a block S of dimension k, meaning that we consider a block
S(z,F) such as card(F) = k and whatever z; see Figure 2 for some illustrations.

Given a block S ⊆ Zn of dimension k, and p, p′ ∈ S, we say that p and p′

are antagonist in S iff they maximize the distance L1 between two points in
S. Obviously an antagonist to a given point p ∈ S exists and is unique; it is
denoted by antagS(p). A primary critical configuration of dimension k in Zn is
any set {p, antagS(p)} with S being a block of dimension k. A secondary critical
configuration of dimension k in Zn is any set S \ {p, antagS(p)} with S being a
block of dimension k.

A set X ⊆ Zn is well-composed iff, for any block S of dimension k, X ∩ S
is neither a primary nor a secundary critical configuration. Just notice that the
definition of well-composedness is self-dual : any set X ⊆ Zn is well-composed iff
Zn \X is well-composed.
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Fig. 2. A block of dimension 3 associated with z contains 8 points of Zn. Two blocks of
dimension 2 associated with z are also depicted, each containing 4 points; their points
are respectively filled in yellow and contoured in red.
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Fig. 3. Some abnormalities for a “self-dual” representation.

3 A Quest for Self-Duality

3.1 About the Impure Self-Duality

Let us consider a connectivity c (in 2D it can be either c4 or c8). Let us denote
by −c its “dual” connectivity (the dual of c4 is c8, and conversely). Let us denote
by R a relation such as <, ≤, >, or ≥. R−1 denotes the inverse relation (for
instance <−1 is > ). ¬R denotes the relation corresponding to its negation (for
instance ¬< is ≥ since ¬ (a < b) ⇔ (a ≥ b). From a set of components:

T(R,c)(u) = {Γ ∈ CCc([uRλ]) }λ,

we can get a set of shapes:

S(R,c)(u) = {Sat−c(Γ ); Γ ∈ T(R,c)(u) }.

Note that, from a component Γ obtained with the connectivity c, the cavity-fill
operator relies on the connectivity −c to be topologically sound. Then just re-
mark that the cavities of the components of T(R,c)(u) are some shapes belonging
to S(¬R,−c)(u). So we can define the tree of shapes by:

S(R, c)(u) = S(R,c)(u) ∪ S(¬R,−c)(u).

Note that, in the discrete case, there is no difference between the sets T(R,c)(u)
and T(¬R−1,c)(u) (e.g., the same threshold sets are obtained using < or ≤). We
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Fig. 4. A set (left) and its corresponding graph (right).

can finally observe that the tree of shapes is not purely self-dual:

S(R, c)({u) = S(R−1, c)(u) = S(¬R−1,−c)(u) = S(R,−c)(u).

For instance in 2D, we have: S(<, c4)({u) = S(<, c8)(u).
Now consider a “self-dual” operator depending upon a connectivity pair

(cα, cβ); we have the following scheme:

u
ϕ−−−−−−−−→ ϕ(cα,cβ)(u)

complementation

y y complementation

{u
ψ−−−−−−→ {ϕ(cα,cβ)(u) = ϕ(cβ ,cα)({u)

so precisely ϕ(cα,cβ) and ϕ(cβ ,cα) are dual. We cannot formally say that ϕ is

self-dual because we do not have {ϕ(cα,cβ) = ϕ(cα,cβ) {.
In both cases of the tree of shapes and of a self-dual operator, the underlying

representation of an image depends upon the arbitrary choice5 of taking either
(cα, cβ) or (cβ , cα); such a choice is illustrated by Fig. 3(a). Consequently it yields
an asymmetry in dealing with components, which is illustrated by Fig. 3(b). In
those cases, we will say that self-duality is not pure.

3.2 Images as Vertex-Valued Graphs

If we consider an image as a vertex-valued graph, the use of a connectivity pair
is a priori mandatory to avoid the connectivity paradoxes of digital topology.
Figure 4 depicts a binary image (a set), and its corresponding graph, where the
connectivities (c4, c8) have been chosen to represent respectively the foreground
(white) and the background (black).

On the other hand, we want a purely self-dual tree, i.e., a tree that strictly
verifies S({u) = S(u). That starts with a first requirement: we shall have the
same connectivity relation, say c, for both lower and upper shapes. Remind now
that the lower (resp. upper) shapes come from the cavity-fill operator applied
on some components of the upper (resp. lower) threshold sets. It leads to the
conclusion that a unique connectivity shall be used everywhere (precisely to
define the components of all threshold sets, and to define the cavity-fill operator

5 Note that the classical workaround to ensure pure self-duality and avoid topological
problems using 6-connectivity in 2D is out of scope, since it required a choice between
4 possible transforms (shifting either rows or columns, and either odd or even ones).



for both lower and upper components). The definitions of the previous section
shall be rewritten as follows. From components we get shapes:

T(R,c)(u) = {Γ ∈ CCc([uRλ]) }λ −→ S(R,c)(u) = { Satc(Γ ); Γ ∈ T(R,c)(u) }

and we take the union of lower and upper shapes:

S(R, c)(u) = S(R,c)(u) ∪ S(R,c)({u). (2)

Finally, the components of S(R, c)(u), endowed with inclusion, do not form a
tree, but a poset.

As a conclusion, if we consider that an image is a function, we cannot sep-
arate the structure of the definition domain from the values of the image. Put
differently, it means that the graph structure depends on the image values. That
is a major issue, since it is a very strong restriction.

3.3 Rationale

The rationale behind our proposal is the following. Given any gray-level nD
image u, (S(R, c)(u),⊂ ) forms a poset. Taking c = cα or c = cβ is equivalent
when an image is well-composed. We can define a self-dual interpolation I(u) of
u that is a well-composed image. So we can expect S(R, c)(I(u)) to be a purely
self-dual tree of shapes. To remain consistent with both digital topology and
mathematical morphology, we will impose some reasonable constraints on I.

4 Getting a Purely Self-Dual Tree of Shapes

4.1 Well-Composed ⇒ Tree of Shapes

Actually there is a link between the notion of well-composed images and the
definition of the tree of shapes:
Theorem. If a gray-level nD image u is well-composed, then the components
of S(R, c2n)(u) form a (purely) self-dual tree of shapes.

Let us first remark that it is an implication, not an equivalence (being well-
composed is a sufficient condition to get a tree of shapes; it is not a necessary
one). Indeed, with:

u =

1 1 1 1
1 0 2 1
1 2 0 1
1 1 1 1

S(<, c2n)(u) is a tree, while u is not well-composed.

Proof. A strong recent result, presented in [4], is the following: “if a set X ⊆ Zn
is well-composed, then its 2n-components are identical to its (3n−1)-components”.
That implies that:

S(R, c2n)({u) = S(R, c3n−1)(u) = S(R, c2n)(u),



which means that u and {u have the same set of shapes. Consequently this set
is (said) self-dual, since purely self-dual operators can be defined from it.

Let us show now that the elements of S(R, c2n)(u) form a tree. The proof that
the shapes obtained with (c2n, c3n−1) form a tree can be found in [1,8]. Since
the connectivities c2n and c3n−1 are equivalent for a well-composed image, this
proof applies to our case.

ut

4.2 A Self-Dual 2D Morphological Interpolation

We are now going to study how to interpolate an image u defined on Zn into
an image I(u) defined on (Z/2)n. The requirements over the interpolation I are
the following ones. 1. It shall commute with the classical geometric reflections
and rotations, i.e., I ◦ T = T ◦ I, with T such a transform. 2. I(u) shall be
considered as a rasterization equivalent to u (cf. [16,21]); in particular, it shall
not create some new extremum. 3. It shall be self-dual, i.e., I({u) = {I(u).
4. We shall ensure that the shapes are invariant to contrast changes (a classical
morphological axiom): S(g(I(u))) = S(I(g(u))), where g is a strictly increasing
function. 5. Last, the interpolation function, used to set values between the
original pixels, shall actually be an operator. Note that we will also use the
notation I for this operator.

Consider a 3 × 3 pixels piece of I(u) and a threshold set X. We will depict
respectively by • an element of X, by • an element of {X, and by ◦ an element for
which we do not know if it is in X or not. It yields 4 cases (modulo symmetries,
rotations, and complementation). Using only the “no new extremum” constraint,
we have:

Case 1:
• ◦ •
◦ ◦ ◦
• ◦ •

⇒
• • •
• • •
• • •

⇒ well-composed.

Case 2:
• ◦ •
◦ ◦ ◦
• ◦ •

⇒
• • •
• ◦ ◦
• ◦ •

⇒ w.-c. since we cannot have
• • •
• • •
• • •

.

Case 3:
• ◦ •
◦ ◦ ◦
• ◦ •

⇒
• • •
◦ ◦ ◦
• • •

⇒ well-composed.

Case 4:
• ◦ •
◦ ◦ ◦
• ◦ •

⇒ we have to study this “saddle-point” case.

Let us assume that the pixel values are a < b < c < d, and that the interpo-
lation of this piece of image is:

a ad d
ac abcd bd
c bc b

where we shorten a notation such as I{v, w} into vw, and I{a, b, c, d} into abcd.
Now, just remark that the “no new extremum” and “self-dual” constraints im-
ply that a < d ⇒ a < ad < d, and we have the similar ordering us-
ing {a, c}, {c, b}, and {b, d}. Last, this same constraint also implies that ac <



abcd < bd and ad < abcd < bc. We can then deduce the Hasse diagram of the
set of values, depicted on the left below:

d

c bd

adabcdbc

acb

a

d

c bd

adabcdbc

acb

a

When only drawing between these values the 4-adjacencies of their pixels, we
obtain the diagram depicted above on the right side. For instance, the point
whose value is b is 4-adjacent to the points whose values are bc and bd. Remark
that we have maintain the locations of values of the Hasse diagram, which allows
us for keeping reasoning on value ordering.

Assume that the point of value ac is in X; so it is depicted in green below.
Since we have ac < abcd < bd the points with values abcd and bd are in X,
so they are depicted in green. We end up with the image piece, depicted below,
which is well-composed (whatever its unknown part):

d

c bd

adabcdbc

acb

a

⇔
• ◦ •
• • •
• ◦ •

⇒ well-composed.

The assumption that the point of value bd is in {X is the dual assumption of
the previous one (with finally abcd and ac in {X); it also leads to a well-composed
image piece.

So there is only one remaining case, bd ∈ X and ac ∈ {X, depicted below.
For this image piece to be well-composed, we can see that the points depicted
in blue (•), corresponding to the values abcd and bc, have to be in the same set
(either X or {X). Finally we shall have abcd = bc:

d

c bd

adabcdbc

acb

a

⇔
• ◦ •
• • •
• • •

⇒ (well-composed iff abcd = bc).

Being in the morphological framework, we want an operator so the result can be
rewritten as op({a, b, c, d}) = op({b, c}). It should be true whatever the values,
so the operator is a median.

Let us recall that we have assumed that, in the piece of image considered, the
pixel values are all different ( a < b < c < d). If we have now a ≤ b ≤ c ≤ d,
we actually get the same conclusions as before. Indeed, just remark that having



some values equal means that the Hasse diagram is simplified, yet not really
modified.

Let us consider a multi-set S = {z1, ... , zk} of k integers, with k even, such
as ∀i ∈ J1, k − 1K, zi ≤ zi+1. We can define the median operator by med(S) =
(z k

2
+ z k

2+1)/2; note that med(S) ∈ Z/2. This operator satisfies the property:

∀S1 and S2 such as S = S1 ∪ S2, med(S) ∈ intvl(med(S1), med(S2)),

so med is an interpolation operator that does not create new extremum. Indeed,
we have for instance med{a, d} = (a+d)/2 ∈ intvl(a, d), and at the center of an
image piece: med{a, b, c, d} ∈ intvl( med{a, c}, med{b, d} ), and med{a, b, c, d} ∈
intvl( med{a, d}, med{b, c} ). In addition, the operator med is self-dual: med(S) =
−med{−zk, ... ,−z1}.

In 2D, we thus have a med-based interpolation operator, Imed, that trans-
forms an image u : Z2 → Z into Imed(u) : (Z/2)2 → Z/2. Formally, with
B = {− 1

2 , 0, 1
2}

2, and with Bz the translation of B by z, we have:

∀ z ∈ (Z/2)2, [Imed(u)](z) =

{
u(z) if z ∈ Z2,
med{u(z′), z′ ∈ Bz ∩ Z2 } otherwise,

which is a well-composed self-dual 2D interpolation of u verifying the desired
properties and invariances.

In this section, we have actually proven Proposition 25 from [19]: “The me-
dian interpolation of a function defined on Z2 leads to a self-dual plain map.”
Last, let us mention that this interpolation, once generalized in nD, does not
offer the guaranty to produce well-composed images when n ≥ 3; a 3D example

given in [3] is: u =
(

2 4 4 0
4 0 0 2

)
−→ Imed(u) =

(
2 3 4 3 3 2 4 2 0
3 3 2 3 2 1 2 1 1
4 2 0 2 1 1 0 1 2

)
, where a

2D critical configuration is depicted in italics .

5 Related Works

In [20], Ray and Acton give a proof that an inclusion tree exists when considering
the connectivity pair (c8, c8). Unfortunately, not having a Jordan pair yields
some results that are difficult to understand, since they do not conform to what
can be expected in the continuous case. For instance, with the image given at
the beginning of Section 4.1, the two central components (containing 2 points
each, and with the respective levels 0 and 2) cross using c8; it means that their
respective contours (level lines) also cross, although these two contours have
different levels.

In [1,8], the proof that the shapes obtained with (c2n, c3n−1) form a tree relies
on changing a discrete function u : Zn → R into an upper semi-continuous
function umax : Rn → R. Actually, this latter function can be related to the
interpolation Imax(u), obtained such as Imed(u) while replacing med by max. It
is easy to see that Imax(u) is a well-composed discrete interpolation of u, which
is not self-dual. Its dual interpolation, also well-composed, is Imin(u).



In [19], Najman and Géraud have proposed an interval-valued interpolation
of nD images, based on the Khalimsky grid. They have given an alternative
definition of well-composed nD images: the components of the boundaries of
all threshold sets are discrete (n − 1)-manifolds. Yet, this definition is different
from the one we use in the present paper (see Section 2.3) based on the notion of
critical configurations [2]. To our knowledge, the equivalence (or non-equivalence)
between both definitions has not been proven yet.

Several authors have proposed some methods to “repair” a 3D set so that the
result is well-composed; a bibliography can be found in [11]. In these methods
the notions of critical configurations are involved but, unlike us, they do not
consider the simple setting of “digital topology”.

In [4], Boutry et al. have presented a self-dual nD interpolation that is well-
composed, whatever the dimension n. The major difference between their result
and what we have proposed in Section 4.2 is that they do not impose the inter-
polation function to be local.

6 Conclusion

In this paper, we have shown that we need well-composed images to get (a really
pure) self-duality, and we have proven that a median-based interpolation is the
solution to get 2D well-composed images. A major consequence is that an nD
image defined on the cubical grid can really be seen as a function valuing the
vertices of a graph (otherwise the graph depends upon the image values). In
particular, that means that we can have two different functions (set of values)
defined on the same graph, since the domain structure can be truly uncorrelated
from the valuation. The drawbacks of our proposal is that we need to subdivide
the domain (yet it does not change any operator / method complexity because
it is just a multiplicative factor, and RAM is cheap). The perspectives of this
work are rather straightforward: finding if we can generalize the properties of
well-composed sets and images to any graph (not only cubical grids), and eval-
uate the advantages of our 2D proposal versus an interpolation dedicated to
6-connectivity, which is intrinsically topology paradox free.

Acknowledgment. The authors want to thank Laurent W. Najman for his
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References

1. Ballester, C., Caselles, V., Monasse, P.: The tree of shapes of an image. ESAIM:
Control, Optimisation and Calculus of Variations 9, 1–18 (2003)
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