3710

IEEE TRANSACTIONS ON ENGINEERING MANAGEMENT, VOL. 69, NO. 6, DECEMBER 2022

Blockchain-Based Solution for Detecting and
Preventing Fake Check Scams

Badis Hammi ', Sherali Zeadally

Abstract—Fake check scam is one of the most common attacks
used to commit fraud against consumers. This fraud is particularly
costly for victims because they generally lose thousands of dollars
as well as being exposed to judicial proceedings. Currently, there
is no existing solution to authenticate checks and detect fake ones
instantly. Instead, banks must wait for a period of more than 48 h
to detect the scam. In this context, we propose a blockchain-based
scheme to authenticate checks and detect fake check scams. More-
over, our approach allows the revocation of used checks. More
precisely, our approach helps the banks to share information about
provided checks and used ones, without exposing the banks’ cus-
tomers’ personal data. We demonstrate a proof of concept of our
proposed approach using Namecoin and Hyperledger blockchain
technologies.

Index Terms—Authentication, blockchain, fake

hyperledger fabric, integrity, namecoin, security.

check,

I. INTRODUCTION

N OUR current society, checks represent one of the dominant

payment methods. A check is an order written by a depositor
instructing the bank to pay a specific amount to a recipient
from the depositor’s bank account. Unfortunately, numerous
malicious scammers exploit some flaws in the banking system
to commit frauds. Indeed, frauds employing fake checks are
growing rapidly and cost billions of dollars. The number of
complaints received by the Federal Trade Commission’s (FTC)
Consumer Sentinel Database (Sentinel) and the Internet Crime
Complaint Center (IC3) more than doubled between 2014 and
2017, rising from 12 781 to 31 980 [1], [2]. In this article, we
focus on fake check scams. This fraud is achieved by: 1) targeting
people mainly through some email scam; 2) establishing a
relationship (abusiness relationship most of the time); 3) sending

Manuscript received 29 September 2020; revised 15 February 2021; accepted
3 June 2021. Date of publication 1 July 2021; date of current version 1 November
2022. Review of this manuscript was arranged by Department Editor D. Sarpong.
(Corresponding author: Badis Hammi.)

Badis Hammi is with the EPITA School of Engineering and Computer
Science, 94270 Le Kremlin-Bicétre, France (e-mail: badis.hammi@epita.fr).

Sherali Zeadally is with the University of Kentucky, Lexington, KY 40506
USA (e-mail: szeadally @uky.edu).

Yves Christian Elloh Adja is with Telecom Paris, 91120 Palaiseau, France
(e-mail: ello.adja@telecom-paristech.fr).

Manlio Del Giudice is with the University of Rome, Link Campus, 00162
Roma, Italy, and also with the Paris School of Business, 75013 Paris, France
(e-mail: m.delgiudice @unilink.it).

Jamel Nebhen is with the Prince Sattam bin Abdulaziz University, Al-Kharj
16278, Saudi Arabia (e-mail: j.nebhen@psau.edu.sa).

Color versions of one or more figures in this article are available at https:
//doi.org/10.1109/TEM.2021.3087112.

Digital Object Identifier 10.1109/TEM.2021.3087112

, Yves Christian Elloh Adja, Manlio Del Giudice

, and Jamel Nebhen

them overpaid counterfeit paycheck; and finally 4) asking for the
overpayment.

Fake check scam has more disastrous consequences on the
victims than many other attacks (e.g., phishing, malware spread,
and so on). According to the U.S. Better Business Bureau
(BBB) [1], the Postal Inspection Service reports stopping fake
checks with a face value of $62 billion from entering the USA
in fiscal year 2017 and another 13 724 counterfeit postal money
orders totaling over $14 million in 2017 alone [1]. The survey
for 2016 saw the first increase in check fraud losses since 2008.
During 2016, check frauds cost the banks (worldwide) $789
million, an increase of more than 25% from the $615 million
reported losses in 2014 [1]. The average loss to consumers in
general from counterfeit checks was $1008 in 2017, and the loss
to a victim in the military was $2200 on average [3]. The FTC
reports that consumers lost more than $28 million to fake check
scams in 2019 alone. The median loss reported was $1988, which
is more than six times the median loss on all frauds tracked by
the FTC [4]. The FBI’s IC3 database reports 16 368 victims
of advanced fee scams that lost a collective $57.8 million in
2017 [2], [5]. Besides, check fraud occurrences are likely vastly
underreported. Only an estimated 29% of fraud victims report
to any sort of authority such as the FTC or BBB [6] and less than
one in ten victims ever report to law enforcement [1].

In addition to the financial and psychological harm, the
victims are, most of the time, exposed to judicial proceed-
ings because in the eyes of the law, they tried to scam the
bank [2], [7].

To the best of our knowledge, there is no method designed to
specifically protect users from fake check scams. In this context,
we believe that the best solution to protect users is the detection
of fake checks well before they are cashed. Certainly, there
are some measures to detect the authenticity of the physical
checks'?, (e.g., check’s edges, magnetic ink character recogni-
tion line, bank logo, and paper quality). Nonetheless, con artists
excel in the art of trickery and create very realistic checks espe-
cially today when numerous scammers use professional printers
and magnetic ink. Moreover, currently, numerous banks propose
to users to print their checks themselves, which removes the
physical protections from the checks. Consequently, the check
authentication solution implemented must be more effective, and
each bank must ensure that the submitted check is provided by

[Online]. Available: https://www.consumer.ftc.gov/articles/how-spot-
avoid-and-report-fake-check-scams

2[Online]. Available: https://www.aarp.org/money/scams-fraud/info-04-
201 1/scam-alert-fake-checks.html

0018-9391 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Université de Strasbourg SCD. Downloaded on November 20,2022 at 22:26:11 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-4470-6406
https://orcid.org/0000-0002-5982-8190
https://orcid.org/0000-0002-2389-4495
https://orcid.org/0000-0002-8610-3451
mailto:badis.hammi@epita.fr
mailto:szeadally@uky.edu
mailto:ello.adja@telecom-paristech.fr
mailto:m.delgiudice@unilink.it
mailto:j.nebhen@psau.edu.sa
https://doi.org/10.1109/TEM.2021.3087112
https://www.consumer.ftc.gov/articles/how-spot-avoid-and-report-fake-check-scams
https://www.aarp.org/money/scams-fraud/info-04-2011/scam-alert-fake-checks.html

HAMMI et al.: BLOCKCHAIN-BASED SOLUTION FOR DETECTING AND PREVENTING FAKE CHECK SCAMS

a real trusted authority before cashing it. Nevertheless, design-
ing such a solution is very challenging due to the following
difficulties.’

1) Data sharing between banks: Before paying a check, each
bank (Cashing-Bank) must ensure that the check was
really provided by a trusted authority (another bank). This
verification is possible if each bank shares information
about its provided checks. In other words, when a bank
provides a checkbook to a customer, it shares the informa-
tion about the customer and the provided checks. But no
bank will share such information with other banks, mainly
because of: a) user privacy: since the users have engaged
with this bank and not with another bank; and b) com-
mercial competition: if users’ information are accessible
freely by other banks, nothing prevents any bank from
contacting these people and offering them its services.
Thus, it is necessary to design a sharing system, which
ensures that the customers’ data are not revealed to third
parties.

2) Nonmodification of existing protocols: Any proposal that
requires any modification in the existing bank protocols
such as the modification of the check format to add some
data or a modification in the payment procedure will
have a chain reaction on numerous parts or protocols of
the banking ecosystem. Such consequences make banks
resist the adoption of such proposals. It is, therefore,
mandatory that the proposed mechanism does not modify
any of the existing protocols, solutions, or procedures
and must seamlessly integrate into the current banking
ecosystem.

3) Management of the sharing mechanism: If a data sharing
mechanism is deployed and used by banks to ensure the
authenticity of checks, several issues will arise: a) Who
will maintain and manage the mechanism (infrastructure,
protocol, and so on)? b) How will the participating banks
share the management fees? ¢c) Who decides on the evo-
lution of the mechanism? d) Where will the stored data be
kept? e) Who can access the stored data? f) How can these
data be accessed? g) If one bank decides not to use the
mechanism anymore, how will this affect the other banks.
Consequently, it is mandatory to design a lightweight and
low-cost sharing system that does not impose a burden
on third parties that deploy it, and the system should be
adaptable to handle different conditions.

4) Scalability: Considering the number of banks as well as
the large number of customers, we need to propose a highly
scalable mechanism that can handle such a load.

5) Authentication: In the proposed system, third parties
must ensure that the shared information is provided
by the corresponding trusted bank. More precisely, the
Cashing-Bank must ensure that the shared data were pro-
vided by the Providing-Bank, and it must also ensure
that the Providing-Bank is trustworthy. Accordingly, it is

31n the remainder of this article, we use the term Providing-Bank to refer to
the bank that provides the check and the term Cashing-Bank to refer to the bank
that receives and pays the check.

3711

necessary to equip the sharing system with an effective
authentication method.

Contributions of This Article

We believe, like many other researchers [8]-[10], that
blockchain represents a very promising technology for the
development of decentralized and resilient security solutions.
Therefore, in this article, we propose an effective blockchain-
based mechanism that helps the banks to share information
about provided checks. More specifically, our approach helps
to verify the authenticity of a given check, without exposing the
banks’ customers’ personal data. Following this verification, the
Cashing-Bank can decide to continue the transaction or to abort
it. Moreover, our proposed approach is cost-efficient, and it does
not affect the existing bank’s procedures while checking the au-
thenticity of checks. The proposed approach should also not need
any additional infrastructure management. We implemented our
approach using the public blockchain Namecoin. Its evaluation
demonstrates its ability in meeting the necessary requirements.
To evaluate the performance of our proposed approach, we also
deployed our check’s authentication scheme based on the private
blockchain Hyperledger.

The rest of this article is organized as follows. Section II
describes the fake check scam. In Section III, we describe our
approach for detecting fake checks. Then, Section IV discusses
and analyzes our proposed approach. Section V discusses the
Hyperledger implementation and analyzes the results obtained.
Finally, Section VI concludes this article and identifies future
research perspectives.

II. FAKE CHECK SCAM

In a fake check scam, a con artist asks a victim to deposit
a check, which is usually for more than what the victim is
owed, and then asks the victim to wire some of the money
back. The scammers always have a good story to explain the
overpayment [2], [7], [11]. We cite a typical real scenario*
depicted in Fig. 1: a person that we call Alice sends an advertise-
ment informing that she is available for giving math courses for
secondary-school level, through an advertisements website such
as craigslist.org. A scammer contacts her pretending that he is
interested for his child. Both parties exchange by e-mail or even
by phone in order to agree on the place, the amount (e.g., $500)
and the dates (which are often not confirmed straightaway).
Afterward, the scammer pretends to act in good faith by paying
Alice in advance, sends her a fake check, but with an amount
much higher than the agreed one (e.g., $2000). The scammer
explains the check overpayment by being outside the country and
by being his last check, explaining that he owes his child’s nanny
the overpayment (e.g., $1500) and asks gently Alice to make a
money order or a wire transfer to the nanny. Consequently, Alice
cashes the check and sends the overpayment to the scammer
thinking she is doing it for the nanny. Legally, a person is
responsible for the check he/she is depositing. Hence, it is Alice
which will refund the check as well as the bank’s fine and fees.

4True story

Authorized licensed use limited to: Université de Strasbourg SCD. Downloaded on November 20,2022 at 22:26:11 UTC from IEEE Xplore. Restrictions apply.

3712

IEEE TRANSACTIONS ON ENGINEERING MANAGEMENT, VOL. 69, NO. 6, DECEMBER 2022

0@ -8 00
(%)

S w S

A
.0 Jioioi|

Alice posts a job proposal
(e.g. Math courses) on a

A scammer pretends he is
interested. Both agree on a
price (e.g. 500%)

[The scammer sends an overpaid|
check (e.g. 1500%). He finds a
story behind the overpayment
and asks to send it elsewhere

Beliving the story of the scammer, Alice
deposits the check at her cashing bank

‘ ‘Qb 490

50- O @

. Seeing her account credited, Alice
The con artist succeeds the
scam and receives the money transfers the overpayment (to the
scammer)

&

—

Without any verification, the cashing bank
credits Alice's account (or cashs the check)

3l

el

>
= |
= |
= |

O om O

The cashing bank asks Alice for refund. It
may also initiate legal proceedings against
Alice

The providing bank verifies the veracity of
the check, discovers that it is fake and
informs the cashing bank

the cashing bank sends the check to the
providing bank for money collection

Fig. 1. Fake check scam scenario.

This fraud is possible because of the check payment protocol
used in the banking ecosystem. Indeed, the deposited check goes
through several steps: 1) without verification of the check, the
Cashing-Bank credits the account of the customer that deposits
the check within one working day from the date of deposit. In
some countries, this credit is provided only if the amount of
the check does not exceed a known threshold. For example,
in France, this threshold is € 3000. If the check exceeds this
amount, a portion of the check’s amount is credited while waiting
for the next step to be executed; 2) the Cashing-Bank sends the
check to the Providing-Bank for money collection; and 3) if
all goes well, the customer can receive the amount stated on the
check. But if the check is unpaid, bounced, irregular, or fake, the
Cashing-Bank will reissue the corresponding amount from the
customer’s account who also pays additional fees (according to
the bank and the country policy, a fine or judicial proceedings can
be considered) [1]. The Float is the amount of time it takes for
money to move from one account to another. It ranges from 48h
until several weeks, depending on the banks involved and their
mutual agreements, e.g., in the USA. The processing of the check
through the Federal Reserve System may take up to three or more
business days. When the check is presented, the countdown for
the midnight rule begins [2], [12]. A check deposited on a Friday
may not be returned until the following Wednesday or even later,
which is in compliance with the Uniform Commercial Code [2].
In the case of a fake check scam, it is only when the amount of the
transaction is claimed from the Providing-Bank that the fraud is
discovered, which gives the scammer all the time to do the fraud.

Fake checks drive many types of scams such as those
involving phony prize wins, fake jobs, mystery shoppers,
online classified ad sales, payment for a sold item, and many

others. We describe some of the most common ones in the
following [2], [13].

1) Mystery shopping scam: Con artists lure victims by send-
ing spams or posting ads for mystery shoppers in clas-
sified job advertisements.> When victims respond to the
ads, they are led to believe that they have been hired
as mystery shoppers to evaluate the services of money
transfer companies (e.g., MoneyGram). Victims are then
sent checks that appear to be from legitimate companies
and instructed to deposit the checks in their bank accounts
and then withdraw most of the money and wire it to
someone else (often a purported fellow mystery shopper).
Victims are told to keep several hundred dollars of the
money as payment. When the checks are later discovered
to be phony, the banks reverse the deposit, and the victims
are left liable for the money withdrawn, usually several
thousand dollars.® This occurs in addition to a potential fee
and judicial proceedings. Another form of this fraud is a
scammer who sends spam e-mails informing the potential
victim that he/she has inherited a large amount of money
but he/she cannot cash it by himself/herself because of
family (or other) problems and hires the victim to cash it
for him while keeping a compensation.

Fake job scam: As we have described earlier in this section,
this scam typically starts with a victim responding to
an online posting (spam message), or the victim may

2)

3[Online]. Available: https:/www.consumer.ftc.gov/articles/0053-mystery-
shopper-scams

[Online]. Available: Financial Industry Regulatory Authority: www.finra.
org/

Authorized licensed use limited to: Université de Strasbourg SCD. Downloaded on November 20,2022 at 22:26:11 UTC from IEEE Xplore. Restrictions apply.

https://www.consumer.ftc.gov/articles/0053-mystery-shopper-scams

HAMMI et al.: BLOCKCHAIN-BASED SOLUTION FOR DETECTING AND PREVENTING FAKE CHECK SCAMS

have posted information online, to seek a job. Either way,
the victim eventually gets “hired” by the con artist and
receives e-mails or phone calls with instructions. Similar
to the mystery shopping scam, the victim then receives
a legitimate looking check and is told to cash it, wire
some portion of the proceeds to a third party, and keep
the remainder as payment [1], [14].

3) Unexpected check scam: Typically, this fraud starts with a

spam e-mail inviting victims to participate in a fake lottery
or to play a simple online game. This event triggers the
delivery of a “surprise” check to the victims’ door. The
scammers inform that a part of the prize must be used as
fees [1].
The checks are fake, but they look real especially con-
sidering that there is no physical protection on the check.
They look so real that even bank tellers may be fooled. The
companies whose names appear may be real, but someone
has dummied up the checks without their knowledge.
Moreover, for money savings, numerous people print their
own checks.’

Fraud is a major problem in business [15], and bank fraud
is extremely dangerous for the organizational development of
a bank [16]. In particular, fake checks is one of the biggest
challenges faced by financial institutions. The main reason is that
technology has made it progressively easy for criminals to create
realistic counterfeit and false checks. According to Chhabra
et al. [17], “technological advancements enable criminal actors
to perpetrate innovative frauds that are very difficult to detect.
Since most banking systems accept scanned copies of checks
for clearance, identifying erasable ink alterations and printed
signatures on digital images can be very challenging.”

To the best of our knowledge, there is no existing check
authentication method that relies solely on information tech-
nology (IT) resources. Rose [2] provided generic hints on how
machine learning can be applied to detect fake checks. They
discussed concerns in the detection of physical errors on the
check’s shape/design (e.g., logo), which makes it unreliable if
the adversary prints good-quality checks. Similarity, Kumar and
Gupta [18] proposed an automated methodology for the forensic
authentication of bank checks. To determine check authenticity,
a support vector machine was used to verify the color and
texture characteristics extracted from images of genuine and
fake checks.

The Official Gazette of the U.S. Patent Office reported several
advanced methods for effectively blocking the counterfeiters and
preventing continuing check fraud. For example, U.S. Patent
no. 3 829 133 [19] explains a type of check, which integrates
a masked individual code recognized only to the authorized
drawer of the check who has advance knowledge of the key,
by which the individual code is determined. U.S. Patent no.
4231 593 [20] defines a check having first and second coatings:
the first one is electrically conductive, and the other is electrically
nonconductive. The main advantage of this method is to avoid
any tentative to alter checks. U.S. Patent no. 5 371 798 [21]

"[Online]. Available: https://www.thebalance.com/before-you-print-your-
own-checks-315315

3713

defines a method of making a check by dividing the clear band
of the check into two parallel portions: one portion printed with
ferrous beaded ink and the other portion printed with nonferrous
inks. The goal of this method is to distinguish the authentic
checks.

The analysis of the aforementioned patents leads to the con-
clusion that although each method may be useful in detecting
fake checks, they are outdated and represent only a physi-
cal security, which make them noneffective currently, where
banks’ customers can print their own checks. Therefore, there
is a need to develop a fake check detection method that can
meet the needed requirements and that can be easily integrated
into existing bank equipment to be effective and, therefore,
adoptable.

III. PROPOSED APPROACH

The main goal of our approach is to provide banks with a
powerful mechanism that allows the instant authenticity verifi-
cation of a given check and, hence, avoid the current float period
of more than 48 h.

A scammer can create a fake check according to the following
two methods:

1) by considering random information;

2) by considering real information of an already cashed

check.

This article is an extension of our previous work [22], where
we presented a method to detect fake checks. However, our
previous work did not consider the second case, where the
scammer uses real data to create a fake check. Thus, the detection
approach cannot detect the scam, which makes it ineffective. To
address this drawback in our previous approach, we propose an
extension to it so that the extended approach could detect all
possible check scams.

A. Background

Our approach relies mainly on 1) a blockchain and 2) La-
grange interpolating polynomial. In this section, we briefly
describe these concepts.

Blockchain is not a new concept to banks. Indeed, numerous
studies [23]-[26] have described the challenges and opportu-
nities of implementing blockchain technology in the banking
sector [e.g., central bank digital currency, payment clearing and
settlement systems operated by central banks, assets transfer and
ownership, audit trail, and regulatory compliance (regulation)].
Industry participants see an opportunity to apply blockchain
to their products and services and develop coordinated solu-
tions that could help overcome existing industry challenges by
providing greater transparency and improving conduct [27].
Nonetheless, to the best of our knowledge, no works on the
detection of fake checks have been proposed (blockchain-based
or IT-based in general).

1) Blockchain: A blockchain is defined as a distributed
database (ledger) that maintains a permanent and tamper-proof
record of transactional data. A blockchain is completely decen-
tralized by relying on a peer-to-peer network. More precisely,
each node of the network maintains a copy of the ledger to

Authorized licensed use limited to: Université de Strasbourg SCD. Downloaded on November 20,2022 at 22:26:11 UTC from IEEE Xplore. Restrictions apply.

https://www.thebalance.com/before-you-print-your-own-checks-315315

3714

prevent a single point of failure. All copies are updated and
validated simultaneously [10].

Blockchain technology was created to solve the double spend-
ing problem in cryptocurrency [28]. However, currently, numer-
ous works explore blockchain applications in multiple use cases
and use them as a secure way to create and manage a distributed
database and maintain records for digital transactions of all
types [29]-[35].

The blockchain ledger is composed of multiple blocks, and
each block is composed of two parts. The first part represents
the transactions or facts (that the database must store), which
can be of any type such as monetary transactions, health data,
system logs, traffic information, and so on. The second part is
called the header and contains information about its block (e.g.,
timestamp, hash of its transaction, as well as the hash of the
previous block). Thus, the set of existing blocks forms a chain
of linked and ordered blocks. The longer the chain, the harder
is to falsify it. Indeed, if a malicious user wants to modify or
swap a transaction on a block, first, the user must modify all
the following blocks because they are linked with their hashes.
Second, the user must change the version of the blockchain that
each participating node stores [10], which is very hard to achieve.

The core task of a blockchain network is to ensure that the
trustless nodes in the network agree on a single tamper-proof
record of transactions. Thus, to jointly address the problems
of trust, anonymity, scalability, poor synchronization, and to
prove the honest validation of blocks, consensus mechanisms
are deployed [36]. There are numerous consensus algorithms
that have been proposed in the past few years such as Byzantine
fault tolerant (BFT) [37]-[39], state-machine-replication-based
BFT [40]-[42], Dwork, Lynch, and Stockmeyer [39], View-
stamped Replication [43], Paxos [44], [45], and many others.

In this article, we use Namecoin® blockchain to imple-
ment our approach. Namecoin uses the Nakamoto consensus.
Nakamoto [28] proposed a permissionless consensus protocol
based on a framework of cryptographic block-discovery racing
game also known as proof of work (PoW). From a single node’s
perspective, the Nakamoto consensus protocol defines three
major procedures [46].

1) Chainvalidation provides a Boolean judgment on whether

a given chain of blocks has the valid structural properties.
It checks if each block in the chain provides a valid PoW
solution, and no conflict between transactions as well as
the historical records exists.

2) Chain comparison and extension compares the length of
a set of chains, which may be either received from peer
nodes or locally proposed. It guarantees that an honest
node only adopts the longest proposal among the candi-
dates’ views of the blockchain.

3) PoW solution searching defines a cryptographic puzzle-
solving procedure in a computation-intensive manner,
which is hard to compute but easy to verify. A PoW
is requested for each block validation. The difficulty of
the mathematical challenge can be adapted according to

8[Online]. Available: https://namecoin.org

IEEE TRANSACTIONS ON ENGINEERING MANAGEMENT, VOL. 69, NO. 6, DECEMBER 2022

TABLE I
CHECKBOOK’S AUTHENTICATION INFORMATION DATA STRUCTURE

| Field | Size (bytes) |
Lagrange Polynomial Variable
Hash(Lagrange polynomialllFull
namellProviding-BankllAccount number) 32
Signature(Full namellFull
Addpress||Providing-BankllRouting numberllAccount
numberllLagrange polynomial) 64

the time needed to validate a block and to the miners’
computation power [10].

2) Lagrange Polynomial Interpolation: Lagrange polynomi-
als allow us to interpolate a series of points by a polynomial,
which passes exactly through these points. More thoroughly,
given a set of points (x;,y;) with no two x; values equal, the
Lagrange polynomial is the polynomial of lowest degree that
assumes for each value x; the corresponding value y;. Thus,
the function coincides at each point [47], [48]. The following
equation defines the Lagrange polynomial associated with these
points:

== o

-
J=0j#i " J

LX) =) yjli(x), li(a) =
j=0

Equation (1) can also be written as follows [48]:

n

L(z) = H(m —xj). 2

=0

B. System Functioning

Our approach helps the banks to share information about
provided checks in order to verify their authenticity during the
payment all without exposing any of the customer’s personal
data. The proposed scheme relies on a public blockchain. Also,
we need to choose a hash algorithm as well as a signature algo-
rithm. In this article, we consider using 1) Namecoin blockchain;
2) SHA-256 as a hash algorithm; and 3) Elliptic Curve Digital
Signature Algorithm (ECDSA).

Our system uses two phases of the check’s lifecycle: 1) the
check provision and 2) the withdrawal operation. Our approach
requires that each Providing-Bank owns a key pair with the
public key certified by a trusted authority, i.e., each bank must
own a certificate, accessible by any third party.

1) Check Provision Phase: When abank creates a checkbook
for a customer, it must share the information related to the
customer and the checkbook through a public blockchain. More
precisely, for each provided checkbook, the bank creates a data
structure related to this checkbook called Checkbook’s Authen-
tication Information (CAI) and adds it to the public blockchain
through a transaction. The CAI data structure is composed of
three fields, as shown in Table I: 1) a Lagrange polynomial; 2)
a hash; and 3) a cryptographic signature.

We assume that the bank’s entity, which executes the check’s
provision task can provide basic protocol primitives in order to
recover the information required to create the CAI structure and

Authorized licensed use limited to: Université de Strasbourg SCD. Downloaded on November 20,2022 at 22:26:11 UTC from IEEE Xplore. Restrictions apply.

HAMMI et al.: BLOCKCHAIN-BASED SOLUTION FOR DETECTING AND PREVENTING FAKE CHECK SCAMS

send it to the blockchain. Algorithm 1 shows such an API, while
Algorithm 2 describes the whole process.

Algorithm 1: Basic Operations Provided by the Bank’s
Entity, Which Executes the CAI Creation.

1: Function GETFIRST(Checkbook ch Book) : Integer
//returns the number of the first
check in the checkbook

2: Function GETLAST(Checkbook ch Book) :Integer
//returns the number of the last
check in the checkbook

3: Function GETCHECKNB(Check ch) : Integer
//returns the check’s number

4: Function GETNAME(CustomerProfile customer) :
String / /returns the customer’s full
name recorded by the Providing-Bank

5: Function GETADDRESS(CustomerProfile customer) :
String / /returns the customer’s full
address recorded by the
Providing-Bank

6: Function GETACCOUNTNB(CustomerProfile customer)
:Integer //returns the customer’s
account number recorded by the
Providing-Bank

7: Function LAGRANGEINTERPOLATIONFCT(Integer
Coef1, Integer Coef2) : [] Integer //returns the
Lagrange polynomial created using the
coefficients: Coefl and Coef2

8: Function SENDTRANSACTION(Blockchain be,
DataStructure CAI) //send a blockchain
transaction containing the CAI data
structure

Lagrange polynomial field: The checkbooks provided by
banks contain generally either 50 or 100 checks. Besides, the
customer uses only one check for cashing at a time. Therefore,
our scheme must be able to verify the authenticity of each check
individually. In this context, considering a solution where each
check is registered individually in the blockchain will be costly
because it requires as many blockchain transactions as existing
checks. To address this issue, we use Lagrange polynomials as
an aggregation for all the checks that the checkbook owns. For
example, we consider a checkbook that contains four checks
having the following numbers: E = {2,3,4,5}. Considering
(2), the Lagrange polynomial built according to this set will
be

L(z) = (x = 2)(z = 3)(z — 4)(x — 5)

©)
= 2% — 1423 + T12? — 1542 + 120.

All the elements of the set E' are roots of the computed poly-
nomial L(xz) described by (3). Consequently, following this
logic, our scheme must build a Lagrange polynomial for each
provided checkbook using its check numbers. However, we need
to build Lagrange polynomials of degree 100 (or 50), which takes
time and consumes CPU resources and requires a large space

3715

on the CAI structure.’ To optimize this step, especially when
we know that the check numbers of a checkbook are always
consecutive, we compute the Lagrange polynomial considering
only the upper and lower bounds of the interval composed by the
check numbers. The resulting polynomial'® will be used in the
verification phase by testing if the check number is in the interval
composed of the two roots of the Lagrange polynomial. If we
consider the last example of the set F, the Lagrange polynomial
created according to its upper and lower bounds ([2,5]) is

L(z) = (x — 2)(x — b)
, 0)

=z — Tz + 10.
The two roots of L(x) are 2 and 5. Thus, all the elements of
E will be in the interval composed of the polynomial roots
([2,5]). Hence, if a Lagrange polynomial is built according to
the numbers of the first and last checks of a checkbook, all the
checks’ numbers of the corresponding checkbook will fit into

the interval built by the two roots of the polynomial.

The Lagrange polynomial field of the CAI is structured as

follows!!:

(Polynomial degree (n), [z"](L(z)), [z '](L(x)),
s [(L(2)), [2°)(L(2))).

For example, if we consider the polynomial described by (4),
the Lagrange polynomial field of the CAI data structure is
(2,1,—7,10).

Most programing languages (e.g., C, C++, Java) require an
integer to be stored in four bytes. In this context, the Lagrange
polynomial field of the CAI will have a size of 16 bytes.!? Other
programming languages such as Python use more space to rep-
resent integers. Therefore, the size of the Lagrange polynomial
field of the CAI will depend on the programming language used.

Hash field: The hash field contains a hash computed on the
following fields:

1) Lagrange polynomial: the computed polynomial;

2) Full Name: the customer’s full name;

3) Providing-Bank: the bank that provided the checkbook;

4) Account number: the customer’s account number.

The check contains the data used to compute the hash. This
hash field serves as the landmark to find the block containing
the corresponding CAI on the blockchain.

Signature field: The signature is provided on the informa-
tion shared by all the checks of the checkbook. Fig. 2 illustrates
the various types of information:

1) Full Name: the customer’s full name;

2) Full Address: the customer’s address;

3) Providing-Bank: the bank that provided the checkbook;

4) Routing number: generally composed of nine digits. It

identifies the location where the account was opened;

(&)

Each coefficient must be stored as an integer. Considering the polynomial
degree (100), this field will have at least 404 bytes).

10The resulting polynomial will always be of degree 2 because it is a Lagrange
Interpolation using two coefficients (the upper and lower bounds).

Wzm](L(x)) indicates the coefficient corresponding to x™, thus the first
coefficient of the polynomial.

12(3 integer coefficients x 4 bytes per integer) + 4 bytes for the integer
representing the polynomial’s degree.

Authorized licensed use limited to: Université de Strasbourg SCD. Downloaded on November 20,2022 at 22:26:11 UTC from IEEE Xplore. Restrictions apply.

3716

Customer’s full
name and address

John Smith

123 My Street
Anywhere, IL 60606
Ph. 888-422-6122

PAY TO THE
ORDER OF

IEEE TRANSACTIONS ON ENGINEERING MANAGEMENT, VOL. 69, NO. 6, DECEMBER 2022

1001

Check
number

1-23/5678

DATE

Dottars [F Segty seats

Providing-Bank

Your Financial Instltutlon} o

123 Main Street

Chicago, IL 60066

LA2ILSERBAN

O0Qmgggmgai*

W00 &

number

[Routing / Transit]

[Account number]

Check
number

Fig. 2. Check example.

5) Account number: the customer’s account number;

6) Lagrange polynomial: the computed polynomial.

The signature is performed using the private key correspond-
ing to the certificate of the Providing-Bank.

The data structure is stored in a public blockchain, which
means that any third party can access these data. However, only
a hash and a signature are stored. Since the hash function behind
the signature is not reversible, it is impossible to recover the
customer’s data (data that were hashed/signed).

2) Revocation/Usage of a Check: When a deposited check is
cashed, the latter must be tagged as “no more valid” because it
has already been used. In the same context, if the bank wishes
to revoke a check or a checkbook following some reason such
as check theft, the corresponding check must be tagged as “no
more valid” because it has been revoked.

In contrast to the checkbook logic, where all the checks have
consecutive numbers and are provided at the same time, the
usage of checks for payment is completely random. Indeed, some
customers will use their checks regularly, while others will spend
numerous months or years to exhaust a checkbook. Thus, it is
mandatory to keep track of each used check individually in order
to avoid it being used again or, more thoroughly, in order to avoid
the valid data of a used check from being used again for one or
more fake checks.

Consequently, for each cashed check, the Providing-Bank
must share the information related to the customer and the
check through the public blockchain. More precisely, for each
cashed/revoked check, the bank creates a data structure called
check validity information (CVI) and adds it to the public
blockchain through a transaction. The CVI data structure is
composed of two fields, as shown in Table II: 1) a hash and
2) a cryptographic signature.

Since multiple checks belonging to different checkbooks can
have the same number, the hash field serves as the landmark
(feature) to find the block containing the corresponding CVI on
the blockchain. It contains a hash computed on the following
fields: 1) Check number: the cashed/revoked check number; 2)
Full Name; 3) Providing-Bank; and 4) Account number.

The signature field ensures that the CVI was created
by the Providing-Bank, since it can be verified using the
Providing-Bank’s public key. The signature of the CVI covers
the same fields considered by the CAI’s signature. In addition,
it also covers the Check number field. Algorithm 3 describes the
CVI creation and sharing operation.'3

3) Withdrawal Operation Phase: When a customer deposits
a check in a Cashing-Bank, a few verifications are done before
triggering any operation in order to ensure the payment. These
verification operations can be achieved 1) by the human agent
who handles the check through a dedicated human—machine
interface available on the system or 2) by the ATM machine
since it is designed to work through text/image recognition. The
program that runs the described verifications can be deployed
on 1) the bank’s terminals (computers and ATM machines)
through a software update or 2) on a server managed by the
bank, and thus, the bank’s terminals will simply be used as input
interfaces. Hence, the bank infrastructure must host at least one
up-to-date copy of the used blockchain. Moreover, we assume
that the bank’s entity, which executes the verification scheme,
can provide basic protocol primitives in order to recover any
information required from the blockchain and from the deposited
check. Algorithm 4 presents the API, Algorithm 5 describes
the whole verification process, and Fig. 3 describes a check’s
lifecycle when our approach is used (we did not consider the
step of the payment between banks).

Our proposed scheme must ensure that the deposited check
is authentic by relying on the CAI data structure. The scheme
must also ensure that it has not been revoked or cashed by
relying on the CVI data structure. Considering that browsing the
blockchain is a costly operation regarding the execution time,
for optimization purposes, when browsing the blockchain, for
each treated block, we simultaneously verify if it contains the
CALI or the CVI of the deposited check.

BDue to space limitations, we do not redefine the parameters used by
Algorithm 2.

Authorized licensed use limited to: Université de Strasbourg SCD. Downloaded on November 20,2022 at 22:26:11 UTC from IEEE Xplore. Restrictions apply.

HAMMI et al.: BLOCKCHAIN-BASED SOLUTION FOR DETECTING AND PREVENTING FAKE CHECK SCAMS 3717

y

i%@”

Blockchain

Providing bank

e -

Cashing bank

Checkbook owner

Fig. 3.

-
ab

Paid by check

Check’s lifecycle when our detection approach is applied: (1) creates the checkbook, (2) creates checkbook’s CAI, (3) stores CAI, (4) provides the

checkbook, (5) pays with a check, (6) deposits the check, (7) creates the hash field relying on the check’s data, (8) searches for CVI or CAL (9') CVI found, (10)
verifies CVI signature, (11”) if CVI is valid, then the payment procedure stops, else back to (8), (9”) CAI found, (10”) verifies CAI signature and check number,
(11") if CAl is valid, then go to (12), else go back to (8), (9”") No CVI and no CAI found, (10”) payment procedure stops, (12) pays the check, (13) sends the
cashed check, (14) retrieves the amount of the paid check, (15) creates CVI for the cashed check, and (16) stores CVI.

When we add an information to a blockchain, the information
is always added to the end of the blockchain (chained to the last
block). Accordingly, the blockchain’s block that contains the
CAl of a checkbook is always situated before the block that con-
tains the CVI of a check belonging to the respective checkbook.
In other words, if a check has been already cashed/revoked, the
CVI position is always after the CAI. Hence, knowing that the
blockchain browsing goes from the end toward the beginning,
while browsing the blockchain, if our verification scheme finds
the CAI first, it means that the check is authentic and that has
not been used or revoked. But if it finds the CVI first, it means
that the check is no longer valid because it was used or revoked.

The verification operations are provided as follows: first,
the information corresponding to the customer’s full name, the
Providing-Bank’s name, and the customer’s account number,
which are available on the check, is concatenated and then
hashed. We call this hashCAI. Second, the information corre-
sponding to the check’s number, the customer’s full name, the
Providing-Bank’s name, and the customer’s account number is
concatenated and then hashed. We call this hashCVI. Third, our
scheme browses the blockchain to find the block containing the
CAI whose hash field is equivalent to the computed hashCAI
or the block containing the CVI whose hash field is equivalent
to the computed hashCVI. As described above, for optimization
purposes, the CAI and CVI search are done simultaneously for
each searched block of the blockchain.

1) If no block is found (no CAI nor a CVI), it means that no

transaction was performed by the check’s Providing-Bank

2)

3)

to record the checkbook; thus, the check is fake and the
payment operation aborts.

If the CVI is found first, the system must authenticate
it beforehand. Indeed, since it is a public blockchain,
the system must ensure that it is the Providing-Bank
that provided that transaction and not another entity. In
this case, our verification scheme uses the data (check’s
number, customer’s full name, customer’s full address,
Providing-Bank, check’s routing number, and customer’s
account number) that exists in the deposited check to
verify the CVI’s signature relying on the bank’s public
key (available on the bank’s published certificate). If the
CVTI’s signature is verified, then it indicates that the check
is not fake, but that it has already been cashed or revoked.
If the CVT’s signature verification fails, then it means that
it is not the Providing-Bank that added this CVI structure
and the CAI/CVI research process must continue.

If the CAl is found first, the system must authenticate it be-
forehand (must ensure that the CAI was created and added
to the blockchain by the Providing-Bank). To achieve this,
the verification scheme concatenates the data (customer’s
full name, customer’s full address, Providing-Bank,
check’s routing number, and customer’s account number)
obtained from the check with the Lagrange polynomial,
which is in the retrieved CAI structure and uses this set
of data (check information + the polynomial) to verify
the CAI’s signature using the bank’s public key. If the
signature verification fails, the payment operation aborts.

Authorized licensed use limited to: Université de Strasbourg SCD. Downloaded on November 20,2022 at 22:26:11 UTC from IEEE Xplore. Restrictions apply.

3718

IEEE TRANSACTIONS ON ENGINEERING MANAGEMENT, VOL. 69, NO. 6, DECEMBER 2022

Algorithm 2: CAI Creation and Sharing Through the

Blockchain.

Algorithm 3: CVI Creation and Sharing Through the
Blockchain.

Declaration:

Const bankName: String/ /Providing-Bank’s

name

Const routingNb: Integer/ /routing/transit

number used by the bank

chBook: Checkbook//the newly created

checkbook

customer X : CustomerProfile/ /the profile of

the customer owner of the newly

created checkbook

be: Blockchain/ /the used blockchain
1: SENDTRANSACTIONbc, CAI_CREATIONch Book,

customerX //send a blockchain
transaction containing the CAI data

structure

2: functionCAI_CREATIONchBook, customer X

3: [Polynomial <
LAGRANGEINTERPOLATIONFCT(getfirstch Book,
GETLASTchBook;

4: hash <

SHA-256(CONCATENATE(GETNAME(customer X),

bankName,

GETACCOUNTNB(customerX)))/ /applies

SHA-256 hash algorithm on the set of

defined parameters
5: signature <—

ECDSA(CONCATENATE(GETNAME(customer X)),

GETADDRESScustomer X, bankName, routingNb,

GETACCOUNTNBcustomer X), [Polynomial),
bankPrivateKey)//applies ECDSA
signature algorithm on the set of

defined parameters using the bank’s

private key

6: CAI < MAKEARRAY (I Polynomial, hash,
signature)//creates the CAI data

structure
7: return CAJ
8: end function

TABLE II
CVI DATA STRUCTURE

| Field

l

Size (bytes)

|

Hash(Check number|lFull

namellProviding-BankllAccount number) 32
Signature(Check numberllFull namellFull
Addpress||Providing-Bank||Routing numberllAccount

number) 64

Fourth, once the signature has been verified, considering
that each check has been verified individually, the verification
scheme resolves the Lagrange polynomial of the CAI. Then, the
scheme verifies if the number of the deposited check fits into
the interval represented by the polynomial’s roots (as described
in Section III-B1 a). If the verification succeeds, the payment

operation is initiated.

Declaration:
check: Check//the cashed/revoked check

SENDTRANSACTION(bc, CVI_CREATION(check,
customerX))//send a blockchain
transaction containing the CVI data
structure
functionCVI_CREATION(check, customer X)

hash +
SHA-256(CONCATENATE(GETCHECKNB(check),
GETNAMEcustomer X, bankName,
GETACCOUNTNBcustomer X/ /applies
SHA-256 hash algorithm on the set of
defined parameters

signature —
ECDSA(CONCATENATE(GETCHECKNB(check),
GETNAMEcustomerX), GETADDRESScustomer X,
bankName, routingNb,
GETACCOUNTNBcustomer X)),
bankPrivateKey)//applies ECDSA
signature algorithm on the set of
defined parameters using the bank’s
private key
CV I <~ MAKEARRAY hash, signature//CREATES THE
CVI DATA STRUCTURE
return C'V 1
end function

IV. IMPLEMENTATION, EVALUATION, AND DISCUSSION

A. Implementation

To implement our approach, we opted for Namecoin
blockchain [49]. Namecoin is a fork of Bitcoin which aims
to provide a decentralized Domain Name Service. Indeed, it
implements the top level domain. bit, which is independent of
the Internet Corporation for Assigned Names and Numbers.'4
Table III presents the main features of Namecoin.

We opted for Namecoin for three main reasons.

)

2)

3)

It allows data storage in the form of key/value pair. Users
have the possibility to store values up to 520 bytes in
size, which is more than sufficient to host the CAI/CVI
structures.

The daily volume of transactions is relatively weak, which
facilitates the data search in the blockchain.

Transactions fees are very low cost—the average trans-
action fee is about $0.00032 (accessed on January 19,
2021).15

For the hash function, we use SHA-256 because it represents
one of the recommended hash algorithms by the National Insti-
tute of Standards and Technology'® [50].

14[Online]. Available: https://www.icann.org
15[Online]. Available: https://bitinfocharts.com/namecoin/
16[Online]. Available: https://csrc.nist.gov/Projects/Hash-Functions

Authorized licensed use limited to: Université de Strasbourg SCD. Downloaded on November 20,2022 at 22:26:11 UTC from IEEE Xplore. Restrictions apply.

https://www.icann.org
https://csrc.nist.gov/Projects/Hash-Functions

HAMMI et al.: BLOCKCHAIN-BASED SOLUTION FOR DETECTING AND PREVENTING FAKE CHECK SCAMS

Algorithm 4: Basic Operations Provided by the Bank’s
Entity, Which Executes the Check’s Verification Process.

1: Function GETCHECKNB(Check ch) :
Integer/ /returns the check’s number

2: Function GETNAME(check ch) :
String//returns the customer’s full
name from the deposited check

3: Function GETADDRESS(Check ch) :
String/ /returns the customer’s full
address from the deposited check

4: Function GETACCOUNTNB(Check ch) :
Integer/ /returns the customer’s
account number from the deposited
check

5: Function GETROUTINGNBCheck ch) :
Integer/ /returns the bank’s routing
number from the deposited check

6: Function GETBANKNAME(Check ch :
String/ /returns the bank’s name from
the deposited check

7: Function GETLAGRANGEPOLYNOMIAL(DataStructure
CAI):[]Integer//returns the Lagrange
polynomial from the CAI

8: Function RESOLVEDEG2EQUATION] | Integer
polynomial : [] Integer/ /resolves an
equation of the second degree and
returns an array with the found
solutions sorted in ascending order

9: Function ISEXISTINGTRANSACTION(Blockchain bc,
String hashC' Al String hashCVI) :
Boolean/ /verifies if the blockchain
at least have a block which contains
a transaction which in turn contains
the needed CAI or CVI

10: Function GETCAIORCVI(Blockchain be, String
hashCAI, String hashCVI) :
DataStructure/ /Browses the blockchain
and verifies simultaneously if the
browsed block contains the needed
CAI or the CVI. It returns the first
structure found (CAI or CVI)

11: Function ERROR(String
error Message)/ /returns and error
message

For the signature algorithm, we opted for ECDSA [51], [52].
ECDSA has several advantages over traditional signature algo-
rithms such as Rivest Shamir Adleman especially concerning
key sizes and signature time [53]-[55].

B. Evaluation Framework and Scenarios

Regarding the evaluation framework, we used Multichain'’ to
simulate the Namecoin blockchain. Multichain is an open-source
blockchain platform, which helps in the design and deployment

7[Online]. Available: https://www.multichain.com

3719

of blockchain applications. It is fully configurable according to
the user’s needs, and it can, therefore, be set up to reproduce the
same functions as any other blockchain. We used this feature
to simulate a Namecoin blockchain. Cur1rently,18 the Namecoin
blockchain includes 542 258 blocks. To simulate the Namecoin
blockchain, for our experiments, we used a blockchain with
500 000 blocks.

The program that shares the new issued checkbook’s data
(applicable to the Providing-Bank) and the authentication
verification program (applicable to the Cashing-Bank) were de-
veloped using Python language, version 2.7. For cryptographic
operations, we used OpenSSL library, version 1.1.1a.

To the best of our knowledge, there is no other check au-
thentication method that relies solely on IT resources. Thus,
we cannot compare the efficiency of our method with another
existing method. Moreover, since our approach verifies if a
check’s record already exists in the blockchain, there are no
false positives or false negatives.

Knowing that searching a block in the blockchain is made in
a sequential method (block by block), the authentication time
of a check depends on the position of the block, including its
corresponding CAI (or CVI) in the blockchain. Accordingly, we
were interested in measuring this time for different cases: 1) the
needed block is at the beginning of the blockchain; 2) the needed
block is in the middle of the blockchain; 3) the needed block is at
the end of the blockchain; and 4) the check’s record does not exist
in the blockchain (fake check). For each scenario, we executed
100 tests, where we measured the time needed to find the block.
Each test is applied on a different block. More specifically, for
the first scenario, the needed blocks were between blocks 1 and
1000. For the second scenario, the needed blocks were between
blocks 225 000 and 226 000. For the third scenario, the needed
blocks were between blocks 499 000 and 500 000.

We are aware that the search time depends mainly on the
processing power of the machine used as well as the programing
language (e.g., C is faster than Python) used. However, we
wanted to compare the different discussed cases using the same
language and host. We performed all tests using the following
testbed: the host system has an Intel(R) Quad-Core i7 CPU 3.80
GHz with 16 GB of RAM. It executes an up-to-date version of
the KALI Linux 4.12.0 distribution.

C. Evaluation Results

1) Adversary Model: Any probabilistic polynomial time ad-
versary A can create a fake check with a high physical quality.
A can create the check using random data or using real data of
other real checks. Moreover, A can get access to the transactions’
data stored in the blockchain because it is a public blockchain.
Finally, since we use a public blockchain, A can also send
transactions to the blockchain about false checks.

2) Formal Validation: To evaluate the safety and robustness
of our proposed approach, we have provided a formal validation.
We used Scyther [56], a tool for the automatic verification of
security protocols. In the latter, a security protocol is defined as

18 January 19, 2021.

Authorized licensed use limited to: Université de Strasbourg SCD. Downloaded on November 20,2022 at 22:26:11 UTC from IEEE Xplore. Restrictions apply.

https://www.multichain.com

3720

IEEE TRANSACTIONS ON ENGINEERING MANAGEMENT, VOL. 69, NO. 6, DECEMBER 2022

Algorithm 5: Check Verification Process.

Declaration:
ch: Check // the deposited check
be: Blockchain // the used blockchain

: procedure CHECKVERIFICATION(ch, bc)

hashCAI <+ SHA-256(CONCATENATE(GETNAME(ch), GETBANKNAME(ch), GETACCOUNTNB(ch)));
hashCVI < SHA-256(CONCATENATE(GETCHECKNB(ch),GETNAME(ch), GETBANKNAME(ch), GETACCOUNTNB(ch)));

C1I < GETCAIORCVI(bc, hashCAI, hashCVI)
if CI.hash == hashCV'I // the CVI found first
then

GETROUTINGNB(ch), GETACCOUNTNB(ch));

L the bank’s public key

else

19: else
20: ERROR("Failure in the bank’s authentication")

2l

else

ERROR("Check has already been cashed or revoked ")

18: ERROR("Failure in the check’s authentication ")

1

2

3

4: if (ISEXISTINGTRANSACTION(bc, hashC Al, hashCVI)) then
5

6

7: signatureData < CONCATENATE(GETCHECKNB(ch),GETNAME(ch) GETADDRESS(ch), GETBANKNAME(ch),

B: if ECDSA_VERIFY(signatureData, BankPublicKey) then
// applies ECDSA signature verification algorithm on the set of defined parameters using

10: else
1f: if CI.hash == hashCAI // the CAI found first
then
1p: signatureData < CONCATENATE(GETNAME(ch) GETADDRESS(ch), GETBANKNAME(ch), GETROUTINGNB(ch),

GETACCOUNTNB(ch), GETLAGRANGEPLYNOMIAL(C AI));
1B: if ECDSA_VERIFY(signatureData, BankPublicKey) then

polynomial Roots < RESOLVEDEG2EQUATION(GETLAGRANGEPLYNOMIAL(C AI));

if (GETCHECKNB(ch) > polynomialSolutions[0] AND GETCHECKNB(ch) < polynomialSolutions[1]) then
1p: CHECKPAYMENTOPERATION(ch) // triggers the check payment operation

2p: ERROR("Check does not exist") // no CAI or CVI was found

23: end procedure

TABLE III
NAMECOIN FEATURES (JANUARY 19, 2021)

[Data field [Feature |
Type Public blockchain
Feature Fork of Bitcoin
Average transaction fee 0.00032 $
Block time 9 min 40 sec
Transaction avg /h 21
Blockchain dimension 6.34 GB

an interaction among different roles. Each role is played by an
agent and described by a sequence of events (send, receive, and
SO on).

The Scyther code relies on three roles: the Providing-Bank,
the blockchain, and the Cashing-Bank. To comply with the
Scyther operation mode, we model our approach as follows:
1) the Providing-Bank sends the CAI to the blockchain; and
2) the Cashing-Bank receives the CAI from the blockchain.
The check is physically sent from the Cashing-Bank to the
Providing-Bank for money collection. Thus, the information
on the check is accessible only by these two banks. In our
formal validation, we model this step as a secure exchange using
symmetric cryptography between the two banks.

Listing 1 describes the Scyther code of the Providing-Bank’s
role. The claim event types are the goals of the formal validation.

For the authentication of the Providing-Bank by the blockchain,
we used three authentication claim types, which are “Alive,”
“Weakagree,” and “Niagree.” To explain these claims, we as-
sume that A is the initiator and B is the responder.

1) Alive claim: We consider that a protocol guarantees to
A aliveness of B if whenever A completes a run of the
protocol, apparently with B, then the latter has previously
been running the protocol [57].

2) Weakagree: We consider that a protocol guarantees to
A weak agreement with B if whenever A completes a
run of the protocol, apparently with B, then the latter
has previously been running the protocol, apparently with
A [57].

3) Niagree: We consider that a protocol guarantees to A
noninjective agreement with B on a set of data items
(variables) if whenever A completes a run of the protocol,
apparently with B, then the latter has previously been
running the protocol, apparently with A, and B was acting
as the responder in its run, and the two agents agreed on
the data values corresponding to all the data items [57].

Listing 2 depicts the Scyther code of the blockchain’s role. We

define the same three authentication claims (Alive, Weakagree,
and Niagree). Fig. 4 shows a screenshot of the execution of our
formal validation code, where only the authentication claims
were activated. In the screenshot presented, the first, second, and
third columns represent the protocol name, the role concerned

Authorized licensed use limited to: Université de Strasbourg SCD. Downloaded on November 20,2022 at 22:26:11 UTC from IEEE Xplore. Restrictions apply.

HAMMI et al.: BLOCKCHAIN-BASED SOLUTION FOR DETECTING AND PREVENTING FAKE CHECK SCAMS 3721

Listing 1: Scyther code of the Providing-Bank role.

usertype String;
usertype Polynomial;

protocol FakeCheckAuth (ProvidingBank, Blockchain,
CashingBank) {

const bankName: String;
const routingNum: String;

hashfunction sha256;
function Concatenate;

role ProvidingBank {

fresh 1lPolynomial: Polynomial;
const costumerName;

const costumerAccountNB;

const costumerAddress;

macro h = sha256 (1Polynomial, bankName,
costumerName, costumerAccountNB) ;

macro signedDataHash = sha256 (1lPolynomial,
bankName, costumerName, costumerAccountNB,
routingNum, costumerAddress) ;

macro ecdsa = {signedDataHash}sk (ProvidingBank) ;

send_1 (ProvidingBank, Blockchain, (lPolynomial, h,
ecdsa)) ;

claim_pbl (ProvidingBank, Alive);
claim_pb2 (ProvidingBank, Weakagree) ;
claim_pb3 (ProvidingBank, Niagree) ;

send_3 (ProvidingBank, CashingBank,
{ProvidingBank, (costumerName, costumerAddress,
costumerAccountNB) } k
(ProvidingBank, CashingBank)) ;

claim_pb4 (ProvidingBank, Secret, costumerName) ;

claim_pb5 (ProvidingBank, Secret, costumerAddress) ;

claim_pb6 (ProvidingBank, Secret,
costumerAccountNB) ;

Listing 2: Scyther code of the blockchain role.

role Blockchain {
// Parameters declaration{\ldots}..

recv_1 (ProvidingBank, Blockchain, (lPolynomial, h,
ecdsa)) ;

send_2 (Blockchain, CashingBank, (lPolynomial, h,
ecdsa)) ;

claim_bcl (Blockchain, Alive);
claim_bcl (Blockchain, Weakagree) ;
claim_bc3 (Blockchain, Niagree) ;

}

(Providing-Bank and blockchain), and a unique identifier of
the claim, respectively. The fourth column represents the claim
type with the parameters. The two last columns (status and
comments) show the result of the verification process (Fail or
Ok) and a short description. The “No attack within bounds*
should be interpreted as: “Scyther did not find any attacks by

Scyther results : verify X

Claim Status Comments
FakeCheckAuth ProvidingBank FakeCheckAuth,pr1 Alive ok No attacks within bound
FakeCheckAuth,pr2 Weakagree Ok No attacks within bound
FakeCheckAuth,pr3 Niagree ok No attacks within bound
Blockchain FakeCheckAuth,bc1 Alive ok No attacks within boung
FakeCheckAuth,bc2 Weakagree Ok No attacks within boun
FakeCheckAuth,bc3 Niagree ok No attacks within bound
Done.

Fig. 4. Formal validation results of the authentication claims between the
Providing-Bank and the blockchain.

Scyther results : verify X

Claim Status Comments
FakeCheckAuth Blockchain FakeCheckAuth,bc1 Alive ok No attacks within bound
FakeCheckAuth,bc2 Weakagree Ok No attacks within boung
FakeCheckAuth,bc3 Niagree ok No attacks within bound
CachingBank FakeCheckAuth,pr1 Alive ok No attacks within bound
FakeCheckAuth,pr2 Weakagree Ok No attacks within bound
FakeCheckAuth,pr3 Niagree ok No attacks within bound

Done.

Fig. 5. Formal validation results of the authentication claims between the
Cashing-Bank and the blockchain.

reaching the bound” [57]. As we can see, the validation proves
that the tested part of our protocol is safe and secure.

Listing 3: Scyther code of the Cashing-Bank role.

role CashingBank {
// Parameters declaration.....

recv_2 (Blockchain, CashingBank, (1lPolynomial, h,
ecdsa)) ;

claim_cbl (CashingBank, Alive);
claim_cb2 (CashingBank, Weakagree) ;
claim_cb3 (CashingBank, Niagree) ;

recv_3 (ProvidingBank, CashingBank,
{ProvidingBank, (costumerName, costumerAddress,
costumerAccountNB) }k
(ProvidingBank, CashingBank)) ;

claim_cb4 (CashingBank, Secret, costumerName) ;
claim_cb5 (CashingBank, Secret, costumerAddress);
claim_cbé6 (CashingBank, Secret, costumerAccountNB) ;
}

}

Listing 3 describes the Scyther code of the Cashing-Bank’s
role. First, we define the claims of the authentication with
the blockchain. Fig. 5 shows a screenshot of the execution of
the formal validation code, where we verify the authentication
claims between the blockchain and the Providing-Bank. The
results highlight the security and robustness of this phase.

Authorized licensed use limited to: Université de Strasbourg SCD. Downloaded on November 20,2022 at 22:26:11 UTC from IEEE Xplore. Restrictions apply.

3722

Scyther results : verify X

Claim Status Comments

FakeCheckAuth ~ CashingBank FakeCheckAuth,cb4 Secret costumerName ok No attacks within bounc

FakeCheckAuth,cb5 Secret costumerAddress 0ok No attacks within bounc

FakeCheckAuth,cb6 Secret costumerAccountNB Ok No attacks within bounc

ProvidingBank FakeCheckAuth,pb4 Secret costumerName ok No attacks within bounc

FakeCheckAuth,pb5 Secret costumerAddress ok No attacks within bounc

FakeCheckAuth,pb6 Secret costumerAccountNB Ok No attacks within bounc

Done.

Fig. 6. Formal validation results of the secrecy claims between the Cashing-
Bank and the Providing-Bank.

Moreover, Listings 1 and 3 define the interaction of the check
sent from the Cashing-Bank to the Providing-Bank. We define
the Secret claim on the client’s personal data that the check
contains. Fig. 6 shows a screenshot of the execution of the formal
validation code, where we verify the secrecy claims between the
Cashing-Bank and the Providing-Bank. The results highlight the
security and robustness of this phase.

3) Security and Performance Requirement Evaluation: In
this section, we focus on the evaluation of the security fea-
tures, performance features, and the design challenges discussed
earlier (see Section I) of our proposed check authentication
approach.

a) Data sharing between banks: For each checkbook, a
CAl is shared. The CAI structure protects the users’ data from
exposure because it only includes a hash and a cryptographic
signature, which are nonreversible. The Cashing-Bank is aware
of the check’s owner data through the deposited check. However,
this is not unique to our approach because it is also the case with
existing bank’s protocols today.

b) Management of the sharing mechanism: Our approach
relies on a public blockchain, which is fully autonomous. The
bank does not need to manage any additional infrastructure.
Furthermore, sending transactions or reading them from a
blockchain represents a process that can be easily integrated
and handled.

¢) Nonmodification of existing protocols: Our approach
does not require any modification of the existing banking proto-
cols such as modifying the check’s format, adding some physical
security feature on the checks or the ATMs, or modifying the
communication protocol between the different banks. It only
requires an additional verification before executing the usual
payment protocol and an additional action after providing a new
checkbook or cashing a check.

d) Scalability: Our system relies on a public blockchain,
which, in turn, relies on a peer-to-peer network. It is known
that peer-to-peer networks are one of the best solutions to
achieve high scalability [58]. Furthermore, numerous stud-
ies [59]-[62] have demonstrated the scalability of blockchains.
Other works [63]-[65] focused on Bitcoin and showed its highly
scalability. In our article, we used Namecoin, a Bitcoin fork.
Hence, it inherits its high scalability.

IEEE TRANSACTIONS ON ENGINEERING MANAGEMENT, VOL. 69, NO. 6, DECEMBER 2022

e) Availability: The totally decentralized architecture
of blockchains makes them robust against denial-of-
service/distributed-denial-of-service attacks. Indeed, services
are duplicated and distributed over different network nodes.
That is to say, even if an attacker manages to block a node, it
cannot block all the other nodes.

f) Authentication: Our approach provides an authentica-
tion of the deposited check after browsing a blockchain to
find the check’s record. This removes the possibility of false
negatives and false positives from our scheme and makes it
highly reliable. It allows the authentication of a legitimate check
and the detection of a fake one. Moreover, even if the adversary
stores transactions related to a fake check, the authentication
process is fully reliable because it only authenticates the checks
that are signed using the Providing-Bank’s private key. Finally, if
the adversary uses a fake check that contains the information of
another real check, the detection system will detect it, thanks to
the CVI structure that is signed by the Providing-Bank’s private
key. However, if the check was not used by the legitimate user
yet, then the detection system authenticates it as a good check,
and the scammer can use it for one time. But this case have a
low probability to happen.

4) Financial Cost: Regarding the financial cost, we believe
that each security service provided needs a cost, as long as it
remains lower than the potential damages (a fake check scam
generally costs several hundreds of dollars of damages). In our
approach, for each created checkbook, a blockchain transaction
is needed. Then, one transaction for each deposited (or revoked)
check. For example, if we consider the example of a check-
book that has 100 checks, when all these checks are used, the
checkbook costs 101 transactions. The transaction cost depends
on the blockchain used. However, this cost remains negligible
compared to the potential damages. We recommended the use
of Namecoin whose transaction’s fees are around $0.00077.
Thus, if we consider the last example, one checkbook of 100
checks costs 101 x $0.00077 = $0.077, which is a negligible
fee. Moreover, the time needed to consume all the checks of a
checkbook in order to reach this fee is highly variable according
to the consumers and can vary from a few days to several years.

We are aware that the evolution of cryptocurrency rate rep-
resents an issue. However, according to studies such as [66]
and [67], the evolution of the cryptocurrencies rates will become
more stable over time [10]. Finally, the transaction fees can be
added to the account maintenance cost each time the customer
asks for a new checkbook.

5) Numerical Results: In this section, we present the numer-
ical results related to the time consumption of our approach. As
described in Section IV-B, we were interested in measuring the
time taken for the check’s authentication process described by
Algorithm 5 (including all the algorithm’s steps), for different
cases of the needed block’s position. Since we are interested
in measuring the time needed for our approach to provide a
response regarding the needed block position on the blockchain,
we did not consider the case for a revoked bank certificate. Fig. 7
shows the average and standard deviation over the 100 tests for
each scenario.

Authorized licensed use limited to: Université de Strasbourg SCD. Downloaded on November 20,2022 at 22:26:11 UTC from IEEE Xplore. Restrictions apply.

HAMMI et al.: BLOCKCHAIN-BASED SOLUTION FOR DETECTING AND PREVENTING FAKE CHECK SCAMS

1500 -

1

1000 -

Time (s)

0- — L

Non existing

Begu:mmg

End Middle

Fig. 7. Execution time of the check’s authentication process according to the
position in the blockchain of the block that owns the needed CAI (Namecoin
implementation).

Regarding the scenario where the needed CAI is in a block
located at the end of the blockchain (between the positions
[499 000, 500 000]), the average authentication time is 0.30
s with a standard deviation of 0.15 s. This time was expected
considering that the search in a blockchain starts with the last
block. For the second scenario, where the needed block is in
the middle of the blockchain (between the positions [225 000,
226 000]), the average authentication time is 420.84 s with a
standard deviation of 20.03 s. We note the costly nature of the
blockchain search operation, especially when our approach does
not look for transactions’ blocks’ identifiers (ID), but browse
the data of each transaction of each block. This cost is more
important for the next scenario, where the needed block is at the
beginning of the blockchain (between the positions [1, 1000]),
since the average authentication time is 1469.68 s with a standard
deviation of 80.40 s. Finally, for the scenario where the needed
CAl does not exist in the blockchain, the time it takes to obtain a
response is 1476.21 s, which is almost exactly the same time as
in the last scenario, with a similar standard deviation of 75.50 s.
Nonetheless, even if the execution of the check’s authentication
process can spend a few minutes in some cases, it remains very
far from the current float time of more than 48 h. Furthermore,
it protects the banks and especially the customers from being
scammed.

In this article, we have developed a proof of concept and
evaluated it on a simple machine with a high-level interpreted
language (Python) known to have execution times higher than
many other programming languages such as C and C++. A
bank is likely to have more powerful machines with a better
implementation (for instance, we did not apply any advanced or
optimized block searching method).

V. IMPLEMENTATION ON A PRIVATE BLOCKCHAIN

The design of our approach requires a public (permissionless)
blockchain. In this section, we analyze the impact of a private

3723

(permissioned) blockchain adoption. Even if our approach de-
tects the fake checks before they are cashed and in a record time
in comparison to the float time of at least 48 h, in some cases,
the response is still being obtained in few minutes, according to
the needed block position. Knowing that the search operation in
the permissioned blockchain Hyperledger Fabric is optimized,
we analyze its impact on our approach. Later on, we discuss
how this implementation affects the security and performance
requirements discussed above.

Fabric is amodular and extensible open-source system for de-
ploying and operating permissioned blockchains, and it is one of
the Hyperledger projects hosted by the Linux Foundation'® [68].
It has a highly modular and configurable architecture, enabling
innovation, versatility, and optimization [69].

In a public or permissionless blockchain, peers make part of
the network anonymously. Private or permissioned blockchains,
on the other hand, run a blockchain among a set of known
identified participants. Hence, this type of blockchain provides
a way to secure the interactions among a group of entities that
have a common goal, but they do not fully trust each other [68]
(e.g., the participating banks in our approach).

We used the same testbed described in Section IV-B to
implement our approach relying on the Hyperledger Fabric
blockchain. We implemented Hyperledger Fabric version 1.4.
We implemented our proposed detection and verification algo-
rithms using JavaScript because Fabric offers (among other)
a ready-to-use JavaScript API to manage the blockchain. We
re-executed the same scenarios described in Section IV-B: 1) the
needed block is at the beginning of the blockchain; 2) the needed
block is in the middle of the blockchain; 3) the needed block is
at the end of the blockchain; and 4) the check’s record does not
exist in the blockchain (fake check). Also, for each scenario, we
executed 100 tests, and we measured the time needed to find
the block and to execute the detection algorithm for each test
when applied on a different block. Fig. 8 shows the average
and standard deviation over the 100 tests conducted for each
scenario.

When CALl is in a block located at the end of the blockchain
(between the positions [499 000, 500 000]), the average au-
thentication time is 755.59 ms with a standard deviation of
9.43 ms. For the second scenario, when the needed block is in
the middle of the blockchain (between the positions [225 000,
226 000]), the average authentication time is 754.62 ms with
a standard deviation of 7.51 ms. For the scenario where the
needed block is at the beginning of the blockchain (between the
positions [1, 1000]), the average authentication time is 766.06 ms
with a standard deviation of 27.32 ms. Finally, for the scenario
where the needed CAI does not exist in the blockchain, the
time taken to obtain a response is 752.31 ms with a standard
deviation of 9.62 ms. It is worth noting that, in contrast with
the Namecoin implementation, the position of the block has no
impact on the searching time. Moreover, the results obtained
are in the order of milliseconds. The reason for the better
results compared with those obtained before (through the public
blockchain implementation) is explained by the architecture of

191Online]. Available: www.hyperledger.org

Authorized licensed use limited to: Université de Strasbourg SCD. Downloaded on November 20,2022 at 22:26:11 UTC from IEEE Xplore. Restrictions apply.

www.hyperledger.org

3724

800 -

I —

Time (ms)
IS
8

0-

Beginning Non existing

End Middle

Fig. 8. Execution time of the check’s authentication process according to the
position in the blockchain of the block that owns the needed CAI (Hyperledger
Fabric implementation).

Hyperledger Fabric, which implements an additional database
layer. Indeed, each peer locally maintains the ledger in the form
of the append-only blockchain and as a snapshot of the most
recent state in a key—value store [68]. More precisely, it stores
one tuple of the form (key, value, version) for each unique entry
of the blockchain in a state database. Hence, the state database
is simply an indexed view into the chain’s transaction log [69].
Accordingly, searching for blocks’ transactions in Hyperledger
Fabric blockchain is as optimized as the search process in a
database.

State database options include LevelDB and CouchDB. Lev-
elDB is the default state database embedded in the peer process.
CouchDB is an optional alternative external state database that
provides additional query support permitting rich queries [69].
In our implementation, we used CouchDB as a state database.

However, implementing such a private blockchain will not
satisfy the needed requirements, especially the infrastructure
management requirement. Indeed, we stated that the proposed
approach must be lightweight and low-cost and must not rep-
resent a burden for third parties that deploy it. However, the
deployment of the Hyperledger Fabric by all the participating
banks will involve additional work. Moreover, this approach will
also require banks to deploy additional human resources in order
to set up and maintain such infrastructures.

VI. CONCLUSION

Fake checks continue to be one of the most common instru-
ments used to commit fraud against consumers. This fraud is
very costly for victims because they generally lose thousands of
dollars as well as being liable to judicial proceedings. Fake check
scam continues to exist because of the existing check payment
protocol, which credits the customers’ accounts before verifying
the authenticity of the deposited checks and their owners.

To the best of our knowledge, currently, there is no IT authen-
tication scheme, which helps in the authentication of legitimate

IEEE TRANSACTIONS ON ENGINEERING MANAGEMENT, VOL. 69, NO. 6, DECEMBER 2022

checks as well as the detection of fake ones. In this context,
in this article, we propose a blockchain-based scheme, which
allows the authentication of checks almost instantly after their
deposit, thus avoiding the current float time of more than 48 h
as well as the bilateral procedure initiation between the banks
involved, making them saving time and resources. Our proposed
scheme is low cost and easy to implement, and it satisfies all the
needed requirements as well as overcome the challenges we have
discussed.

In our future works, we will focus on reducing the CAI/CVI
searching time. We will investigate how to use more advanced
membership query techniques such as Bloom filters as well
as advanced blockchain searching methods such as parallel
processing.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers
for their valuable comments, which helped improve the content,
organization, and presentation of this article.

REFERENCES
[1

—

S. Baker, “Don’t cash that check: BBB study shows how fake check scams

bait consumers,” Tech. Rep., Better Bus. Bureau, Arlington County, VA,

USA, Sep. 2018.

[2] L. M. Rose, “Modernizing check fraud detection with machine learning,”

Ph.D. dissertation, Dept. Financial Crime Compliance Manage., Utica

College, Utica, NY, USA, 2018.

Federal Trade Commission, “Consumer sentinel network data book 2017,”

Federal Trade Commission, Washington, DC, USA, Tech. Rep., Mar. 2018.

C. Tressler, “FTC: The bottom-line on fake checks scams,” Federal Trade

Commission, Washington, DC, USA, Tech. Rep., Feb. 2020.

[S] “2017 Internet crime report,” Federal Bureau of Investigation/Internet
Crime Complaint Center, Washington, DC, USA, Tech. Rep., 2018.

[6] K. Pak and D. Shadel, “AARP Foundation national fraud victim study,”
AARP Foundation, Washinton, DC, USA, Tech. Rep., 2011.

[7] C.-D. Chen and L.-T. Huang, “Online deception investigation: Content

analysis and cross-cultural comparison,” Int. J. Bus. Inf., vol. 6, no. 1,

pp- 91-111, 2011.

K. Christidis and M. Devetsikiotis, “Blockchains and smart contracts for

the Internet of Things, IEEE Access, vol. 4, pp. 2292-2303, 2016.

[9] A. Reyna, C. Martin, J. Chen, E. Soler, and M. Diaz, “On blockchain

and its integration with IoT: Challenges and opportunities,” Future Gener:

Comput. Syst., vol. 88, pp. 173-190, 2018.

M. T. Hammi, B. Hammi, P. Bellot, and A. Serhrouchni, “Bubbles of trust:

A decentralized blockchain-based authentication system for IoT,” Comput.

Secur., vol. 78, pp. 126-142, 2018.

R. M. Factora, “Financial and legal methods to protect individuals from fi-

nancial exploitation,” in Aging and Money. New York, NY, USA: Springer,

2014, pp. 109-122.

C. W. Smith, “Defense to a payor bank’s liability for late returns,” CCH

Deposit Law Notes, vol. 2, no. 6, p. 8, 2001.

A. T. Riggs and P. M. Podrazik, “Financial exploitation of the elderly:

Review of the epidemic—Its victims, national impact, and legislative

solutions,” in Aging and Money. New York, NY, USA: Springer, 2014,

pp. 1-18.

J. Jones and D. McCoy, “The check is in the mail: Monetization of

Craigslist buyer scams,” in Proc. APWG Symp. Electron. Crime Res., 2014,

pp. 25-35.

1. Abiola, “An assessment of fraud and its management in nigeria

commercial banks,” Eur. J. Social Sci., vol. 10, no. 4, pp. 628-640,

2009.

J. A. Ojo, “Effect of bank frauds on banking operations in Nigeria,” Int. J.

Investment Finance, vol. 1, no. 1, p. 103, 2008.

S. Chhabra, G. Gupta, M. Gupta, and G. Gupta, “Detecting fraudulent bank

checks,” in Proc. IFIP Int. Conf. Digit. Forensics, 2017, pp. 245-266.

R. Kumar and G. Gupta, “Forensic authentication of bank checks,” in Proc.

IFIP Int. Conf. Digit. Forensics, 2016, pp. 311-322.

3

—_

[4

—_

[8

[l

[10]

[11]

[12]

[13]

[14]

[15]

[16]
[17]

[18]

Authorized licensed use limited to: Université de Strasbourg SCD. Downloaded on November 20,2022 at 22:26:11 UTC from IEEE Xplore. Restrictions apply.

HAMMI et al.: BLOCKCHAIN-BASED SOLUTION FOR DETECTING AND PREVENTING FAKE CHECK SCAMS

[19]
[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[42]

[43]

R. E. Smagala, “Coded checks and in methods of coding,” U.S. Patent
3829 133, Aug. 1974.

V. G. BellJr, T. P. Burke, G. D. Margolin, and V. V. Vurpillat, “Check with
electrically conductive layer,” U.S. Patent 4 231 593, Nov. 1980.

W. E. McWhortor, “System and method for enhancing detection of
counterfeit financial transaction documents,” U.S. Patent 5 371 798,
Dec. 1994.

H. Badis and E. A. Y. Christian, “Fake check scams: A blockchain based
detection solution,” in Proc. 9th Int. Conf. Comput. Sci. Inf. Technol., 2019,
pp. 81-97.

N. Dashkevich, S. Counsell, and G. Destefanis, “Blockchain application
for central banks: A systematic mapping study,” IEEE Access, vol. 8,
pp. 139918-139952, 2020.

R. O’Shields, “Smart contracts: Legal agreements for the blockchain,” NC
Banking Inst., vol. 21, p. 177, 2017.

L. Cocco, A. Pinna, and M. Marchesi, “Banking on blockchain: Costs
savings thanks to the blockchain technology,” Future Internet, vol. 9, no. 3,
2017, Art. no. 25.

Y. Guo and C. Liang, “Blockchain application and outlook in the banking
industry,” Financial Innov., vol. 2, no. 1, pp. 1-12, 2016.

E. Ducas and A. Wilner, “The security and financial implications of
blockchain technologies: Regulating emerging technologies in Canada,”
Int. J., vol. 72, no. 4, pp. 538-562, 2017.

S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” Working
Paper, p. 9, 2008.

M. A.Khan and K. Salah, “IoT security: Review, blockchain solutions,
and open challenges,” Future Gener. Comput. Syst., vol. 82, pp. 395411,
2018.

A.Bahga and V. K. Madisetti, “Blockchain platform for industrial Internet
of Things,” J. Softw. Eng. Appl., vol. 9, no. 10, pp. 533-546, 2016.

A. Fayad, B. Hammi, and R. Khatoun, “An adaptive authentication and
authorization scheme for IoT’s gateways: A blockchain based approach,”
in Proc. 3rd Int. Conf. Secur. Smart Cities, Ind. Control System Commun.,
2018, pp. 1-7.

S. Huh, S. Cho, and S. Kim, “Managing IoT devices using blockchain
platform,” in Proc. 19th Int. Conf. Adv. Commun. Technol., 2017,
pp. 464-467.

M. T. Hammi, P. Bellot, and A. Serhrouchni, “BCTrust: A decentralized
authentication blockchain-based mechanism,” in Proc. IEEE Wireless
Commun. Netw. Conf., 2018, pp. 1-6.

S.Zeadally and J. B. Abdo, “Blockchain: Trends and future opportunities,”
Internet Technol. Lett., vol. 2, no. 6, 2019, Art. no. e130.

J. V. Hacker, F. Bodendorf, and P. Lorenz, “A framework to identify
knowledge actor roles in enterprise social networks,” J. Knowl. Manage.,
vol. 21, pp. 817-838, 2017.

Y. Xiao, N. Zhang, W. Lou, and Y. T. Hou, “A survey of distributed
consensus protocols for blockchain networks,” IEEE Commun. Surv. Tut.,
vol. 22, no. 2, pp. 1432-1465, Apr./Jun. 2020.

L. Lamport, R. Shostak, and M. Pease, “The Byzantine generals problem,”
in Concurrency: The Works of Leslie Lamport. New York, NY, USA: ACM,
2019, pp. 203-226.

M. Castro and B. Liskov, “Practical Byzantine fault tolerance and proactive
recovery,” ACM Trans. Comput. Syst., vol. 20, no. 4, pp. 398-461, 2002.

C. Dwork, N. Lynch, and L. Stockmeyer, “Consensus in the presence of
partial synchrony,” J. ACM, vol. 35, no. 2, pp. 288-323, 1988.

L. Lamport, “Time, clocks, and the ordering of events in a distributed
system,” in Concurrency: The Works of Leslie Lamport.New York, NY,
USA: ACM, 2019, pp. 179-196.

L. Lamport, “Using time instead of timeout for fault-tolerant distributed
systems,” ACM Trans. Program. Lang. Syst., vol. 6, no. 2, pp. 254-280,
1984.

F. B. Schneider, “Implementing fault-tolerant services using the state
machine approach: A tutorial,” ACM Comput. Surv., vol. 22, no. 4,
pp- 299-319, 1990.

B. Liskov and J. Cowling, “Viewstamped replication revisited,” Mas-
sachusetts Inst. Technol., Cambridge, MA, USA, Tech. Rep. MIT-CSAIL-
TR-2012-021, 2012.

[44]
[45]

[40]

[47]

[48]

[49]

[50]
[51]

[52]

[53]

[54]

[55]

[56]
[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]
[67]

[68]

[69]

3725

L. Lamport, “Paxos made simple,” ACM Sigact News, vol. 35, pp. 1-11,
2001.

L. Lamport, “The part-time parliament,” in Concurrency: The Works of
Leslie Lamport. New York, NY, USA: ACM, 2019, pp. 277-317.

W. Wang et al., “A survey on consensus mechanisms and mining
strategy management in blockchain networks, IEEE Access, vol. 7,
pp. 22328-22370, 2019.

P. G. Ciarlet and P. A. Raviart, “General Lagrange and Hermite interpo-
lation in R" with applications to finite element methods,” Arch. Rational
Mech. Anal., vol. 46, no. 3, pp. 177-199, 1972.

J.- P. Berrut and L. N. Trefethen, “Barycentric lagrange interpolation,”
SIAM Rev., vol. 46, no. 3, pp. 501-517, 2004.

H. A. Kalodner, M. Carlsten, P. Ellenbogen, J.Bonneau, and A. Narayanan,
“An empirical study of Namecoin and lessons for decentralized Names-
pace design,” in Proc. Workshop Econ. Inf. Secur., 2015, pp. 1-23.
Secure Hash Standard (SHS), Federal Information Processing Standards
Publication, FIPS PUB 180-4, Aug. 2015, p. 31.

Digital Signature Standard (DSS), National Institute of Standards and
Technology, Gaithersburg, MD, USA, FIPS PUB 186-4, 2013, p. 130.
Public Key Cryptography for the Financial Services Industry: Elliptic
Curve Digital Signature Algorithm (ECDSA), ANSI, X9.62:2005, 2005,
p. 128.

K. Lauter, “The advantages of elliptic curve cryptography for wireless
security,” IEEE Wireless Commun., vol. 11, no. 1, pp. 62-67, Feb. 2004.
E. D. Win, S. Mister, B. Preneel, and M. Wiener, “On the performance
of signature schemes based on elliptic curves,” in Proc. Int. Algorithmic
Number Theory Symp., 1998, pp. 252-266.

H. Badis, F. Achraf, K. Rida, Z. Sherali, and B. Youcef, “A lightweight
ECC-based authentication scheme for Internet of things (IoT),” IEEE Syst.
J., vol. 14, no. 3, pp. 3440-3450, Sep. 2020.

C.J.F. Cremers, Scyther: Semantics and Verification of Security Protocols.
Eindhoven, The Netherlands: Eindhoven Univ. Technol., 2006.

G. Lowe, “A hierarchy of authentication specifications,” in Proc. 10th
Comput. Secur. Found. Workshop, 1997, pp. 31-43.

E.K. Lua, J. Crowcroft, M. Pias, R.Sharma, and S. Lim, “A survey and
comparison of peer-to-peer overlay network schemes,” IEEE Commun.
Surv. Tut., vol. 7, no. 2, pp. 72-93, Apr./Jun. 2005.

A. Chauhan, O. P. Malviya, M. Verma, and T. S. Mor, “Blockchain and
scalability,” in Proc. IEEE Int. Conf. Softw. Qual., Rel. Secur. Companion,
2018, pp. 122-128.

S. Kim, Y. Kwon, and S. Cho, “A survey of scalability solutions on
blockchain,” in Proc. Int. Conf. Inf. Commun. Technol. Convergence, 2018,
pp- 1204-1207.

Q. Zhou, H. Huang, Z. Zheng, and J. Bian, “Solutions to scalability of
blockchain: A survey, IEEE Access, vol. 8, pp. 16440-16455, 2020.

S. Goswami, “Scalability analysis of blockchains through blockchain
simulation,” Master’s thesis, Dept. Comput. Sci., University of Nevada,
Las Vegas, NV, USA, 2017.

G. Karame, “On the security and scalability of bitcoin’s blockchain,”
in Proc. 2016 ACM SIGSAC Conf. Comput. Commun. Secur., 2016,
pp. 1861-1862.

R. Dennis and J. P. Disso, “An analysis into the scalability of bitcoin
and ethereum,” in Proc. 3rd Int. Congr. Inf. Commun. Technol., 2019,
pp. 619-627.

I. Eyal, A. E. Gencer, E. G. Sirer, and R.V. Renesse, “Bitcoin-NG:
A scalable blockchain protocol,” in Proc. 13th Symp. Netw. Syst. Des.
Implementation, 2016, pp. 45-59.

K. Saito and M. Iwamura, “How to make a digital currency on a blockchain
stable,” Future Gener. Comput. Syst., vol. 100, pp. 58—69, 2019.
0.J.Mandeng, “Cryptocurrencies, monetary stability and regulation,” LSE
Institute of Global Affairs, London School of Economics, 2018.

E. Androulaki et al. “Hyperledger fabric: A distributed operating sys-
tem for permissioned blockchains,” in Proc. 13th EuroSys Conf., 2018,
Art. no. 30.

A Blockchain Platform for the Enterprise, Hyperledger Fabric, 2019.

Authorized licensed use limited to: Université de Strasbourg SCD. Downloaded on November 20,2022 at 22:26:11 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

