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Abstract. Shared decision diagram representations of a state-space have been
shown to provide efficient solutions for model-checking of large systems. How-
ever, decision diagram manipulation is tricky, as the construction procedure is
liable to produce intractable intermediate structures (a.k.a peak effect). The def-
inition of the so-called saturation method has empirically been shown to mostly
avoid this peak effect, and allows verification of much larger systems. However,
applying this algorithm currently requires deep knowledge of the decision di-
agram data-structures, of the model or formalism manipulated, and a level of
interaction that is not offered by the API of public DD packages.
Hierarchical Set Decision Diagrams (SDD) are decision diagrams in which arcs
of the structure are labeled with sets, themselves stored as SDD. This data struc-
ture offers an elegant and very efficient way of encoding structured specifications
using decision diagram technology. It also offers, through the concept of inductive
homomorphisms, unprecedented freedom to the user when defining the transition
relation. Finally, with very limited user input, the SDD library is able to opti-
mize evaluation of a transition relation to produce a saturation effect at runtime.
We further show that using recursive folding, SDD are able to offer solutions in
logarithmic complexity with respect to other DD. We conclude with some perfor-
mances on well known examples.
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1 Introduction

Parallel systems are notably difficult to verify due to their complexity. Non-determinism
of the interleaving of elementary actions in particular is a source of errors difficult to
detect through testing. Model-checking of finite systems or exhaustive exploration of
the state-space is very simple in its principle, entirely automatic, and provides useful
counter-examples when the desired property is not verified.

? This work has been partially supported by the ModelPlex European integrated project FP6-IP
034081 (Modeling Solutions for Complex Systems)



However model-checking suffers from the combinatorial state-space explosion pro-
blem, that severely limits the size of systems that can be checked automatically. One
solution which has shown its strength to tackle very large state spaces is the use of
shared decision diagrams like BDD [1,2].

But decision diagram technology also suffers from two main drawbacks. First, the
order of variables has a huge impact on performance and defining an appropriate order
is non-trivial [3]. Second, the way the transition relation is defined and applied may
have a huge impact on performance [4,5].

The objective of this paper is to present hierarchical decision diagrams called Set
Decision Diagrams (SDD) and associated optimization techniques, that together are
suitable to master the complexity of very large systems. Although SDD are a general
all-purpose compact data-structure, effort has been put in providing easy to use off the
shelf constructs (such as a fixpoint) to develop a model-checker using SDD. These
constructs allow the library to control operation application, and harness the power of
state of the art saturation algorithms [5] with low user expertise in DD.

No specific hypothesis is made on the input language, although we focus here on
a system described as a composition of labeled transition systems. This simple formal-
ism captures most transition-based representations (such as automata, communicating
processes like in Promela [6], Harel state charts, or bounded Petri nets).

Our hierarchical Set Decision Diagrams (section 2) offer the following capabilities:

– Using the structure of a specification to introduce hierarchy in the state space, it en-
ables more possibilities for exploting pattern similarities in the system (section 3),

– Automatic activation of saturation ; the algorithms described in this paper allow the
library to enact saturation with minimal user input (sections 4 and 5),

– A recursive folding technique that is suitable for very symmetric systems (sec-
tion 7).

We also show that our openly distributed implementation: libDDD [7], is efficient
in terms of memory consumption and enables the verification of bigger state spaces.

2 Definitions

We define in this section Data Decision Diagrams (based on [8]) and Set Decision
Diagrams (based on [9]).

2.1 Data Decision Diagrams

Data Decision Diagrams (DDD) [8] are a data structure for representing finite sets of
assignments sequences of the form (e1 := x1) · (e2 := x2) · · · (en := xn) where ei are vari-
ables and xi are the assigned integer values. When an ordering on the variables is fixed
and the values are booleans, DDD coincides with the well-known Binary Decision Di-
agrams. When the ordering on the variables is the only assumption, DDD correspond
closely to Multi-valued Decision Diagrams (MDD)[5].



However DDD assume no variable ordering and, even more, the same variable may
occur many times in a same assignment sequence. Moreover, variables are not assumed
to be part of all paths. Therefore, the maximal length of a sequence is not fixed, and
sequences of different lengths can coexist in a DDD. This feature is very useful when
dealing with dynamic structures like queues.

DDD have two terminals : as usual for decision diagram, 1-leaves stand for accept-
ing terminators and 0-leaves for non-accepting ones. Since there is no assumption on
the variable domains, the non-accepted sequences are suppressed from the structure. 0
is considered as the default value and is only used to denote the empty set of sequences.
This characteristic of DDD is important as it allows the use of variables of finite domain
with a priori unknown bounds. In the following, E denotes a set of variables, and for
any e in E, Dom(e) ⊆N represents the domain of e.

Definition 1 (Data Decision Diagram). The set � of DDD is inductively defined by
d ∈� if:

– d ∈ {0,1} or
– d = 〈e,α〉 with:
• e ∈ E
• α : Dom(e)→�, such that {x ∈ Dom(e) |α(x) , 0} is finite.

We denote e
x
−→ d, the DDD (e,α) with α(x) = d and for all y , x, α(y) = 0.

Although no ordering constraints are given, DDD represent sets of compatible DDD
sequences. Note that the DDD 0 represents the empty set and is therefore compatible
with any DDD sequence. The symmetric compatibility relation ≈ is defined inductively
for two DDD sequences:

Definition 2 (Compatible DDD sequences). We call DDD sequence a DDD of the
form e1

x1
−−→ e2

x2
−−→ . . .1. Let s1, s2 be two sequences, s1 is compatible with s2, noted

s1 ≈ s2 iff.:

– s1 = 1∧ s2 = 1

– s1 = e
x
−→ d∧ s2 = e′

x′
−→ d′ such that

{
e = e′∧
x = x′⇒ d ≈ d′

As usual, DDD are encoded as (shared) decision trees (see Fig.

Fig. 1: DDD for
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1
−→ 1
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−→ c

1
−→ 1
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2
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1
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1 for an example). Hence, a DDD of the form 〈e,α〉 is encoded by a
node labeled e and for each x ∈ Dom(e) such that α(x) , 0, there is
an arc from this node to the root of α(x). By the definition 1, from a
node 〈e,α〉 there can be at most one arc labeled by x ∈ Dom(e) and
leading to α(x). This may cause conflicts when computing the union
of two DDD, if the sequences they contain are incompatible, so care
must be taken on the operations performed.

DDD are equipped with the classical set-theoretic operations (un-
ion, intersection, set difference). They also offer a concatenation operation d1 ·d2 which
replaces 1 terminals of d1 by d2. It corresponds to a cartesian product. In addition,



homomorphisms are defined to allow flexibility in the definition of application specific
operations.

A basic homomorphism is a mapping Φ from� to� such that Φ(0) = 0 and Φ(d +

d′) =Φ(d)+Φ(d′),∀d,d′ ∈�. The sum + and the composition ◦ of two homomorphisms
are homomorphisms. Some basic homomorphisms are hard-coded. For instance, the
homomorphism d ∗ Id where d ∈�, ∗ stands for the intersection and Id for the identity,
allows to select the sequences belonging to d : it is a homomorphism that can be applied
to any d′ yielding d ∗ Id(d′) = d ∗d′. The homomorphisms d · Id and Id ·d permit to left
or right concatenate sequences. We widely use the left concatenation that adds a single
assignment (e := x), noted e

x
−→ Id.

We also have a transitive closure ? unary operator that allows to perform a fixpoint
computation. For any homomorphism h, h?(d), d ∈� is evaluated by repeating d← h(d)
until a fixpoint is reached. In other words, h?(d) = hn(d) where n is the smallest integer
such that hn(d) = hn−1(d). This computation may not terminate (e.g. h increments a
variable). However, if it does, then h? = hn with n finite. Thus, h? is itself an inductive
homomorphism. This operator is usually applied to Id + h instead of h, allowing to
cumulate newly reached paths in the result.

Furthermore, application-specific mappings can be defined by inductive homomor-
phisms. An inductive homomorphism Φ is defined by its evaluation on the 1 terminal
Φ(1) ∈�, and its evaluationΦ′ =Φ(e, x) for any e ∈ E and any x ∈Dom(e).Φ′ is itself a
(possibly inductive) homomorphism, that will be applied on the successor node d. The
result of Φ(〈e,α〉) is then defined as

∑
(x,d)∈αΦ(e, x)(d), where

∑
represents a union.

We give examples of inductive homomorphisms in section 3 which introduces a simple
labeled P/T net formalism.

2.2 Set Decision Diagrams

Set Decision Diagrams (SDD) [9], are shared decision diagrams in which arcs of the
structure are labeled by a set of values, instead of a single valuation. This set may itself
be represented by an SDD or DDD, thus when labels are SDD, we think of them as
hierarchical decision diagrams. This section presents the definition of SDD, which has
been modified from [9] for more clarity (although it is identical in effects).

Set Decision Diagrams (SDD) are data structures for representing sequences of as-
signments of the form e1 ∈ a1;e2 ∈ a2; · · ·en ∈ an where ei are variables and ai are sets
of values.

SDD can also be seen as a different representation of the DDD defined as:⋃
x1∈a1 · · ·

⋃
xn∈an e1

x1
−−→ ·· ·en

xn
−−→ 1, however since ai are not required to be finite, SDD

are more expressive than DDD.
We assume no variable ordering, and the same variable can occur several times in an

assignment sequence. We define the usual terminal 1 to represent accepting sequences.
The terminal 0 is also introduced and represents the empty set of assignment sequences.
In the following, E denotes a set of variables, and for any e in E, Dom(e) represents the
domain of e which may be infinite.

Definition 3 (Set Decision Diagram). The set � of SDD is inductively defined by s ∈ � if:



– s ∈ {0,1} or
– s = 〈e,π,α〉 with:

• e ∈ E.
• π = {a0, . . . ,an} is a finite partition of Dom(e), i.e. Dom(e) = a0]· · ·]an where
] is the disjunctive union. We further assume ∀i,ai , ∅, and n finite.

• α : π→ �, such that ∀i , j,α(ai) , α(a j).

We will simply note s = 〈e,α〉 the node 〈e,π,α〉 as α implicitly defines π. We denote
e

a
−→ d, the SDD (e,α) with α(a) = d,α(Dom(e) \ a) = 0. By convention, when it exists,

the element of the partition π that maps to the SDD 0 is not represented.

SDD are canonized by construction through the union operator. This definition en-
sures canonicity of SDD, as π is a partition and that no two arcs from a node may
lead to the same SDD. Therefore any value x of Dom(e) is represented on at most one

arc, and any time we are about to construct e
a
−→ d + e

a′
−→ d, we will construct an arc

e
a∪a′
−−−→ d instead. This ensures that any set of assignment sequences has a unique SDD

representation.
The finite size of the partition π ensures we can store α as a finite set of pairs (ai,di),

and let π be implictly defined by α.
Although simple, this definition allows to construct rich and complex data :

– The definition supports domains of infinite size (e.g. Dom(e) = R), provided that
the partition size remains finite (e.g. ]0..3], ]3..+∞]). This feature could be used to
model clocks for instance (as in [10]).

– � or � can be used as the domain of variables, introducing hierarchy in the data
structure. In the rest of the paper we will focus on this use case, and consider that
the SDD variables we manipulate are exclusively of domain � or �.

Like DDD, to handle paths of variable lengths, SDD are required to represent a set
of compatible assignment sequences. An operation over SDD is said partially defined
if it may produce incompatible sequences in the result.

Definition 4 (Compatible SDD sequences). An SDD sequence is an SDD of the form
e0

a0
−−→ ·· ·en

an
−−→ 1. Let s1, s2 be two sequences, s1 ≈ s2 iff.:

– s1 = 1∧ s2 = 1

– s1 = e
a
−→ d∧ s2 = e′

a′
−→ d′ such that


e = e′

∧a ≈ a′

∧a∩a′ , ∅ ⇒ d ≈ d′

Compatibility is a symmetric property. The a ≈ a′ is defined as SDD compatibility if
a,a′ ∈ � or DDD compatibility if a,a′ ∈ �. DDD and SDD are incompatible. Other
possible referenced types should define their own notion of compatibility.



2.3 SDD Operations

SDD support standard set theoretic operations (union, intersection, set difference) for
compatible SDD. Like DDD they also support concatenation, as well as a variant of
inductive homomorphisms. Some built-in basic homomorphisms (e.g. d ∗ Id) are also
provided similarly to DDD.

To define a family of inductive homomorphismsΦ, one has just to set the homomor-
phisms for the symbolic expression Φ(e, x) for any variable e and set x ⊆ Dom(e) and
the SDD Φ(1). The application of an inductive homomorphism Φ to a node s = 〈e,α〉 is
then obtained by Φ(s) =

∑
(x,d)∈αΦ(e, x)(d).

It should be noted that this definition differs from the DDD inductive homomor-
phism in that Φ(e, x) is defined over the sets x ⊆ Dom(e). This is a fundamental differ-
ence as it requiresΦ to be defined in an ensemblist way: we cannot define the evaluation
of Φ over a single value of e. However Φ must be defined for the set containing any
single value. If the user only defined Φ(e, x) with x ∈ Dom(e), since the ai may be
infinite, evaluation could be impossible. Even when Dom(e) =�, a element-wise def-
inition would force to use an explicit evaluation mechanism, which is not viable when
ai is large (e.g. |ai| > 107).

Furthermore, let Φ1, Φ2 be two homomorphisms. Then Φ1 +Φ2, Φ1 ◦Φ2 and Φ?
1

(transitive closure) are homomorphisms.
We also now define a local construction, as an inductive homomorphism. Let var ∈

E designate a target variable, and h be a SDD or DDD homomorphism (depending on
Dom(var)) that can be applied to any x ⊆ Dom(var),

local(h,var)(e, x) = e
h(x)
−−−→ Id if e = var

e
x
−→ local(h,var) otherwise

local(h,var)(1) = 0

This construction is built-in, and gives a lot of structural information on the op-
eration. As we will see in section 5, specific rewriting rules will allow to optimize
evaluation of local constructions.

3 Model Checking with Set Decision Diagrams

To build a model checker for a given formalism using SDD, one needs to perform the
following steps:
1. Define the formalism,
2. Define a representation of states,
3. Define a transition relation using homomorphisms,
4. Define a verification goal.

We exhibit these steps in this section using a simple formalism, labeled P/T nets.
Most of what is presented here is valid for other LTS.



1. Defining the Formalism A unitary Labeled P/T-Net is a tuple 〈P, T , Pre, Post, L ,
label, m0〉 where

– P is a finite set of places,
– T is a finite set of transitions (with P∩T = ∅),
– Pre and Post : P×T → IN are the pre and post functions labeling the arcs.
– L is a set of labels
– label : T → 2L is a function labeling the transitions
– m0 ∈N

P is the intial marking of the net.

Idle

WaitL

HasL

WaitR

HasR

Fork

label(putForki) = {Ri+1modN}

label(getForki) = {Li+1modN}

label(eati) = {Ri}

label(getLi) = {Li}

eati

getRigetLi

getForki

hungryi

putForki

Fig. 2: Labeled P/T net Pi of ith philosopher in the N dining philosophers problem

For a transition t, •t (resp. t•) denotes the set of places {p ∈ P | Pre(p, t) , 0} (resp.
{p ∈ P | Post(p, t) , 0}). A marking m is an element of NP. A transition t is enabled
in a marking m if for each place p, the condition Pre(p, t) ≤ m(p) holds. The firing
of an enabled transition t from a marking m leads to a new marking m′ defined by
∀p ∈ P,m′(p) = m(p)−Pre(p, t) + Post(p, t).

Labeled P/T nets may be composed by synchronization on the transitions that bear
the same label. This is a parallel composition noted �, with event-based synchro-
nizations that can be interpreted as yielding a new (composite) labeled P/T net. Let
M = M0 � · · ·� Mn be such a composite labeled Petri net. Each label of M common to
the composed nets Mi gives rise to a synchronization transition tl of M.

Let τl = {ti|ti ∈Mi.T ∧ l ∈Mi.label(ti)} represent parts of the synchronization, i.e. the
set of transitions that bear this label in the subnets Mi. tl is enabled iff. ∀ti ∈ τl , ti is
enabled. The effect firing of tl is obtained by firing all the parts ti ∈ τl. In the rest of this
paper, we will call labeled Petri net a unitary or composite net.

Figure 2 presents an example labeled Petri net, for the classical dining philosophers
problem. The composite net P0 � P1 synchronizes transition P0.eat with P1.putFork
through label R0 for instance. This transition corresponds to philosopher P0 synchro-
nously eating and returning philosopher P1 his fork.

This is a general compositional framework, adapted to the composition of arbitrary
labeled transition systems (LTS).



(a)
SDD:
(P0)�
(P1)�
(P2)

(b)
DDD:
Pi
uni-
tary
net

Fig. 3: Hierarchical encoding of the full state-space for 3 philosophers

2. Defining the State Representation Let us consider a representation of a state space
of a unitary P/T net in which we use one DDD variable for each place of the system. The
domain of place variables is the set of natural numbers. The initial marking for a single

place is represented by: dp = p
m0(p)
−−−−→ 1. For a given total order on the places of the

net, the DDD representing the initial marking is the concatenation of DDD dp1 · · ·dpn .

For instance, the initial state of a philosopher can be represented by : Fork
1
−→ HasR

0
−→

WaitR
0
−→ HasL

0
−→WaitL

0
−→ Idle

1
−→ 1.

To introduce structure in the representation, we introduce the role of parenthesis in
the definition of a composite net. We will thus exploit the fact the model is defined as
a composition of (relatively independent) parts in our encoding. If we disregard any
parenthesizing of the composition we obtain an equivalent “flat” composite net, how-
ever using different parenthesizing(s) yields a more hierarchical vision (nested submod-
ules), that can be accurately represented and exploited in our framework.

Definition 5 (Structured state representation). Let M be a labeled P/T net, we induc-
tively define its initial state representation r(M) by :

– If M is a unitary net, we use the encoding r(M) = dp1 · · ·dpn , with dp = p
m0(p)
−−−−→ 1.

– If M = M1 � M2, r(M) = r(M1) · r(M2). Thus the parallel composition of two nets
will give rise to the concatenation of their representations.

– If M = (M1), r(M) = m(M1)
r(M1)
−−−−→ 1, where m(M1) is an SDD variable. Thus paren-

thesizing an expression gives rise to a new level of hierarchy in the representation.

A state is thus encoded hierarchically in accordance with the parenthesized compo-
sition definition. If we disregard parenthesizing, we obtain a flat representation using
only DDD. We use in our benchmark set many models taken from literature that are
defined using “modules”, that is a net N = (M1)� · · ·� (Mn) where each Mi is a unitary
net called a module (yielding a single level of hierarchy in the SDD). Figure 3 shows
an example of this type of encoding, where figure 3(a) is an SDD representing the full
composite net, and labels of the SDD arcs refer to DDD nodes of figure 3(b).

3. Defining the Transition encoding The symbolic transition relation is defined arc
by arc in a modular way well-adapted to the further combination of arcs of different
net sub-classes (e.g. inhibitor arcs, reset arcs, capacity places, queues. . . ). Homomor-
phisms allowing to represent these extensions were previously defined in [8], and are



not presented here for sake of simplicity. The two following homomorphisms are de-
fined to deal respectively with the pre (noted h−) and post (noted h+) conditions. Both
are parameterized by the connected place (p) as well as the valuation (v) labeling the
arc entering or outing p .

h−(p,v)(e, x) =
e

x−v
−−−→ Id if e = p∧ x ≥ v

0 if e = p∧ x < v
e

x
−→ h−(p,v) otherwise

h−(p,v)(1) = 0

h+(p,v)(e, x) = e
x+v
−−−→ Id if e = p

e
x
−→ h+(p,v) otherwise

h+(p,v)(1) = 0

These basic homomorphisms are composed to form a transition relation.

Definition 6 (Inductive homomorphism transition representation). Let t be a tran-
sition of labeled P/T net M. We inductively define its representation as a homomor-
phisms hTrans(t) by :

– If M is a unitary net, we use the encoding

hTrans(t) =©p∈t•h+(p,Post(p, t))◦©p∈•th−(p,Pre(p, t))

– If M = (M1)� · · ·� (Mn), and t represents a synchronization of transitions on a label
l ∈ L. The homomorphism representing t is written :

hTrans(t) =©ti∈τl local(hTrans(ti),m(Mi))

For instance the transition hungryi in the model of Fig. 2, would have as homo-
morphism : hTrans(hungry) = h+(WaitL,1) ◦ h+(WaitR,1) ◦ h−(Idle,1). When on a path
a precondition is unsatisfied, the h− homomorphism will return 0, pruning the path from
the structure. Thus the h+ are only applied on the paths such that all preconditions are
satisfied.

To handle synchronization of transitions bearing the same label in different nets of
a compositional net definition we use the local application construction of SDD homo-
morphisms. The fact that this definition as a composition of local actions is possible
stems from the simple nature of the synchronization schema considered. A transition
relation that is decomposable under this form has been called Kronecker-consistent in
various papers on MDD by Ciardo et al like [5].

For instance, let us consider the dining philosophers example for N = 3, M = (P0)�
(P1)� (P2). The transition tR0 is written :

hTrans(tR0 ) = local(hTrans(eat),m(P0))
◦local(hTrans(putFork),m(P1))

= local(h+(Idle,1)◦h+(Fork,1)◦h−(HasL,1)◦h−(HasR,1),m(P0))
◦local(h+(Fork,1),m(P1))



4. Defining the Verification Goal The last task remaining is to define a set of tar-
get (usually undesired) states, and check whether they are reachable, which involves
generating the set of reachable states using a fixpoint over the transition relation. The
user is then free to define a selection inductive homomorphism that only keeps states
that verify an atomic property. This is quite simple, using homomorphisms similar to
the pre condition (h−) that do not modify the states they are applied to. Any boolean
combination of atomic properties is easily expressed using union, intersection and set
difference.

A more complex CTL logic model-checker can then be constructed using nested fix-
point constructions over the transition relation or its reverse [2]. Algorithms to produce
witness (counter-example) traces also exist [11] and can be implemented using SDD.

4 Transitive Closure : State of the Art

The previous section has allowed us to obtain an encoding of states using SDD and of
transitions using homomorphisms. We have concluded with the importance of having
an efficient algorithm to obtain the transitive closure or fixpoint of the transition relation
over a set of (initial) states, as this procedure is central to the model-checking problem.

Such a transitive closure can be obtained using various algorithms, some of which
are presented in algorithm 1. Variant a is a naive algorithm, b [2] and c [4] are algorithms
from the literature. Variant d, together with automatic optimizations, is our contribution
and will be presented in the next section.

Symbolic transitive closure (’91)[2] Variation a is adaptated from the natural way of
writing a fixpoint with explicit data structures: it uses a set todo exclusively containing
unexplored states. Notice the slight notation abuse: we note T (todo) when we should
note (

∑
t∈T t)(todo).

Variant b instead applies the transition relation to the full set of currently reached
states. Variant b is actually much more efficient than variant a in practice. This is due to
the fact that the size of DD is not directly linked to the number of states encoded, thus
the todo of variant a may actually be much larger in memory. Variant a also requires
more computations (to get the difference) which are of limited use to produce the final
result. Finally, applying the transition relation to states that have been already explored
in b may actually not be very costly due to the existence of a cache.

Variant b is similar to the original way of writing a fixpoint as found in [2]. Note
that the standard encoding of a transition relation uses a DD with two DD variables
(before and after the transition) for each DD variable of the state. Keeping each tran-
sition DD isolated induces a high time overhead, as different transitions then cannot
share traversal. Thus the union of transitions T is stored as a DD, in other approaches
than our DDD/SDD. However, simply computing this union T has been shown in some
cases to be intractable.

Chaining (’95)[4] An intermediate approach is to use clusters. Transition clusters are
defined and a DD representing each cluster is computed using union. This produces



Algorithm 1: Four variants of a transitive closure loop.
Data: {Hom} T : the set of transitions encoded as hTrans homomorphisms
� m0 : initial state encoded as r(M) SDD
� todo : new states to explore
� reach : reachable states
a) Explicit reachability style
begin

todo := m0
reach := m0
while todo , 0 do
� tmp := T (todo)
todo := tmp \ reach
reach := reach + tmp

end

b) Standard symbolic BFS loop
begin

todo := m0
reach := 0
while todo , reach do

reach := todo
todo := todo + T (todo) ≡ (T + Id)(todo)

end

c) Chaining loop
begin

todo := m0
reach := 0
while todo , reach do

reach := todo
for t ∈ T do

todo := (t + Id)(todo)

end

d) Saturation enabled
begin

reach := (T + Id)?(m0)
end

smaller DD, that represent the transition relation in parts. The transitive closure is then
obtained by algorithm c, where each t represents a cluster. Note that this algorithm
no longer explores states in a strict BFS order, as when t2 is applied after t1, it may
discover successors of states obtained by the application of t1. The clusters are defined
in [4] using structural heuristics that rely on the Petri net definition of the model, and
try to maximize independence of clusters. This may allow to converge faster than in a
or b which will need as many iterations as the state-space is deep. While this variant
relies on a heuristic, it has empirically been shown to be much better than b.

Saturation (’01)[5] Finally the saturation method is empirically an order of magnitude
better than c. Saturation consists in constructing clusters based on the highest DD vari-
able that is used by a transition. Any time a DD node of the state space representation
is modified by a transition it is (re)saturated, that is the cluster that corresponds to this
variable is applied to the node until a fixpoint is reached. When saturating a node, if
lower nodes in the data structure are modified they will themselves be (re)saturated.
This recursive algorithm can be seen as particular application order of the transition
clusters that is adapted to the DD representation of state space, instead of exploring in
BFS order the states.

The saturation algorithm is not represented in the algorithm variants figure because
it is described (in [5])on a full page that defines complex mutually recursive procedures,
and would not fit here. Furthermore, DD packages such as cudd or Buddy [12,13] do not



provide in their public API the possibility of such fine manipulation of the evaluation
procedure, so the algorithm of [5] cannot be easily implemented using those packages.

Our Contribution All these algorithm variants, including saturation (see [9]), can
be implemented using SDD. However we introduce in this paper a more natural way
of expressing a fixpoint through the h? unary operator, presented in variant d. The
application order of transitions is not specified by the user in this version, leaving it up
to the library to decide how to best compute the result. By default, the library will thus
apply the most efficient algorithm curently available: saturation. We thus overcome the
limits of other DD packages, by implementing saturation inside the library.

5 Automating Saturation

This section presents how using simple rewriting rules we automatically create a satu-
ration effect. This allows to embed the complex logic of this algorithm in the library,
offering the power of this technique at no additional cost to users. At the heart of this
optimization is the property of local invariance.

5.1 Local Invariance

A minimal structural information is needed for saturation to be possible: the highest
variable operations need to be applied to must be known. To this end we define :

Definition 7 (Locally invariant homomorphism). A homomorphism h is locally in-
variant on variable e iff
∀s = 〈e,α〉 ∈�∪�, h(s) =

∑
(x,d)∈α e

x
−→ h(d)

Concretely, this means that the application of h doesn’t modify the structure of
nodes of variable e, and h is not modified by traversing these nodes. The variable e
is a “don’t care” w.r.t. operation h, it is neither written nor read by h. A standard DD
encoding [5] of h applied to this variable would produce the identity. The identity ho-
momorphism Id is locally invariant on all variables.

For an inductive homomorphism h locally invariant on e, it means that h(e, x) = e
x
−→

h. A user defining an inductive homomorphism h should provide a predicate Skip(e)
that returns true if h is locally invariant on variable e. This minimal information will be
used to reorder the application of homomorphisms to produce a saturation effect. It is
not difficult when writing a homomorphism to define this Skip predicate since the useful
variables are known, it actually reduces the number of tests that need to be written.

For example, the h+ and h− homomorphisms of section 3 can exhibit the locality of
their effect on the state signature by defining Skip, which removes the test e = p w.r.t.
the previous definition since p is the only variable that is not skipped:

h−(p,v)(e, x) = e
x−v
−−−→ Id if x ≥ v

0 if x < v
h−.Skip(e) = (e , p)
h−(p,v)(1) = 0

h+(p,v)(e, x) = e
x+v
−−−→ Id

h+.Skip(e) = (e , p)
h+(p,v)(1) = 0



An inductive homomorphism Φ’s application to s = 〈e,α〉 is defined by Φ(s) =∑
(x,d)∈αΦ(e, x)(d). But when Φ is invariant on e, computation of this union produces

the expression
∑

(x,d)∈α e
x
−→ Φ(d). This result is known beforehand thanks to the predi-

cate Skip.
From an implementation point of view this allows us to create a new node directly

by copying the structure of the original node and modifying it in place. Indeed the
application of Φ will at worst remove some arcs. If a Φ(d) produces the 0 terminal, we
prune the arc. Else, if two Φ(d) applications return the same value in SDD setting, we
need to fuse the arcs and into an arc labeled by the union of the arc values. We thus avoid
computing the expression

∑
(x,d)∈αΦ(e, x)(d), which involves creation of intermediate

single arc nodes e
x
−→ ·· · and their subsequent union. The impact on performances of

this “in place” evaluation is already measurable, but more importantly it enables the
next step of rewriting rules.

5.2 Union and Composition

For built-in homomorphisms the value of the Skip predicate can be computed by query-
ing their operands: homomorphisms constructed using union, composition and fixpoint
of other homomorphisms, are locally invariant on variable e if their operands are them-
selves invariant on e.

This property derives from the definition (given in [8,9]) of the basic set theory
operations on DDD and SDD. Indeed for two homomorphisms h and h′ locally invariant
on variable e we have: ∀s = 〈e,α〉 ∈�∪�,

(h + h′)(s) = h(s) + h′(s)
=
∑

(x,d)∈α e
x
−→ h(d) +

∑
(x,d)∈α e

x
−→ h′(d)

=
∑

(x,d)∈α e
x
−→ h(d) + h′(d)

=
∑

(x,d)∈α e
x
−→ (h + h′)(d)

A similar reasoning can be used to prove the property for composition.
It allows homomorphisms nested in a union to share traversal of the nodes at the top

of the structure as long as they are locally invariant. When they no longer Skip variables,
the usual evaluation definition h(s) + h′(s) is used to affect the current node. Until then,
the shared traversal implies better time complexity and better memory complexity as
they also share cache entries.

We further support natively the n-ary union of homomorphisms. This allows to dy-
namically create clusters by top application level as the union evaluation travels down-
wards on nodes. When evaluating an nary union H(s) =

∑
i hi(s) on a node s = 〈e,α〉 we

partition its operands into F = {hi|hi.Skip(e)} and G = {hi|¬hi.Skip(e)}. We then rewrite
the union H(s) = (

∑
h∈F h)(s) + (

∑
h∈G h)(s), or more simply H(s) = F(s) +G(s). The F

union is thus locally invariant on e and will continue evaluation as a block. The G part
is evaluated using the standard definition G(s) =

∑
h∈G h(s)

Thus the minimal Skip predicate allows to automatically create clusters of opera-
tions by adapting to the structure of the SDD it is applied to. We still have no require-
ments on the order of variables, as the clusters can be created dynamically. To obtain



efficiency, the partitions F +G are cached, as the structure of the SDD typically has lim-
ited variation during construction. Thus the partitions for an nary union are computed
at most once per variable instead of once per node.

The computation using the definition of H(s) =
∑

i hi(s) requires each hi to sepa-
rately traverse s, and forces to fully rebuild all the hi(s). In contrast, applying a union H
allows sharing of traversals of the SDD for its elements, as operations are carried to their
application level in clusters before being applied. Thus, when a strict BFS progression
(like algorithm 1.b) is required this new evaluation mechanism has a significant effect
on performance.

5.3 Fixpoint

With the rewriting rule of a union H = F +G we have defined, we can now examine the
rewriting of an expression (H + Id)?(d) as found in algorithm 1.d :

(H + Id)?(s) = (F +G + Id)?(s)
= (G + Id + (F + Id)?)?(s)

The (F + Id)? block by definition is locally invariant on the current variable. Thus
it is directly propagated to the successor nodes, where it will recursively be evaluated
using the same definition as (H + Id)?.

The remaining fixpoint over G homomorphisms can be evaluated using the chaining
operation order (see algorithm 1.c), which is reported empirically more effective than
other approaches [14], a result also confirmed in our experiments.

The chaining application order algorithm 1.c can be written compactly in SDD as :

reach = (©t∈T (t + Id))?(s0)

We thus finally rewrite:

(H + Id)?(s) = (©g∈G(g + Id)◦ (F + Id)?)?(s)

5.4 Local Applications

We have additional rewriting rules specific to SDD homomorphisms and the local con-
struction (see section 2.3 ):

local(h,var)(e, x) = e
h(x)
−−−→ Id

local(h,var).Skip(e) = (r , var)
local(h,var)(1) = 0

Note that h is a homomorphism, and is its application is thus linear to the values
in x. Further a local operation can only affect a single level of the structure (defined
by var). We can thus define the following rewriting rules, exploiting the locality of the
operation :



(1) local(h,v)◦ local(h′,v) = local(h◦h′,v)
(2) local(h,v) + local(h′,v) = local(h + h′,v)
(3) v , v′ =⇒ local(h,v)◦ local(h′,v′) = local(h′,v′)◦ local(h,v)
(4) (local(h,v) + Id)? = local((h + Id)?,v)

Expressions (1) and (2) come from the fact that a local operation is locally invariant
on all variables except v. Expression (3) asserts commutativity of composition of local
operations, when they do not concern the same variable. Indeed, the effect of applying
local(h,v) is only to modify the state of variable v, so modifying v then v′ or modifying
v′ then v has the same overall effect. Thus two local applications that do not concern the
same variable are independent. We exploit this rewriting rule when considering a com-
position of local to maximize applications of the rule (1), by sorting the composition
by application variable. A final rewriting rule (4) is used to allow nested propagation of
the fixpoint. It derives directly from rules (1) and (2).

With these additional rewriting rules defined, we slightly change the rewriting of
(H + Id)?(s) for node s = 〈e,α〉: we consider H(s) = F(s)+ L(s)+G(s) where F contains
the locally invariant part, L = local(l,e) represents the operations purely local to the
current variable e (if any), and G contains operations which affect the value of e (and
possibly also other variables below). Thanks to rule (4) above, we can write :

(H + Id)?(s) = (F + L +G + Id)?(s)
= (G + Id + (L + Id)? + (F + Id)?)?(s)
= (©g∈G(g + Id)◦ local((l + Id)?,e)◦ (F + Id)?)?(s)

As the next section presenting performance evaluations will show, this saturation
style application order heuristically allows to gain an order of magnitude in the size of
models that can be treated.

6 Performances of Automatic Saturation

Impact of Propagation We have first measured how the propagation alone impacts on
memory size, that is without automatic saturation. We have thus measured the mem-
ory footprint when using a chaining loop with propagation enabled or not. We have
observed a gain from 15% to 50%, with an average of about 40%. This is due to the
shared traversal of homomorphisms when they are propagated, thus inducing much less
creation of intermediary nodes.

Impact of Hierarchy and Automatic Saturation Table 1 shows the results obtained
(on a Xeon @ 1.83GHz with 4GB of memory) when generating the state spaces of
several models with automatic saturation (Algo. 1.d) compared to those obtained using
a standard chaining loop (Algo. 1.c). Moreover, we measured how hierarchical encoding
of state spaces perform compared to flat encoding (DDD).

We have run the benchmarks on 4 parametrized models, with different sizes: the
well-known Dining Philosophers and Kanban models; a model of the slotted ring pro-
tocol; a model of a flexible manufacturing system. We have also benchmarked a LOTOS



Final Hierarchical Flat Hierarchical
# Chaining Loop Automatic Sat. Automatic Sat.

Model States DDD SDD T. Mem. Peak T. Mem. Peak T. Mem. Peak
Size # (s) (MB) # (s) (MB) # (s) (MB) #

LOTOS Specification
9.8e+21 – 1085 – – – – – – 1.47 74.0 110e+3

Dining Philosophers
100 4.9e+62 2792 419 1.9 112 276e+3 0.2 20 18040 0.07 5.2 4614
200 2.5e+125 5589 819 7.9 446 1.1e+6 0.7 58.1 36241 0.2 10.6 9216
1000 9.2e+626 27989 4019 – – – 14 1108 182e+3 4.3 115 46015
4000 7e+2507 – 16019 – – – – – – 77 1488 184e+3

Slotted Ring Protocol
10 8.3e+09 1283 105 1.1 48 90043 0.2 16 31501 0.03 3.5 3743
50 1.7e+52 29403 1345 – – – 22 1054 2.4e+6 5.1 209 461e+3

100 2.6e+105 – 5145 – – – – – – 22 816 1.7e+6
150 4.5e+158 – 11445 – – – – – – 60 2466 5.6e+6

Kanban
100 1.7e+19 11419 511 12 145 264e+3 2.9 132 309e+3 0.4 11 14817
200 3.2e+22 42819 1011 96 563 1e+6 19 809 1.9e+6 2.2 37 46617
300 2.6e+24 94219 1511 – – – 60 2482 5.7e+6 7 78 104e+3
700 2.8+28 – 3511 – – – – – – 95 397 523e+3

Flexible Manufacturing System
50 4.2e+17 8822 917 13 430 530e+3 2.7 105 222e+3 0.4 16 23287

100 2.7e+21 32622 1817 – – – 19 627 1.3e+6 1.9 50 76587
150 4.8e+23 71422 2717 – – – 62 1875 3.8e+6 5.3 105 160e+3
300 3.6e+27 – 5417 – – – – – – 33 386 590e+3

Table 1: Impact of hierarchical decision diagrams and automatic saturation

specification obtained from a true industrial case-study (it was generated automatically
from a LOTOS specification – 8,500 lines of LOTOS code + 3,000 lines of C code – by
Hubert Garavel from INRIA).

All1 “–” entries indicate that the state space’s generation did not finish because of
the exhaustion of the computer’s main memory.

The “Final” grey columns show the final number of decision diagram nodes needed
to encode the state spaces for hierarchical (SDD) and flat (DDD) encoding. Clearly, flat
DD need an order of magnitude more nodes to store a state space. This shows how
well hierarchy factorizes state spaces. The good performances of hierarchy also show
that using a structured specification can help detect similarity of behavior in parts of a
model, enabling sharing of their state space representation (see figure 3).

But the gains from enabling saturation are even more important than the gains from
using hierarchy on this example set. Indeed, saturation allows to mostly overcome the

1 We haven’t reported results for flat DDs with a chaining loop generation algorithm as they
were nearly always unable to handle models of big size.



“peak effect” problem. Thus “Flat Automatic Saturation” performs better (in both time
and memory) than “Hierarchical Chaining Loop”.

As expected, mixing hierarchical encoding and saturation brings the best results:
this combination enables the generation of much larger models than other methods on
a smaller memory footprint and in less time.

7 Recursive Folding

In this section we show how SDD allow in some cases to gain an order of complexity:
we define a solution to the state-space generation of the philosophers problem which
has complexity in time and memory logarithmic to the number of philosophers. The
philosophers system is highly symmetric, and is thus well-adapted to techniques that
exploit this symmetry. We show how SDD allow to capture this symmetry by an adapted
hierarchical encoding of the state-space. The crucial idea is to use a recursive folding
of the model with n levels of depth for 2n philosophers.

7.1 Initial State

Instead of (P0) � (P1) � (P2) � (P3) which is the parenthesizing that is assumed by de-
fault, we parenthesize our composition (((P0) � (P1)) � ((P2) � (P3))). We will thus in-
troduce n + 2 levels of hierarchy to represent 2n philosophers, each level corresponding
to a parenthesis group. Since each parenthesis group ((X)� (Y)) only contains one com-
position �, its SDD will contain two variables that correspond to the states of (X) and
(Y).

The innermost level (level 0, corresponding to the most nested parenthesis of the
composition) contains a variable of domain the states of a single philosopher. The most
external parenthesis group will be used to close the loop, i.e. connect the first and last
philosophers. Hence level 0 represents a single philosopher, level 1 represents the states
of two philosophers, and level i represents the states of 2i philosophers.

The magic in this representation is that each half of the philosophers at any level
behaves in the same way as the other half : it’s really (((P0) � (P0)) � ((P0) � (P0))).
Thus sharing is extremely high : the initial state of the system for 2n philosophers only
requires 2n + k (k ∈N) nodes to be represented.

Let P0 = Fork
1
−→HasR

0
−→WaitR

0
−→HasL

0
−→WaitL

0
−→ Idle

1
−→ 1 represent the states

of a single philosopher as a DDD (as in section 3). Let Mk represent the states of 2k

philosophers using the recursive parenthesizing scheme. Following our definitions of
the previous section, Mk is defined inductively by :

Mk = h0
Mk−1
−−−−→ h1

Mk−1
−−−−→ 1 M0 = p

P0
−−→ 1

The most external parenthesis group yields a last variable noted h(Mn) such that

r((Mn)) = h(Mn)
Mn
−−→ 1. We have thus defined 4 variables: h(Mn) for the external paren-

thesis, h0 and h1 for intermediate levels, and p for the last level (Dom(p) ⊆�).



7.2 Transition Relation

We define the SDD homomorphisms f and l to work respectively on the first and last
philosopher modules of a submodule, as they communicate by a synchronization tran-
sition.

f (h)(e, x) = e
h(x)
−−−→ Id if e = p

e
f (h)(x)
−−−−−→ Id if e = h0

f .Skip(e) = (e , p)∧ (e , h0)
f (h)(1) = 0

l(h)(e, x) = e
h(x)
−−−→ Id if e = p

e
l(h)(x)
−−−−−→ Id if e = h1

l.Skip(e) = (e , p)∧ (e , h1)
l(h)(1) = 0

We then need to take into account that all modules have the same transitions. Tran-
sitions that are purely local to a philosopher module are unioned and stored in a homo-
morphism which will be noted L (in fact only hungry is purely local). We note Πi(s)
the part of a synchronization transition sL created for label L that concerns the current
philosopher module Pi and Πi+1(s) the part of sL that concerns Pi+1modN the right hand
neighbor of Pi. We note S the set of synchronization transitions, induced by the labels
Li and Ri.

Let τloop = Id +
∑

s∈S l(Πi(s))◦ f (Πi+1(s))
τloop is an SDD homomorphism operation defined to “close the loop”, that materializes
that the last philosophers right hand neighbor is the first philosopher. Our main firing
operation that controls the saturation is τ defined as follows :

τ(e, x) =

e
(τ◦τloop)?(x)
−−−−−−−−−−→ Id if e = h(Mn)

e
τ?(x)
−−−−→ τ+

∑
s∈S e

τ?◦l(Πi(s))
−−−−−−−−→ τ◦ f (Πi+1(s)) if e = h0

e
τ?(x)
−−−−→ Id if e = h1

e
L?(x)
−−−−→ Id if e = p

τ(t)(1) = 0

We can easily adapt this encoding to treat an arbitrary number n of philosophers
instead of powers of 2, by decomposing n into it’s binary encoding. For instance, for
5 = 20 + 22 philosophers ((P0)� ((P1� P2)� (P3� P4))) Such unbalanced depth in the
data structure is gracefully handled by the homogeneity of our operation definitions,
and does not increase computational complexity.

7.3 Experimentation

We show in table 2 how SDD provide an elegant solution to the state-space generation
of the philosophers problem, for up to 220000 philosophers. The complexity both in time
and space is roughly linear to n, with empirically 8n nodes and 12n arcs required to
represent the final state-space of 2n philos

The solution presented here is specific to the philosphers problem, though it can
be adapted to other symmetric problems. Its efficiency here is essentially due to the



Final Peak
Nb. Philosophers States Time (s) SDD DDD SDD DDD

210 1.02337e+642 0.0 83 31 717 97
231 1.63233e+1346392620 0.02 251 31 2250 97

21000 N/A 0.81 8003 31 72987 97
210000 N/A 9.85 80003 31 729987 97
220000 N/A 20.61 160003 31 1459987 97

Table 2: Performances of recursive folding with 2n philosophers . The states count is noted N/A
when the large number library GNU Multiple Precision (GMP) we use reports an overflow.

inherent properties of the model under study. In particular the strong locality, symmetry
and the fact that even in a BDD/DDD representation, adding philosophers does not
increase the “width” of the DDD representation – only it’s height –, are the key factors.

The difficulty in generalizing the results of this example, is that we exploit in the
definition of the transition relation the fact that all philosophers have the same behavior,
and the circular way they are synchronized. In other words, our formalism is not well
adapted to scaling to 2n, because it lacks an inductive definition of the problem that
we could capture automatically. While a simple use of the parenthesizing scheme de-
scribed in section 3 would produce overall the same effects, the recursive homogeneity
captured by τ would be lost. We would then have linear complexity w.r.t. to the number
of philosophers, when computing our rewriting rules, which is not viable to scale up to
220000 as we no longer can have overall logarithmic complexity.

Thus our current research direction consists in defining a formalism (e.g. a particular
family of Petri nets) such that we could recognize this pattern and obtain the recursive
encoding naturally.

However, this example reveals that SDD are potentially exponentially more power-
ful than other decision diagram variants.

8 Conclusion

In this paper, we have presented the latest evolutions of hierarchical Set Decision Di-
agrams (SDD), that are suitable to master the complexity of very large systems. We
think that such diagrams are well-adapted to process hierarchical high-level specifica-
tions such as Net-within-Nets [15] or CO-OPN [16].

We have presented how we optimize evaluation of user homomorphisms to automat-
ically producing a saturation effect. Moreover, this automation is done at a low cost for
users since it uses a Skip predicate that is easy to define. We thus generalize extremely
efficient saturation approach of Ciardo et al. [5] by giving a definition that is entirely
based on the structure of the decision diagram and the operations encoded, instead of
involving a given formalism. Furthermore, the automatic activation of saturation allows
users to concentrate on defining the state and transition encoding.

Also, we have shown how recursive folding allows in very efficient and elegant
manner to generate state spaces of regular and symmetric models, with up to 220000

philosophers in our example. Although generalization of this application example is



left to further research, it exhibits the potententially exponentially better encoding SDD
provide over other DD variants for regular examples.

SDD and the optimizations described are implemented in libddd, a C++ library
freely available under the terms of GNU LGPL. With growing maturity since the initial
protoype developed in 2001 and described in [8], libddd is today a viable alternative
to Buddy [13] or CUDD [12] for developers wishing to take advantage of symbolic
encodings to build a model-checker.
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