
An End-to-End Approach for the Detection of
Phishing Attacks

Badis Hammi1, Tristan Billot2, Danyil Bazain3, Nicolas Binand3, Maxime
Jaen3, Chems Mitta3, and Nour El Madhoun45

1 SAMOVAR, Télécom SudParis, Institut Polytechnique de Paris, France
badis.hammi@telecom-sudparis.eu

2 Université Paris-Saclay, France
tristan.bilot@universite-paris-saclay.fr

3 EPITA Engineering School, France
danyil.bazain, nicolas.binand, maxime.jaen, chems.mitta@epita.fr

4 LISITE Laboratory, ISEP, 10 Rue de Vanves, Issy-les-Moulineaux, 92130, France
nour.el-madhoun@isep.fr

5 Sorbonne Université, CNRS, LIP6, 4 place Jussieu 75005 Paris, France

Abstract. The main approaches/implementations used to counteract
phishing attacks involve the use of crowd-sourced blacklists. However,
blacklists come with several drawbacks. In this paper, we present a com-
prehensive approach for the detection of phishing attacks. Our approach
uses our own detection engine which relies on Graph Neural Networks
to leverage the hyperlink structure of the websites to analyze. Addition-
ally, we offer a turnkey implementation to the end-users in the form of
a Mozilla Firefox plugin.

1 Introduction

Phishing is one of the most common forms of cyber crime on the web, especially
in the last years as the Figure 1 shows. According to Verizon’s 2023 Data Breach
Investigations Report [1] 36% of all data breaches involved phishing. Also, ac-
cording to Forbes6 over 500 million phishing attacks have been reported in 2022.
This number has been more than doubled compared to 2021, which is not sur-
prising, considering that it’s one of the easiest scams to execute. According to the
Cybersecurity and Infrastructure Security Agency (CISA)7, phishing is a form
of social engineering in which a cyber attacker poses as a trustworthy colleague,
acquaintance, or organization to lure a victim into providing sensitive informa-
tion or network access. The lures can come in the form of a crafted email, text
message, or even a phone call. However, the email factor remains the most used
one. It is estimated that 3.4 billion malicious emails are sent everyday8. Accord-
ing to [2] the direct financial loss from successful phishing attacks increased by

6 www.forbes.com/advisor/business/phishing-statistics/
7 cisa.gov/sites/default/files/2023-02/phishing-infographic-508c.pdf
8 www.itgovernance.co.uk/blog/51-must-know-phishing-statistics-for-2023

2 Authors Suppressed Due to Excessive Length

Fig. 1: Number of phishing websites observed between 2007 and 2021 according
to Google Safe Browsing9

76% in 2022. Hence, the detection of phishing attacks remains among the most
important/sensitive tasks to ensure the security of web users.

Unfortunately, despite the existing academic works that aim for the detec-
tion of phishing attacks, most of the deployed/implemented solutions rely on
collaborative blacklists [3] [4]. We present in this paper the continuation of our
previous work. In [5] we discussed the use of Graph Neural Networks for the
detection of phishing attacks. More precisely, we showed that GNNs directly
applied to the website graph structure are less effective compared to traditional
machine learning methods applied to features. In this work, we demonstrate that
through using the semi-supervised structure of the graph built using a website’s
structure, a classifier can be trained on supervised data and provide predictions
on unsupervised ones.

We highlight the contributions of this paper as follows: (1) We propose an
end-to-end approach for the detection of phishing attacks. Unlike the existing
works, our detection engine leverages the hyperlink structure thanks to Graph
Deep Learning, along with many other hand-crafted features learned with tra-
ditional Machine Learning. (2) We provide a ready to use solution, available for
the end-users through a Mozilla Firefox plugin. (3) We provide the source codes
of our implementation (the plugin for the client and the detection engine for the
server).

To the best of our knowledge, our work is the first to introduce a comprehen-
sive end-to-end phishing detection solution built upon graph neural networks.

2 Related works

Despite the proposal of numerous phishing detection techniques in academia,
most of currently operational solutions rely on crowd-sourced blacklists [3]. In
this section we discuss the main related works in academia and commercial
solutions.

9 https://transparencyreport.google.com/safe-browsing/

An End-to-End Approach for the Detection of Phishing Attacks 3

2.1 Academic related works on phishing detection

Traditional Techniques The predominant method employed to identify phish-
ing websites involves the use of blacklists. Nevertheless, this approach is associ-
ated with several limitations, namely: (1) it needs the creation and maintenance
of such blacklists, making it susceptible to zero-day attacks and dependent on
human intervention. (2) it demands either storage capacity (resulting in space
consumption) or frequent querying (leading to time and computing resource
consumption) of a blacklist. (3) crowd-sourced blacklists, such as PhishTank are
centralized and lack transparency. The resource consumption problem was tack-
led by the Google Safe Browsing API10. This API is prominently employed in
Chromium and serves as a fallback in Firefox. It enables clients to manage a
compact local database comprising only truncated hashes of malicious Uniform
Resource Locators (URLs). However, this solution remains vulnerable to zero
day attacks (new phishing domain names).

Because of the limits of blacklist based approaches, different other tech-
niques have been proposed, based on human-defined heuristics, and designed
after identifying inherent characteristics of known phishing websites. Indeed,
phishing websites often use patterns in the URL to make them look like le-
gitimate domains, while being subtly different. This can be done by confusing
users with slightly different names (e.g. targeting "foobar.com" using the do-
main name "foo-bar.com"), by using subdomains of trusted entities (e.g. "foo-
bar.example.com") or by including keywords related to the trusted entity in the
path section of the URL (e.g. "example.com/foobar" [6]). Other lexical features
derived from the URL can be useful. Sonowal et al. [7] suggest that having sym-
bols such as "-" and "@", or having more than three dots in the domain name
is suspicious, and considers long URLs suspicious as well because they make it
harder for users to read the significant part of the URL.

Machine Learning Techniques Most state of the art approaches for phishing
classification are URL-based. That is, they focus on the extraction of useful
features directly from the raw URL. Some works [8] employ conventional machine
learning techniques, incorporating manually designed features for prediction.
In contrast, others [3] opt for deep learning methods, allowing the model to
autonomously learn features. The use of deep learning offers the advantage of
avoiding human-assisted feature engineering, eliminating the need for domain
expert intervention. Consequently, many recent studies [9] leverage deep learning
for URL classification, considering it a crucial step in the broader task of phishing
classification. This importance arises from the multitude of lexical features that
can be extracted from a raw URL string. Saxe et al. [10] introduced eXpose, a
solution based on a Convolutional Neural Network (CNN). Le et al. [11] proposed
URLNet, a framework that integrates a character-level CNN with a word-level
CNN.

10 https://developers.google.com/safe-browsing/v4

4 Authors Suppressed Due to Excessive Length

To the best of our knowledge, the sole application of Graph Neural Networks
to phishing detection is based on the HTML structure of the website [12]. In
this approach, a graph is built from the HTML DOM and a GNN is fed with
this graph. However, this method only relies on the HTML content, which could
be easily stolen from benign websites in order to build prefect website copies.
This method could thus be easily bypassed by cloning the HTML structure of
legitimate websites.

In contrast to prior works, our approach capitalizes on the internal links
structure of the website, in conjunction with the conventional features that have
demonstrated success in previous approaches. By analyzing multiple phishing
websites, we observed that most of them employ similar "href" patterns in <a>,
<form> and <iframe> tags. These links are usually self-loops anchors (URLs
starting by #) or outgoing links to external domains (usually pointing to a
legitimate website like a bank or a social media). Such patterns prove valuable for
phishing classification, since a neural network can be trained to discern distinct
structures among websites. Malicious websites could hardly bypass this detection
system because most of the outgoing links present on these websites redirect to
external websites from other domain names in order to fool victims by persuading
them that the website is legitimate.

2.2 Commercial phishing detection solutions

Most of the commercial solutions that aim to protect users from phishing attacks
are available as web browser plugins. In this section, we present the most used
ones. Table 1 presents a comparison of these solutions with our work.

Google Safe Browsing is mainly available on Google Chrome web browser
and relies on an updated crowd-sourced blacklist of domain names. However, to
protect users’ privacy Chrome sends only a fraction of the URL to be checked
to Google’s server, not the full URL [4]. McAfee WebAdvisor is another browser
extension designed to help users browse safely by alerting them to potentially
malicious or dangerous websites. Similar to the Chrome plugin, McAfee We-
bAdvisor relies on crowd-sourced blacklists. However, it differs from Chrome in
its ability to evaluate search engine results and provide indications of website
security directly in these results [13]. Norton Safe Web is also a web browser
plugin that relies on a crowd-sourced blacklist for phishing detection. Further-
more, it integrates Norton’s threat intelligence network, which enables it to iden-
tify other online threats, such as malware and trackers [14]. The Avast Online
Security plugin, like the previously described plugins use crowd-sourced black-
lists to detect phishing websites. However, it relies on a cloud-based architec-
ture, which is continually updated, guaranteeing real-time detection of emerging
threats [15]. There exist some other browser extensions like Bitdefender Traffi-
cLight or Kaspersky Protection. However, they all rely on crowd-sourced black-
lists like the previously described solutions. Indeed, to the best of our knowledge,
most of the commercial solutions rely on collaborative blacklists making these
solutions dependent on these lists which are often flawed [5], consequently im-

An End-to-End Approach for the Detection of Phishing Attacks 5

Table 1: Comparison of commercial solutions for phishing detection
(✓: Yes, ✗: No)

Approach
Crowd-sourced
blacklist-based

Real-time
detection
capability

Vulnerable to
zero day
attacks

Transparency
regarding

blacklisting
criteria

Dependency
on continuous

human
intervention

Sensitivity to
human bias

Google Safe
Browsing ✓ ✗ ✓ ✗ ✓ ✓
Avast
Online
Security ✓ ✓ ✓ ✗ - -
McAfee
WebAdvisor ✓ ✗ ✓ ✗ ✓ ✓
Norton Safe
Web ✓ ✗ ✓ ✗ ✓ ✓
Bitdefender
TrafficLight ✓ ✗ ✓ ✗ ✓ ✓
Kaspersky
Protection ✓ ✗ ✓ ✗ ✓ ✓
Our
solution ✗ ✓ ✗ ✓ ✗ ✗

pacting the users’ experience. In our solution we rely on our own detection engine
PhishGNN.

3 Proposed approach and implementation

The architecture we propose is similar to the Online Certificate Status Protocol
(OCSP). As the Figure 2 shows, the architecture includes two additional entities
compared to the conventional client-server architecture; a web plugin and a de-
tection server (PhishGNN responder). No modifications to the web client or to
the web server are required. More precisely, the web plugin acts as a proxy and
intercepts the HTTP request that the web browser creates. The proxy extracts
the domain name from the request and sends it to the detection responder. Next,
the detection engine (within the detection responder) analyses the domain name
and sends a boolean response to the proxy. If the detection responder’s response
indicates that the domain name is a phishing domain name, then, the plugin
blocks the request. However, if the detection responder’s response indicates that
the domain name is safe, the proxy forwards the original HTTP request to the
web server. In the following we describe the different parts of the architecture
and the implementation choices we made11.

3.1 Detection engine
Our detection engine relies on an extension of PhishGNN, an approach that
we proposed for the classification of websites as phishing or benign [5]. Our
detection engine leverages a Graph Neural Network (GNN) model to capture
complex patterns hidden in the underlying hyperlink structure of web pages12.
11 A video that shows the implementation of our approach (with a plugin developed

on Mozilla firefox) is available on: https://youtu.be/SNik7Du3Mk8
12 The source code of our detection engine is available on: https://github.com/

TristanBilot/phishGNN.

https://youtu.be/SNik7Du3Mk8
https://github.com/TristanBilot/phishGNN
https://github.com/TristanBilot/phishGNN

6 Authors Suppressed Due to Excessive Length

Fig. 2: System architecture of the end-to-end approach for the detection of phish-
ing attacks

More precisely, we consider the task of phishing websites classification as a node
classification task. In this context, the node to classify is a specific URL, and the
other nodes represent each potential link originating from that URL. From these
links, it is possible to build a graph where nodes represent URLs, and edges are
the links between URLs, extracted either from <a>, <form> or <iframe> tags.
Hence, the graph is structured as a rooted graph, with the root node identified
as the website to be classified, commonly referred to as the root URL. For each
root URL, a feature vector is derived, along with a vector encompassing all
URLs going from the root URL (referred to as children URLs). Features are
similarly extracted for these children URLs. Subsequently, the features’ vectors
contribute to the construction of the features matrix X. The children URLs are
used to build the actual graph-structure matrix A.

In our approach, we propose training the model in a semi-supervised mode.
The known labels pertain to the actual root URLs, while the unknown labels
encompass every child URL—meaning it is unknown whether these URLs are
phishing or not. Our approach heavily relies on the premise that having labels
for every node around the root node significantly facilitates the classification of
that root node. Since labels are unavailable for every child URL, we employ a
random forest classifier to infer these labels. This classifier is trained on super-
vised examples in the dataset and is subsequently used for inference on all other
examples. Following this, a GNN with message passing gathers information from
classified nodes to construct embeddings. Pooling methods such as add, max, or
mean are applied to these embeddings to reduce the graph dimension to a single
node embedding. Finally, a linear layer is employed as the last layer for graph
classification. The Figure 3 describes how the detection engine follows two steps:

Pre-classification initially, the graph comprises n nodes, where each node
xi(1 ≤ i ≤ n) is a vector of d features extracted from the corresponding ith

URL. x1 is the root URL node and every node xi(1 < i ≤ n) represent a link
coming from x1. At this first step, a binary classifier is used to predict in a semi-

An End-to-End Approach for the Detection of Phishing Attacks 7

Fig. 3: PhishGNN architecture

supervised mode whether a node is phishing or benign, for each feature node
xi(1 ≤ i ≤ n). The classifier is a function g : Rd → B, that maps node features
of size d to a prediction in the Boolean domain B. After this step, the feature
matrix X is transformed to a vector X̂ containing respectively zeroes and ones
for legitimate and phishing predictions.

Message-passing The predictions are subsequently fed into a conventional
message-passing GNN with h hidden layers. This process allows for the propa-
gation of information throughout the graph and the learning of node embeddings.
The outcome is represented as a matrix X̂′ where each node is an embedding
vector of size h. A pooling method is used to reduce the dimension of graph
embedding to a single node of shape 1× h. Subsequently, a dot product is con-
ducted between this node and a linear layer with a shape of 2 × h, yielding to
a vector ŷ that encapsulates the probability of belonging to each class: phishing
or benign.

Once implemented, our detection engine must crawl web pages recursively to
extract features for the referenced webpages. Despite the existence of multiple
web crawlers, we chose to implement our own crawler in order to meet the
requirements of PhishGNN. The source code of the crawler is made available
in [5]. Figure 4 exhibits some of the extracted features for every URL. We classify
the features that the crawler extracts as (1) lexical features, (2) content features,
and (3) domain features. Table 2 describes some of these features. Once features
have been extracted by the crawler, they are exported to a CSV file which can then
be read and pre-processed in Python. The detection server caches every domain
name that it analyzes. In order to avoid the issue of aging domain names to use
them for phishing attacks, a configurable Time To Live (TTL) value is assigned
to the cached domain names.

In summary, from the detection responder’s perspective, upon receiving an
incoming request, it initially extracts the domain name from the request. A
hashtable lookup is then performed to determine whether this domain is already
present in the cache memory. If the domain is found in the cache, the server sends

8 Authors Suppressed Due to Excessive Length

Fig. 4: Example of some extracted feature for every URL

Table 2: Classification of the features
Lexical features Content features Domain features
is_https (is the URL scheme
"https"), is_ip_address (is the
domain an IP address in any
form), domain_length (length
of the domain name, including
subdomains and Top Level
Domain (TLD)), domain_depth
(number of dots in the domain
name), has_subdomain
(domain_depth ≥ 2),
dashes_count (number of dash
characters in the domain
name), has_at_symbol
(contains "@"),
is_same_domain (false if the
URL domain is not the same
as the root URL)

is_valid_html (false if the
response body contains HTML
parsing errors), has_iframe
(true if an <iframe> tag is in
the page document),
has_form_with_url (true if a
<form> element exists with a
valid, static src attribute).
References are added for <a>
elements with valid (i.e.
statically known and leading
to a valid HTTP or HTTPS
URL after resolution) href
attributes, <form> elements
with valid action attributes,
and <iframe> elements with
valid src attributes

is_cert_valid (false if expired
or rejected by rustls),
cert_country,
cert_reliability (computed
using the duration of the
certificate and whether its
issuer is trusted), has_whois
(false if WHOIS could not be
resolved for the domain),
domain_age (in seconds,
between the last update date
and the domain registry expiry
date), domain_end_period (in,
seconds between the date of
the extraction and the domain
registry expiry date)

the prediction (benign or malicious) back to the client. However, if the domain is
not found in the cache, the following steps are executed: (1) the URL is appended
to the crawler’s queue. (2) The crawler retrieves the hyperlink graph structure
of the webpage, along with lexical and content features, and stores them in CSV
format. (3) A trained phishGNN model is invoked to make an inference on the
new domain, using the graph and features collected by the crawler as input. (4)
The prediction is then sent back to the client and stored in the cache memory.

3.2 Web plugin/proxy

We implemented the proxy as a web plugin. Web plugins offer numerous benefits.
They provide customization and enhanced functionality, allowing users to tailor
their browsing experience. Additionally, they support accessibility, synchronize
across platforms, and when used responsibly, significantly enhance the overall

An End-to-End Approach for the Detection of Phishing Attacks 9

browsing experience. Hence, our approach is completely transparent from the fi-
nal user’s perspective. We used Javascript for the development of the web plugin.
Currently, we have only created a Mozilla Firefox compatible version13. Once the
plugin intercepts the HTTP request of the client, it acts as an HTTP client to-
wards the detection responder (which runs an HTTP server). Hence, the plugin
sends an HTTP request containing the URL and waits for a boolean response. If
the awaited response stands for a positive detection of a phishing website, then
the plugin sends a warning to the user and blocks the HTTP request. However,
if the awaited response stands for a negative detection, the plugin forwards the
HTTP request made by the web client as it is to the corresponding web server.
Unlike the existing commercial solutions that rely on crowd-sourced blacklists,
it fully relies on PhishGNN detection engine.

Furthermore, we implemented a caching system within the extension using
Firefox’s ”localstorage”14. e.g., if a domain is identified as non-phishing, it is
cached, and subsequently, the extension refrains from intervention when the user
accesses this domain in the future. This caching mechanism significantly reduces
the number of requests sent.

3.3 The communication protocol
During the design of our end-to-end architecture, we faced the decision between
two communication protocols, the HyperText Transfer Protocol (HTTP) and
Message Queuing Telemetry Transport (MQTT), each of which bears its own
merits. Indeed, MQTT is a reliable and fast protocol, consuming minimal band-
width, a crucial characteristic for our extension, given its frequent requests to
the remote server. With a lightweight header of only 2 bytes, our messages re-
main concise. The payload during client-to-server communication consists of an
URL, while server-to-client responses typically convey a binary value of 0 or 1.

However, MQTT being a publish/subscribe protocol, it does not support a
request/response system as such. Hence, it needs to implement an additional
MQTT broker to communicate with the subscribers.

Consequently, the use of MQTT solution adds complexity to the end-to-
end architecture which leads to additional delays for the end user. For these
reasons, we chose to use HTTP. Hence, the detection responder (implemented
in C language) implements an HTTP server that (1) waits for HTTP requests
from the clients. Then, (2) triggers the detection engine, and (3) responds to the
clients via an HTTP reply.

4 Performance evaluation and discussion

In our previous work [5] we showed how our detection engine PhishGNN outper-
forms the existing works. Hence, in this evaluation we focus on the performance
of the end-to-end approach and the impact on the users’ experience.
13 The source code of the plugin is available on: https://github.com/STERN3L/

Semester_III_Project-Web_Plugin
14 https://developer.mozilla.org/fr/docs/Mozilla/Add-ons/WebExtensions/API/storage/local

https://github.com/STERN3L/Semester_III_Project-Web_Plugin
https://github.com/STERN3L/Semester_III_Project-Web_Plugin

10 Authors Suppressed Due to Excessive Length

Res1

Res2

Res3

Res4

Res5

Res6

0 1000 2000 3000
Time (ms)

(a)

Res1

Res2

Res3

Res4

Res5

Res6

0 1000 2000 3000
Time (ms)

(b)

Fig. 5: Webpage loading times. Res3: time needed to load a benign website with our solution (DN
in the cache); Res4: time needed to detect and block a phishing website with our solution (DN in
the cache); Res5: time needed to load a benign website with our solution (DN not in the cache);
Res6: time needed to detect and block a phishing website with our solution (DN not in the cache).
(a) Res1: time needed to load a benign website without protection; Res2: time needed to load a
phishing website without protection. (b) Res1: time needed to load a benign website using the Avast
plugin; Res2: time needed to detect and block a phishing website using the Avast plugin.

For the evaluation of our approach, we implemented the architecture using
Firefox in headless mode as client. We implemented the detection responder
on an Intel Xeon Silver 4108 CPU @ 1.80 GHz with 45GB RAM and running
CentOS Linux 7 64 bits. The Figure 5.a illustrates the webpage loading times
acquired during the evaluation of our detection architecture. Each value on the
plot corresponds to the average value across 10 tests.

Without our architecture, the time needed to load a benign website is in
average 440 ms, while the time needed to load a phishing website15 is around
1156 ms with a standard deviation of 420 ms. We attribute this distinction to
the following reasons: (1) phishing websites lack optimization, (2) certain ones
execute malicious JavaScript code, and (3) they are hosted on servers/platforms
with inferior performance compared to authentic commercial websites. When
using our approach we face three use-cases: (1) The requested domain name is
in the cache of the detection responder: in this case, if the requested website is
benign, the average time needed to load the website is around 469 ms. However,
if the requested website is a phishing one, the time needed for the plugin (proxy)
to get a response and stop the process is around 728 ms with a standard deviation
of 350 ms. (2) The requested domain name is not in the cache of the detection
responder: in this case, if the requested website is benign, the average time
needed to load the website (after triggering a detection cycle) is in average

15 The phishing websites used during our experimentations were obtained from the
Phishtank list.

An End-to-End Approach for the Detection of Phishing Attacks 11

1712 ms with a standard deviation of 217 ms. However, if the requested website
is a phishing one, the time needed for the plugin to get a response and stop
the process is around 2350 ms with a standard deviation of 842 ms. While the
duration remains acceptable to end-users, it is crucial to note that this occurs
only when the domain name is not stored in the cache of the detection responder,
which is shared by multiple users. (3) The requested domain name is in the cache
of the client: (thanks to localstorage function in our implementation). In this
case, the time needed for the whole process is just few microseconds.

To better understand the performances of our approach regarding the exe-
cution time, we compare it to one of the most used solutions, the Avast Online
Security browser extension. The Figure 5.b shows the webpage loading times
when Avast Online Security plugin is implemented on Firefox. We can observe
that our approach performs better than the Avast solution when the domain
name is in the cache of the detection responder (728 ms against 1032 ms to
detect and block a phishing website). However, it requires more time when the
domain name is not in the cache. We recall that the Avast approach relies on
crowd-sourced blacklists that are often flawed as it was discussed earlier in this
paper and does not have its own detection engine.

5 Conclusion and future works

In this paper, we have tackled the problem of phishing attacks and proposed an
end-to-end detection approach that relies on Graph Neural Networks (GNNs).
As far as we know, PhishGNN represents the first application of a GNN to the
hyperlink structure of websites for the task of phishing detection. Furthermore,
we provided a turnkey solution for the end-users in the form of a web browser
extension. The evaluation of our approach, shows its efficiency and performance
towards the end-users.

The Time To Live (TTL) setting plays a significant role in the context of
our proposal and influence the balance between performance and data freshness,
where caching is crucial to overall performance. Therefore, for our short-term
future works, we plan to conduct a study/measurement campaign to determine
the optimal values for this parameter. Afterwards, we aim to incorporate pri-
vacy support for end-users. Indeed, in addition to employing hashing techniques
to conceal client-requested domain names as used by Google Safe Browsing, we
intend to implement bloom filters which will enable clients to download com-
pressed lists of domain names. Furthermore, we plan to develop versions of our
client-side web browser plugin for the different existing web browsers.

References

1. 2023 Data Breach Investigations Report (DBIR). Technical report, Verizon, 2023.
2. 2023 State of the Phish. An in-depth exploation of user awareness, vulnerability

and resilience. Technical report, Proofpoint, 2023.

12 Authors Suppressed Due to Excessive Length

3. Doyen Sahoo, Chenghao Liu, and Steven CH Hoi. Malicious URL detection using
machine learning: A survey. arXiv preprint arXiv:1701.07179, 2017.

4. Simon Bell and Peter Komisarczuk. An analysis of phishing blacklists: Google safe
browsing, openphish, and phishtank. In Proceedings of the Australasian Computer
Science Week Multiconference, pages 1–11, 2020.

5. Tristan Bilot, Grégoire Geis, and Badis Hammi. Phishgnn: A phishing website
detection framework using graph neural networks. In Proceedings of the 19th In-
ternational Conference on Security and Cryptography, volume 1, 2022.

6. Neil Chou Robert Ledesma Yuka Teraguchi and John C Mitchell. Client-side
defense against web-based identity theft. Computer Science Department, Stanford
University, 2004.

7. Gunikhan Sonowal and KS Kuppusamy. PhiDMA–A phishing detection model
with multi-filter approach. Journal of King Saud University-Computer and Infor-
mation Sciences, 32(1):99–112, 2020.

8. Victor E Adeyemo, Abdullateef O Balogun, Hammed A Mojeed, Noah O Akande,
and Kayode S Adewole. Ensemble-based logistic model trees for website phishing
detection. In International Conference on Advances in Cyber Security, pages 627–
641. Springer, 2020.

9. Eduardo Benavides, Walter Fuertes, Sandra Sanchez, and Manuel Sanchez. Clas-
sification of phishing attack solutions by employing deep learning techniques: A
systematic literature review. Developments and advances in defense and security,
pages 51–64, 2020.

10. Joshua Saxe and Konstantin Berlin. eXpose: A character-level convolutional neural
network with embeddings for detecting malicious URLs, file paths and registry
keys. arXiv preprint arXiv:1702.08568, 2017.

11. Hung Le, Quang Pham, Doyen Sahoo, and Steven CH Hoi. URLNet: Learning a
URL representation with deep learning for malicious URL detection. arXiv preprint
arXiv:1802.03162, 2018.

12. Linshu Ouyang and Yongzheng Zhang. Phishing web page detection with html-
level graph neural network. In 2021 IEEE 20th International Conference on Trust,
Security and Privacy in Computing and Communications (TrustCom), pages 952–
958. IEEE, 2021.

13. Shuaicong Yu, Changqing An, Tao Yu, Ziyi Zhao, Tianshu Li, and Jilong Wang.
Phishing Detection Based on Multi-Feature Neural Network. In 2022 IEEE In-
ternational Performance, Computing, and Communications Conference (IPCCC),
pages 73–79. IEEE, 2022.

14. Huiping Yao and Dongwan Shin. Towards preventing qr code based attacks on
android phone using security warnings. In Proceedings of the 8th ACM SIGSAC
symposium on Information, computer and communications security, pages 341–
346, 2013.

15. Alexander Sjösten, Steven Van Acker, and Andrei Sabelfeld. Discovering browser
extensions via web accessible resources. In Proceedings of the Seventh ACM on
Conference on Data and Application Security and Privacy, pages 329–336, 2017.

	An End-to-End Approach for the Detection of Phishing Attacks

