
libDMC: a Library to Operate

Efficient Distributed Model Checking

Alexandre H∗, Fabrice K and Yann T-M
Université Pierre & Marie Curie, Laboratoire d’Informatique de Paris 6/MoVe

4, place Jussieu, F-75252 Paris CEDEX 05, France
Alexandre.Hamez@lip6.fr, Fabrice.Kordon@lip6.fr, Yann.Thierry-Mieg@lip6.fr

Abstract

Model checking is a formal verification technique that

allows to automatically prove that a system’s behavior is
correct. However it is often prohibitively expensive in

time and memory complexity, due to the so-called state

space explosion problem. We present a generic multi-

threaded and distributed infrastructure library designed to

allow distribution of the model checking procedure over

a cluster of machines. This library is generic, and is

designed to allow encapsulation of any model checker in

order to make it distributed. Performance evaluations are

reported and clearly show the advantages of multi-threa-

ding to occupy processors while waiting for the network,

with linear speedup over the number of processors.

1 Introduction

Software model checking is a formal analysis technique
that allows one to verify the behavior of a specification.
The basic principle is to exhaustively explore the state
space (represented as a finite labeled transition system) of
a modeled system. Such an operation is performed by a
model checker and requires the specification to be finite and
formally defined using formal languages like Promela [11],
LOTOS [8] or Petri Nets [10].

Model checking is a well accepted approach to analyze
specifications of hardware and (network) protocols, and
is now increasingly being applied to software systems
[11]. There is a particular complexity in the verification of
distributed systems due to asynchronous communications.
Thus, efficient and very sophisticated techniques like
decision diagrams [3], partial order reduction techniques

∗ A. Hamez has double affiliation: UPMC/LIP6 and EPITA Reseach and
Developpement Laboratory (LRDE).

1-4244-0910-1/07/$20.00 c©2007 IEEE.

[18], or exploitation of system symmetries [5] have been
developed to reduce the complexity of the procedure.

However, they still require the storage of a large number
of states in main memory, thus they scale up with difficulty
to industrial size problems. For example, the verification of
a middleware’s core in [12] could not be achieved for large
configurations (large number of modeled threads) due to
both implementation constraints of the model checker and
intensive use of memory and CPU.

In recent years, distribution of model checking appeared
to be a solution to increase memory capacity and CPU
by taking advantage of a network of workstations. The
principle is quite simple: states of the state space have to
be distributed over a set of machines that compute them
separately. The use of a cluster seems interesting for this
because it can be dedicated to the computation and usually
enjoys a high bandwidth dedicated network.

This paper presents libDMC, a library to encapsulate a
model checker in order to use the capacity of a cluster
for state space generation. We aim to produce a way to
quickly parallelize a model checker and to use it on a cluster
for evaluating reachability properties (also called safety

properties). Such properties are constraints over the state
space (for example an invariant). Reachability properties
are easier to use than causal properties (expressed by means
of temporal logic formulas). Indeed, engineers often use
OCL1 [17] constraints and program asserts (that naturally
correspond to reachability properties).

Our library is designed to face the following challenges:
it should allow integration of existing model checkers.
Our goal is to distribute several existing model checkers,
not redevelop from scratch distributed versions of existing
algorithms. However this requires a generic environment
dedicated to distribution of any type of state space
construction. Additionnaly we would like to make the
best use possible of available resources. We target clusters
of multi-core or multiprocessor hosts, thus we want a

1Objet Constraint Language

parallel (i.e., multi-threaded) implementation. Some further
challenges due to the integration of monolithic legacy code
in a multi-threaded environment were faced to allow this.

The paper is structured as follows. Section 2 briefly
presents the principles of model checking and, in particular,
the reachability analysis problem. Then, Section 3 explains
the architecture of our distributed model checking library.
We provide some details on the implementation of our tool
in Section 4 prior to a discussion on its performances in
Section 5.

2 Sequential and Distributed Model Check-
ing

The goal is to perform reachability analysis by
controlling an invariant in each state as it is visited. To
do so, we need to store all states in order to 1) detect
when a state has already been visited and 2) exhibit a faulty
execution path when the property is not verified.

2.1 Reachability Analysis

To check whether an invariant P is not preserved
(thus a faulty behavior is detected), the verification using
reachability analysis can be described as follows [6]. A
labeled finite state machine M is defined as a four tuple
M = 〈S , S 0, T, LP〉 where: S is a finite set of states, S 0 ⊆ S

is the set of initial states, T ⊆ S × S is a transition relation,
LP : S → {true, f alse} is a function that labels with true

each state that satisfies P. A path in the structure M from
a state s is a finite sequence of states π = s0 s1 s2 . . . sn such
that s0 ∈ S and (si, si+1) ∈ T holds for all i ≥ 0. The set
of reachable states reach is defined as s ∈ reach ⇔ ∃π =

s0 s1 s2 . . . sn, s0 ∈ S 0, s = sn, i.e., there exists a path from an
initial state s0 to s.

foreach s ∈ S 0 do1

todo.push(s)2

reach.add(s)3

while todo ! ∅ do4

s := todo.pop()5

foreach s′ ∈ trans(s) do6

if ¬reach.contains(s′) then7

todo.push(s′)8

reach.add(s′)9

if labels(s′, P) = f alse then return P is10

false.

return P is true.11

Algorithm 1: Reachable state space generation algorithm.

Given S 0, T and L, the verification of a safety property
P by model checking consists in determining whether
!s ∈ Reach, such that LP(s) = f alse (i.e., all reachable
states verify the invariant P). To this end, explicit-state
based model checkers2 run algorithm 1 and are usually
constructed using:

1. trans: a function representing the transition relation,
which returns, for a given state s, the set of its
successors by T . This function is often quite
complex, as its definition depends on the formalism
used in the model checker. Furthermore, many
state-space reduction techniques are implemented
inside this function such as state canonization to
exploit symmetries [20, 5], state compression and
decompression schemes to obtain compact state
signatures for storage [11], optimizations related
to accelerating the detection of enabled events, to
guiding the procedure by selecting the order in which
events are considered, or suppressing some of the
enabled events in given states without invalidating the
procedure [11], etc.

2. labels: a function representing the labeling function L,
such that labels(s, P) is true in a state s such that P

holds in that state. This labeling function is usually
implemented by running some boolean tests on the
state, and typically has a low complexity.

3. reach: a compact data structure to store the
reachability set currently under construction, in a
manner that allows a low complexity test contains for
presence of a state and fast insertion add of states.
Most commonly, splay trees, hash tables and variants
of Bloom filters are found [22].

4. todo: a queue (for breadth first search) or stack (for
depth-first search) to store states that have yet to be
fully explored. pop refers to the operation that extracts
a state and push adds a state.

For verification of safety properties, full storage of the state
graph is not required during construction, although parts
of the graph may need to be reconstructed a posteriori to
obtain a witness trace to the undesired state.

2.2 Distributed and Parallel Model Che-
cking

The previous algorithm highlights the characteristics of
a generic model checker. Our goal is to implement it in a
parallel and distributed context, to allow model checking of
larger models. We observe that computationally, the most

2By opposition to symbolic-based model checkers using decision
diagrams as data structures.

expensive treatment is usually the function trans, due to its
numerous optimizations. When the complexity of trans is
dominant, we note the possibility of computing successors
in parallel instances of trans that need not interact, except
to avoid treating the same state twice.

Memory-wise, the test reach.contains(s′) on line 7 is
the critical point. If this test requires disk access, the
model checking procedure usually does not terminate due
to virtual memory swapping. An obvious solution at this
level is to implement a distributed hash table scheme, to
take advantage of a cluster’s memory capacity.

In such a scheme, the call on line 7 first tests if the
local host is the owner of this state. This is done using
a static localization function (e.g., a checksum), that for
each state designates a host. This function partitions
the full state space over the hosts participating in the
computation. Newly reached states are sent to their owner
asynchronously. Note that the localization function should
have a homogeneous distribution to ensure load balancing.
In our case, we experimentally observe that load balancing
is related to state distribution.

2.3 Related Work

Our study of the literature shows several attempts
at proposing a distributed model checker. In [14] the
authors implemented a parallel version of Spin. The
problem however, was that the main state space reduction
technique of Spin, called partial order reduction, had to be
reimplemented in a manner that degrades its effectiveness
as the number of hosts collaborating increases. Thus
performances, reported up to 4 hosts in the original paper,
were reported to actually not scale well on a cluster (see
Nasa’s case study in [19]). Another effort to implement a
distributed Spin is the DivSpin [2] effort. However, they
chose to reimplement a Promela engine rather than using
Spin’s source code. As a result their sequential version
is at least twice as slow as sequential Spin in its most
degraded setting with optimizations deactivated. And any
further improvements of the Spin tool will not profit their
implementation.

An effort that has met better success is reported in
[20] for a distributed version of the Murphi verifier from
Stanford. Murphi exhibits a costly canonization procedure.
The original implementation in [20] was built on top of
specific Berkeley NOW hardware3, which limits portability.
A more recent implementation [15] is based on MPI,
however it is limited to two threads per hosts, one handling
the network and one for computation of the next state
function. Our work is however comparable to that effort in
terms of design goals: reuse of existing code over a network
of multiprocessors machines, a popular architecture due to

3The Berkeley Network of Workstations

its good performance/cost ratio. The good results reported
by these Murphi-based tools with slightly sublinear speedup
over the number of hosts encourage further experimentation
in this direction.

An important point is that we wish to reuse existing
model checker implementations, not redevelop from scratch
distributed versions of existing model checker algorithms.
Our team has been maintaining a tool integration platform,
that incorporates many explicit state based tools for the
analysis of Petri nets. We thus wanted to develop a generic
solution such that with as little modification as possible of
existing tools (usually quite complex monolithic legacy C
code) we could offer the computation power of a cluster.

As a test case for the tool, we wished to implement a
distributed version of the tool GreatSPN 2.0 [7], originally
developped in Torino and now co-maintained between
Torino and LIP6. The part of the tool concerned (the model
checking kernel) is over 86 KLOC of C. It implements
extremely efficient symmetry based reductions that in
favorable cases allows to reduce exponentially the size of
the state space [5]. Recent advances [1] have perfected the
tool to allow exploitation of partial symmetries, broadening
the range of models and properties that can be verified.
The compromise is that the transition relation is costly
computationally due to a so-called canonization procedure
like Murphi, but the algorithm yields a small state space.
This setting is favorable to a distributed approach, as shown
by the success of the Murphi-based tools. Computation
time is a critical issue with GreatSPN as some computations
can last two days on a single machine without exhausting
memory.

3 Architecture of libDMC

libDMC is a library designed to offer a distributed and
parallel implementation of existing, explicit-state based,
model checkers. To limit dependences between a given
model checker and our library, we chose to define an
interface for interaction based on the description of a
labeled finite state machine (see Section 2.1).

We can implement such an interface at the model
checker kernel level by extracting the primitives related to:
determining the initial states set S 0, computing a state’s
successors trans, and labeling states with the truth value
of a property labels. The internal description of states
used by the kernel is thus a black box, of which we only
assume that a state is considered as a contiguous segment of
memory, and that a state has a unique interpretation on all
hosts. Given these constraints, we replace the main loop of
a model checker by a distributed controller, and the existing
data structures todo and reach by our own implementations.
This architecture allows libDMC to make no hypothesis on
the encapsulated model checker data structures.

The drawback of such an interface is that no additional
informations can be transmitted with a state. At first,
we thought that we needed more informations on states
in order to have an homogeneous distribution of states.
But, as shown in section 5.1, we were able to attain this
goal without any additional hints. So, if a model checker
designer wants to store extra informations on a state for
model checking purposes, he can do it when constructing
a state.

We present libDMC’s architecture in two steps. First we
outline the design of a model checker engine as an assembly
of autonomous components which interact only via abstract
interfaces. Then we present how this architecture can be
distributed and discuss the coordination of the distributed
execution.

3.1 A Generic Architecture for State
Space Generation

libDMC architecture is structured using three majors
components (Figure 1), that represent the main data
structures identified in Algorithm 1.

The NewStatesSet handles the new states (todo).
StateManager and FiringManager share access to it, the
FiringManager uses pop and StateManager uses push on
it.

The FiringManager (which handles trans) pops
states from the NewStatesSet and invokes the successor
computation, which has been extracted from the (existing)
model checker. Then each successor is transfered to
the StateManager to be processed. The FiringManager

is multithreaded; this multi-threading allows to take
advantage of possible multiprocessorss/core computers in
a cluster (parallel computation of trans). Therefore, each
component of libDMC is thread-safe.

The StateManager (which handles reach) determines
whether a state is new or not. If a state s is new, the
StateManager inserts s into its unicity table and puts it in
the NewStatesSet. Otherwise, it is simply discarded.

The implementation of the successor computation
component is left to the existing model checkers. A
simple interface is defined to obtain: the set of initial
states S 0, the successors (through an iterator interface) of
a given state, and the labeling function. libDMC is mostly
independent from any model checker implementation choi-
ces because both the successor computation function and
states representation are parameters of our library. States
are seen as raw data to be processed, transmitted and stored.
Therefore, model checker designers only bring the semantic
of their formalisms, our library takes care of the rest.

This separation of concerns is important since designing
and implementing a formalism and all associated semantics
is a difficult task. This way, model checkers designers can

Figure 1. libDMC architecture in local
generation mode

focus on their formalisms without having to bear the burden
of networks and threads implementations aspects.

3.2 A Distributed Architecture for State
Space Generation

For the distributed version of libDMC, we dissociate the
state space generation from its distribution. We expect
this mechanism to greatly simplify future extensibility of
libDMC.

The algorithm of local generation is not modified
except that the FiringManager interacts with a new
implementation of the StateManager interface, realized by
three new dedicated components (strong boxes in Figure 2).

• The DistributedStateManager computes the owner of
each state (i.e., it says if a state is local or not).

• A set of StateManager Proxies represents distant hosts.
Each state transmitted to one of these proxies is
forwarded to the corresponding StateManager Service

(proxy design pattern [9]).

FiringManager threads are constantly competing to
compute new states, thus communication latency is
overlapped by parallel successor computations, allowing
full CPU usage.

3.3 Communication Models

Two communication models are used in two different
layers:

• Supervision handles initialization, execution
monitoring and detection of procedure termination,
following a master / slave model.

• State-space generation is handled in a peer-to-peer
manner. Peers exchange states using n− 1 connections
to other peers.

Figure 2. libDMC architecture in distributed
generation mode

The supervision layer is handled by a master host. This
host starts the program and deploys processes over all the
hosts. It also is in charge of detecting termination and
stopping the program. Supervision is inexpensive (few
communications), thus the master host can also participate
in the computation.

Termination is handled by a dedicated monitor running
on the master host. It uses a local inactivity measure for a
host based on the fact that 1) all threads are inactive and 2)

its NewStatesSet is empty. Peers notify this condition (i.e., it
has become active or inactive) to the master when it occurs.
When this condition is met on all peers, an additional test
is run to check that 3) no message remains in the network,
by checking that all sent states have been received (a simple
difference of sent and received states).

4 Implementation

libDMC implements the principles of the previous
section. This section lists some technical aspects of this
experimentation.

Language. To implement libDMC, we chose C++ for its
support of object-oriented programming capabilities and its
efficiency. Moreover, interface with C is easy to achieve; it
is important since most model checkers are developed in C.

Encapsulating model checkers. We successfully
experimented the encapsulation of two model checkers
coming from different research teams: GreatSPN [7] (Univ.
Torino) and CheckPN [4] (Univ. P. & M. Curie). So far, we
only exploit the reachability analysis capabilities of these
tools.

Communications support. As MPI 1.1 was not
clearly thread-safe and as we couldn’t find a complete
implementation of MPI 2 (which theoretically adds support

for multiple threads) at the time of the design of libDMC, we
used TCP to handle network communications. This solution
is portable and offers a low overhead compared to higher-
level communications libraries.

Making encapsulated model checkers thread-safe. One
challenge was to multi-thread existing model checker
implementations. GreatSPN for instance is inherently non-
reentrant, due to numerous global variables. The solution
adopted consists in compiling the tool as a shared library
that can be loaded and dynamically linked into. Simply
copying the resulting shared object file in different file
locations allows to load it several times into different
memory spaces. This is necessary as threads usually share
memory space.

State balancing algorithm. A key-point of distributed
model checking is the localization function, which returns
the host that owns a given state (i.e., it is stored in
its local memory). To be generic, we had to chose a
function independent from state representation, that ensures
a uniform distribution of states over the cluster hosts. We
chose MD5 [16] (after testing some others) as it is able to
compute a checksum on raw data and is known to have a
uniform distribution.

4.1 Interfaces for encapsulated model
checkers

The general interface presented in Section 3 for the state
space generation is described through the C++ abstract
interface shown at Figure 3.

1 typedef struct
2 {

3 void∗ s t a t e c o n t e n t ;
4 s i z e t s t a t e s i z e ;
5 } s t a t e ;
6

7 class abs t rac t f o rma l i sm
8 {

9 public :
10

11 v i r t u a l s t a t e ∗
12 g e t i n i t i a l s t a t e () = 0 ;
13

14 v i r t u a l a b s t r a c t s u c c e s s o r s i t e r a t o r ∗
15 g e t s u c c i t e r a t o r (s t a t e ∗ s) = 0 ;
16 } ;

Figure 3. Interfaces of the abstract formali-
sm class

Designers of model checkers just have to implement
this interface (and some others, which are necessary for
implementation details, such as the ones described below)
to describe how the state space of a model is generated.

The get initial statemethod returns the initial state
(lines 11-12) through a state data structure (lines 1-5).
This structure contains a pointer to the state content and
its size. As one can see, states are completely opaque to
libDMC.

The get succ iterator method returns an iterator on
successors of a state s (lines 14-15). This iterator has to im-
plement the abstract successors iterator interface.

5 Performances

Performances have been measured on a cluster of 22
dual Xeons hyper-threaded at 2.8GHz, with 2GB of RAM
and interconnected with Gigabit ethernet. We focused our
evaluations on two parameters: state balancing and obtained
speedup.

Performances have been computed using GreatSPN. The
following parametric specifications have been selected:

• the Dining Philosophers, a well known academic
example; its complexity grows with the number of
philosophers,

• the model of the PolyORB middleware kernel [12]; its
complexity grows with the number of threads in the
middleware,

• the specification of a telephone commutator [21]; its
complexity grows with the number of subscribers.

The first model is academic and served as a validation
example for our encapsulated model checkers. The two
others correspond to industrial case studies and their
associated specification is much more complex. Moreover,
these models were developed independently from this
project and thus serve as “fair” benchmarks.

Let us note that the analysis of the PolyORB kernel
could not be achieved for more than 17 threads (12 055 899
symbolic states, the equivalent of 6.57 × 1017 concrete
states without symmetry reductions). Computation then
took more than 40 hours. Such a size is quite common
when analyzing industrial systems. Parallelization of model
checking indeed allows to apply it on larger models.

5.1 Load Balancing

The fact that states are homogeneously distributed over
the involved hosts in the cluster is an important issue since
it is related to load balancing of the application. The goal is
to avoid the situation were some hosts are overloaded while
others are idle. This is required to reach a linear speedup.

Therefore, we measured the number of states owned
by each host. We then compared these results to the
theoretical mean and noted the variation. These measures

are summarized in Table 1. In this table, column 1
represents the parameter that scale up the model, column 2
the number of involved hosts, column 3 the total number of
states, column 4 the theoretical mean, column 5 the standard
deviation and column 6 the standard deviation expressed in
percentage.

The measures show an even state distribution up to 16
hosts. However we observed that for 16 hosts and over,
there are two groups of state distribution. This pushes
the standard deviation up by an order of magnitude. This
problem may be related to the use of MD5, and requires
further investigation.

5.2 Speedup

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 2 4 6 8 10 12 14 16 18 20 22

S
p
e
e
d
-u

p

Number of hosts (dual-processors)

Theoretical speedup
11 philosophers
12 philosophers
13 philosophers
14 philosophers

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 2 4 6 8 10 12 14 16 18 20

Theoretical speedup
4 threads

11 threads
17 threads

S
p
e
e
d
-u

p

Number of hosts (dual-processors)

Figure 4. Speedups for Dining Philosophers
(top) and PolyORb (bottom).

Figure 4 shows the speedup curve we obtain for the
Philosophers and the PolyORB specifications. Distributed

Parameter Hosts Symb. States Mean Std. deviation Percentage
Dining Philosophers

12 philosophers 4 347 337 86 834 427 0.5%
15 philosophers 4 12 545 925 3 136 481 792 < 0.1%
12 philosophers 22 347 337 15 788 689 4.4%
15 philosophers 22 12 545 925 570 269 24 179 4.2%

PolyORB middleware

11 threads 4 3 366 471 841 618 1021 < 0.1%
11 threads 16 3 366 471 210 404 402 0.2%
17 threads 16 12 055 899 753 494 1131 0.2%
11 threads 20 3 366 471 168 324 5393 3.2%
17 threads 20 12 055 899 602 795 19 557 3.2%
25 threads 20 37 623 267 1 881 163 60 540 3.7%

Telephone Service

4 subscribers 4 12 544 968 3 136 242 1138 < 0.1%
4 subscribers 8 12 544 968 1 568 121 969 < 0.1%
4 subscribers 16 12 544 968 784 060 647 < 0.1%
4 subscribers 20 12 544 968 627 248 20 055 3.2%

Table 1. States distribution for the Philosophers, PolyORB and Telephone Service models

execution time is compared to the standard version of
GreatSPN (i.e., not plugged to libDMC). Our library induces
a low overhead: execution for the mono-threaded, single
host version linked with libDMC within 95% to 105% of
the standard version. The local but multi-threaded version
is truly twice as fast on a bi-processor machine.

The main observation is that, in many cases, the observed
speedup is over the theoretical one based on the number
of processors (two per host): we have a supra-linear
acceleration factor (of a few percents). We observed this
in near all our experiments on several models with various
parameters. We attribute this to hyper-threading since the
supra-linear acceleration factor was not observed on dual
core PowerPC 970, which doesn’t have hyper-threading.
This hypothesis seems to be correlated by [13]. Apparently,
the multi-threading implementation enables an intensive use
of all the processor units:

• all I/O and mutexes are overlapped by other threads,

• multi-threading probably increases a simultaneous use
of dedicated hardware functions in the processors’s
pipe-line,

• shared code (between threads) and access to common
data may introduce a better use of caches.

We also observe that the larger the state space, the more
efficient encapsulated model checkers are. This is because
there are more chances for a state to have at least a successor
that is then distributed to another host, leading todo queues
handled by the NewStatesSet to never be empty during the
computation (which would make idle hosts).

6 Conclusion

In this paper, we presented libDMC, a library dedicated to
the encapsulation of model checkers to distribute them. Our
work is focused on state space generation and evaluation of
reachability (or safety) properties, which is also a limit of
most other existing implementations of distributed model
checkers.

We have implemented and used libDMC to encapsulate
two model checkers. We also measured performances on
model checking of some large models. Our performance
results are better than those of [20] (that report a near linear
speedup over the number of hosts), with supra-linear to the
number of processors speedup reported. Moreover:

• our solution offers a framework to ease the integration
of existing model checkers,

• our solution relies on a portable architecture (sockets,
pthread library) that takes maximum advantage of
modern cluster characteristics,

• libDMC is the only library that multi-threads the
generation of the state space, thus leading to excellent
results on multiple processors architectures.

We succeeded in analyzing specifications that could not
be computed before, due to limitation of memory and
CPU. If several days of computation may remain acceptable
for the development of critical components, many projects
could benefit from the linear speedup in the evaluation of a

safety property. The gain in the size of the problems that
can be treated is appreciable in any context.

In the future, we intend to extend the functionalities of
libDMC to handle properties expressed in temporal logic
(LTL in particular). We also intend to plug Spin into
libDMC to further validate our framework genericity, and
run more comparisons with existing solutions.

References

[1] S. Baarir, C. Dutheillet, S. Haddad, and J.-M. Ilié. On
the use of exact lumpability in partially symmetricalwell-
formed nets. In Second International Conference on

the Quantitative Evaluaiton of Systems (QEST 2005), 19-

22 September 2005, Torino, Italy, pages 23–32. IEEE
Computer Society, 2005.

[2] J. Barnat, V. Forejt, M. Leucker, and M. Weber. DivSPIN - a
SPIN compatible distributed model checker. In M. Leucker
and J. van de Pol, editors, 4th International Workshop

on Parallel and Distributed Methods in verifiCation

(PDMC’05), Lisbon, Portuga, 2005.
[3] J. Burch, E. Clarke, and K. McMillan. Symbolic model

checking: 1020 states and beyond. Information and

Computation (Special issue for best papers from LICS90),
98(2):153–181, 1992.

[4] CheckPN is a simple model-checker for Petri Nets. http:
//spot.lip6.fr/wiki/CheckPn/.

[5] G. Chiola, C. Dutheillet, G. Franceschinis, and S. Haddad.
Stochastic well-formed colored nets and symmetric
modeling applications. IEEE Transactions on Computers,
42(11):1343–1360, 1993.

[6] E. Clarke, O.Grumberg, and A. Peled. Model Checking.
MIT Press, 2000.

[7] G. G. Editor, A. for Timed, and S. P. Nets. http://www.
di.unito.it/˜greatspn/.

[8] P. V. Eijk and M. Diaz, editors. Formal Description

Technique Lotos: Results of the Esprit Sedos Project.
Elsevier Science Inc., New York, NY, USA, 1989.

[9] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design

patterns: elements of reusable object-oriented software.
Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 1995.

[10] C. Girault and R. Valk. Petri Nets for Systems Engineering.
Springer Verlag, 2002.

[11] G. Holzmann. The Spin Model Checker, Primer

and Reference Manual. Addison-Wesley, Reading,
Massachusetts, 2004.

[12] J. Hugues, Y. Thierry-Mieg, S. Baarir, F. Kordon,
T. Vergnaud, and L. Pautet. On the formal verification
of middleware behavioral properties. In T. Arts and
W. Fokkink, editors, Proc. Ninth International Workshop on

Formal Methods for Industrial Critical Systems (FMICS 04),
Electronic Notes in Theoretical Computer Science. Elsevier,
2004.

[13] D. Koufaty and D. T. Marr. Hyperthreading Technology in
the Netburst Microarchitecture. IEEE Micro, 23(2):56–65,
2003.

[14] F. Lerda and R. Sisto. Distributed-memory model checking
with SPIN. In Proc. of the 5th International SPIN Workshop,
volume 1680 of LNCS. Springer-Verlag, 1999.

[15] I. Melatti, R. Palmer, G. Sawaya, Y. Yang, R. M. Kirby, and
G. Gopalakrishnan. Parallel and distributed model checking
in eddy. In A. Valmari, editor, SPIN, volume 3925 of Lecture

Notes in Computer Science, pages 108–125. Springer, 2006.
[16] J. G. Myers and M. Rose. The Content-MD5 Header Field.

Technical report, Internet draft standard RFC 1864, 1995.
[17] OMG. OCL 2.0 Specification - Version 2.0 ptc/2005-06-06.

OMG, June 2005.
[18] D. Peled. Combining partial order reductions with on-

the-fly model-checking. In Proc. 6th Int. Conf. on

Computer-Aided Verification, volume 818 of Lecture Notes

in Computer Science, pages 377–390, Stanford, USA, June
1994. Springer Verlag.

[19] M. Rangarajan, S. Dajani-Brown, K. Schloegel, and D. D.
Cofer. Analysis of distributed spin applied to industrial-
scale models. In SPIN, volume 2989 of Lecture Notes in

Computer Science, pages 267–285. Springer, 2004.
[20] U. Stern and D. L. Dill. Parallelizing the Murϕ verifier.

In Proceedings of the 9th International Conference on

Computer Aided Verification, pages 256–278. Springer-
Verlag, 1997.

[21] A. Vernier and E. Paviot-Adet. Vérification et mise en œuvre

de réseaux de Petri, chapter Modélisation et vérification de
l’interopérabilité de services de télécommunication, pages
233–252. Hermès Science, 2003.

[22] Wikipedia. Hash table — wikipedia, the free encyclopedia,
2007. [Online; accessed 22-January-2007].

