
i

Thesis submitted to obtain the degree of doctor of philosophy from

Sorbonne Université
École Doctorale Informatique, Télécommunications et Électronique

Laboratoire de Recherche et Développement de l’EPITA

Taking into account

inclusion and adjacency information

in morphological hierarchical representations,

with application to the extraction of text

in natural images and videos

Lê Duy HUỲNH
Under the supervision of Thierry GÉRAUD, Professor at EPITA, LRDE

and Yongchao XU, Associate Professor at HUST, China, MCLab

Presented on December 13, 2018 in front of a jury composed of:

Reviewer : Beatriz MARCOTEGUI, Professor at MINES ParisTech, CMM
Hugues TALBOT, Professor at CentraleSupelec, CVC

Examiner : Isabelle BLOCH, Professor at Telecom ParisTech, LTCI
Laurent NAJMAN, Professor at Université Paris-Est, LIGM
Camille KURTZ, Associate Professor at Université Paris Descartes, LIPADE

ACKNOWLEDGEMENTS

I would like to sincerely thank Mrs. Beatriz Marcotegui and Mr. Hugues Talbot, who ac-

cepted to review this thesis. I would also like to show my gratitude to Mrs. Isabelle Bloch,

Mr. Laurent Najman and Mr. Camille Kurtz, who agreed to be members of my jury.

I am deeply grateful to Mr. Thierry Géraud for his support, his cheerfulness, his pa-

tience, motivation, and immense knowledge. He is the one helps me getting into the world

of mathematical morphology. He taught me lots of computer skills and, from which I will

benefit for all my life. Thank you for having been able to encourage me even when condi-

tions were not the most favorable. His guidance helped me in all the time of research and

writing of this thesis. I could not have imagined having a better advisor and mentor for

my Ph.D. study.

I am thankful to Mr. Yongchao Xu, my other supervisor, for his massive assistance,

ideas, fruitful discussions, patience and for pushing me toward my goal. I would also like

to tell him how much I appreciated his great availability while he worked here. It was sad

that you leave early but congratulation on your new position.

I would like to thank my fellow doctoral students, Anna, Jim, Ludovic, Minh and all

of my colleagues from LRDE, for your friendship, cooperation, support, feedback, and for

making this thesis experience unforgettable. It was fantastic to have the opportunity to

work with you. A special thank goes to Daniela for her unfailing support and assistance

throughout these years, especially for helping me going through all the administrative

procedures.

I would like to thank my loved ones, my parents Huỳnh Kim Ngân and Lê Thị Phú and

my sister Huỳnh Lê Thạch Thảo, for having been supporting me throughout my life, not

just because that is what family do, but because they love me. I could not ask for more,

really.

Thanks to my parent-in-law Cao Hồng Luận and Vũ Văn Lợi for supporting me spiritu-

ally throughout writing this thesis.

And finally, a particularly warm thank you to my wife, Linh, for her love, patience, and

support, and for sometimes having to tolerate me over the past three years.

iii

ABSTRACT

With the rising need for a higher understanding of images, the pixel-based representation

is not enough. To answer this, the mathematical morphology framework provides several

multi-scale, region-based image representations which include the hierarchies of segmen-

tation (e.g., alpha-tree, BPT) and trees based on the threshold decomposition (Min/Max-

trees and Tree of Shapes). Because objects in the real world rarely appear in isolation but

a typical context with other related objects, we should consider the spatial relationships

between image regions.

We are interested in two type of relationship, namely the inclusion and adjacency

(in the sense of “being nearby”) since they usually carry contextual information. The ad-

jacency between regions gives us a sense of how regions are arranged in images and

have been widely used. On the other hand, while fitting the human’s perception of the

object-background relationship: the objects are included in their background, the inclu-

sion relationship is usually not taken into account. Both these drastic information opens

up possibilities for image analysis. In this thesis, we take advantage of both inclusion and

adjacency information in morphological hierarchical representations for computer vision

applications.

We introduce the spatial alignment graph w.r.t inclusion (SAG) that is constructed from

both inclusion and spatial arrangement of regions in the tree-based image representations.

For simple scenes, we introduce the Tree of Shapes of Laplacian sign. It encodes the

inclusion of 0-crossing of a Morphological Laplacian map and performs well even in the

case of uneven illumination. The ToSoL is computed in linear time w.r.t the number of

pixels thanks to an optimization that mimics well-composedness. In this representation,

the spatial alignment graph is reduced to a disconnected graph where each connected

component is a semantic group of objects.

For higher detail representation, the spatial alignment graph becomes more complex.

To address this issue, we expand the idea of the shape-spaces morphology. Our expansion

has two primary results: 1) It allows the manipulation of any graph of shapes that encode

different information, which encompasses the SAG. 2) It allows any tree filtering strategy

proposed by the connected operators frameworks. Within this expansion, the SAG could

be analyzed with an alpha-tree.

We demonstrated the application aspect of our method in text detection. The experi-

ment results show the efficiency and effectiveness of our methods, which robust to noise,

blur, or uneven illumination. These features are appealing to mobile applications.

Keywords: discrete topology, mathematical morphology, hierarchies, tree of shapes,

hierarchy of segmentation, connected filters, text detection.

v

RÉSUMÉ

Avec la nécessité croissante d’une meilleure compréhension des images, la représentation

d’image à base de pixel n’est pas bien adaptée. Pour répondre à cette demande, la Mor-

phologie Mathématique a fourni plusieurs représentations d’images multi-échelles basées

sur des régions, qui incluent les hiérarchies de segmentation (l’arbre de partition binaire, la

hiérarchie des quasi-zones plates) et les hiérarchiques s’appuient sur la relation d’inclusion

(arbres min/max et l’arbre des formes). Étant donné que les objets dans le monde réel ap-

paraissent rarement isolément mais constituent un contexte typique avec d’autres objets

associés, nous devons considérer les relations spatiales entre les régions d’image.

Nous nous intéressons à deux types de relations, à savoir l’inclusion et l’adjacence,

car elles comportent des informations contextuelles. L’adjacence entre les régions nous

donne une idée de la façon dont les régions sont organisées en images. D’autre part, La

relation d’inclusion correspond à notre perception de la relation s’objet-fond: les objets

sont inclus dans leur arrière-plan. Le but de cette thèse est de tirer partie à la fois des

relations d’inclusion et d’adjacence pour mener à bien des tâches de vision par ordinateur.

Nous introduisons le graphe d’alignement spatial (GAS) qui est construit à partir

de l’inclusion et de l’arrangement spatial des régions dans les représentations d’images

basées sur des arbres. Pour l’application ne nécessite qu’une représentation grossière, nous

présentons aussi l’arbre des formes du laplacien (AdFL) qui représente l’inclusion du pas-

sage de zéro d’une carte morphologique Laplacienne. Dans le cas de AdFL, le GAS est

réduit à un graphe déconnecté où chaque composant connecté est un groupe sémantique

d’objets. Il donne de bons résultats en cas d’illumination inégale, ce qui est un problème

courant dans les images naturelles. Grâce à une optimisation qui imite du bien-composé,

l’AdFL est construit en temps linéaire vis-à-vis du nombre de pixels. Pour les représenta-

tion plus détaillée, par exemple, un l’AdF classique, le GAS devient plus complexe. Pour ré-

soudre ce problème, nous proposons d’élargir notre raisonnement à la morphologie basée

sur la forme. Notre expansion a deux résultats principaux: 1) Elle permet de manipuler

n’importe quel graphe des formes qui code des informations différentes. 2) Elle permet

toute stratégie de filtrage dans la cadre de opérateurs connexes. Par conséquent, le GAS

pourrait être analysé avec une hiérarchie des quasi-zones plates.

Nous avons démontré l’aspect applicatif de notre méthode dans l’application de la

détection de texte. Les résultats de l’expérience montrent l’efficacité et l’efficience de nos

méthodes, robustes au bruit, au flou ou à un éclairage irrégulier. Ces fonctionnalités sont

attrayantes pour les applications mobiles.

Mots-clés: topologie discrète, morphologie mathématique, hiérarchies, arbre de formes,

arbres d’adjacence, opérateurs connexes, détection de texte.

vii

Contents

Introduction 1

1 Background 7

1.1 Classical Image Representations . 7

1.1.1 Image representation . 7

1.1.2 Hierarchical representations of images 9

1.2 Hierarchies of Segmentation . 14

1.2.1 Minimum spanning tree . 14

1.2.2 Binary partition tree . 15

1.2.3 Alpha-tree and its variations . 16

1.3 Trees Based on the Threshold Decomposition 20

1.3.1 Min/Max tree . 20

1.3.2 Tree of Shapes . 21

1.3.3 Tree of Shapes for multivariate image 23

1.4 Connected Operators . 25

1.4.1 General definition . 26

1.4.2 Tree-based implementation of connected operators 26

1.4.3 Tree-based shape-spaces connected filtering 29

1.5 Text Detection on Natural Image . 31

1.5.1 Text in images and challenges . 31

1.5.2 Text detection and recognition system 33

1.5.3 Text features . 35

2 Text Localization and Segmentation With Tree of Shapes of Laplacian Sign 37

2.1 Introduction . 37

2.2 A Tree of Shapes of Laplacian Sign (ToSoL) 39

2.2.1 Morphological Laplace operator . 39

2.2.2 Relativity of the objects-background notion 40

2.2.3 A Tree of Shapes of Laplacian Sign 41

2.3 Fast Computation of the Hierarchical Representation 44

2.3.1 A particular well-composed non-local interpolation 44

2.3.2 Label the interpolated laplacian map to construct the ToSL 45

2.3.3 Optimization of ToSL Construction 47

2.4 Text Extraction With Tree of Shapes of Laplacian Sign 48

2.4.1 Method overview . 48

2.4.2 Construction and simpification of ToSoL 49

ix

CONTENTS

2.4.3 Component grouping by spatial search 50

2.4.4 Complexity analysis . 51

2.5 Experimental Results . 51

2.5.1 Quantitative results on text segmentation 51

2.5.2 Applying the method to document binarization 52

2.6 Conclusion . 53

3 Spatial Alignment Graph With Respect to Inclusion 55

3.1 Introduction . 55

3.2 Expansion of Shape-spaces Morphology . 57

3.2.1 Classical tree-based connected operators implementation 58

3.2.2 Tree-based shape-spaces morphology 58

3.2.3 The shape-spaces and the tree-based connected operator on the shape-

spaces . 59

3.3 Spatial Alignment Graph With Respect to Inclusion 63

3.3.1 Handling the objects-background relationship by the inclusion in the

ToS . 63

3.3.2 Handling the spatial alignment by spatial search in the image space 70

3.3.3 Section summarization . 71

3.4 Alpha-tree on the Spatial Alignment Graph for Text Detection 72

3.4.1 Spatial alignment graph w.r.t inclusion for text detection 73

3.4.2 Alpha-connectivity and alpha connected components of the spatial

alignment graph . 76

3.4.3 Alpha-tree of the spatial alignment graph 78

3.4.4 Quality of nodes on the alpha tree 82

3.4.5 Selecting a set of candidate . 85

3.5 Conclusion and Perpestive . 88

4 Conclusion and Perspectives 91

Appendices 95

A Ancestor Relationship and Lowest Common Ancestor in Pylene 95

A.1 Olena and Pylene . 95

A.2 Ancestor relationship and Lowest Common Ancestor in Pylene 97

Bibliography 99

List of Figures 109

List of Tables 113

x

Introduction

Because of an increasing number of applications that require a higher understanding,

image processing becomes pattern recognition or computer vision. For these higher-level

tasks, it is insufficient to work at the pixel level. These tasks would benefit from region-

based representation, in which the subject is not individual pixels but a local context (or

regions) and how they are related together. Moreover, a general purpose application would

also benefit from a multi-scale representation.

In that context, we are interested in the multi-scale region-based representations pro-

vided by the mathematical morphology framework. Unlike the scale-space, all regions

encoded in these representations are presented in the original image. They could be clas-

sified into the hierarchies of segmentation (α-tree, Binary Partition Tree) and trees based

on the threshold decomposition (Min/Max-trees and Tree of Shapes). Although they are

all defined based on the set inclusion relationship (⊂), the former renders the adjacency

of components in the image while the latter encodes how these component are included

in each other.

The first type of hierarchical image representation is the hierarchies of segmentation,

also known as pyramids [76]. The first example of this class is the quadtree [24], which

is a top-down approach, was published in the early 1970’s. Other bottom-up approaches

were later proposed, which include the α-tree (also known as the hierarchy of quasi-flat

zone) [63, 109, 57, 94, 74], and the binary partition tree (BPT) [81, 104]. They composed

of a set of partition from fine to coarse and are usually represented by a tree structure.

The leaves are corresponding to regions of the finest partition while other nodes represent

the unions of all regions represented by their children. The root node represents the entire

image domain as a single region. Some may argue that the hierarchies of segmentation

are more flexible (than the next type of tree) since their framework could adapt to spe-

cific applications, e.g., by modifying the region model and dissimilarity function for BPT.

Because these type of trees are built by merging adjacent regions (or breaking a region

into multiple adjacent regions in case of top-down approaches), we can only deduce frome

them the adjacency relation of sibling nodes.

The trees based on the threshold decomposition [86, 66] include the dual couple Min-

tree and Max-tree [40, 41, 82] and the self-dual Tree of Shapes (ToS) [59, 97, 96]. In

contrast to the hierarchies of segmentation, which usually rely on a dissimilarity measure

between regions that make them contrast-dependant, the trees based on the threshold

decomposition are generally contrast-invariant. The reason is that they rely on the pixel-

value ordering, so any linear change in contrast does not affect the ordering. To be clear,

they are affected by illumination changes, but robust to local change of contrast. The

Min- and Max-tree are dual, which mean that a Min-tree on an image is the same as

1

Chapter 0 – Introduction

the Max-tree on the image obtained by inversion of contrast. In that aspect, the ToS [17,

59], which is usually seen as a fusion of Min-tree and Max-tree, possess an interesting

property: it is self-dual, which means it is invariant to inversion of contrast. This property

is interesting when an assumption about the contrast of object vs. background cannot be

made. Moreover, because the ToS encode the inclusion of level-lines, i.e., the boundaries

of upper/lower level sets, it also encodes the inclusion relationship between flat-zones on

images.

The inclusion of regions is interesting because it fits our perception of the object-

background relationship: the object is usually included in its background. Having the in-

clusion of regions from the smallest up to the whole image allows us to handle the object-

background notion relatively. It is desirable for two reasons. First, the object-background

relationship is relative to the context. One region could act as the object but at the same

times the background for others. Second, the object-background relationship also carries

contextual information. Semantic regions are not only spatially closed but also usually in

the same background. Having a hierarchical structure encodes the inclusion allow us to

handle that relationship flexibly.

On the other hand, we should also consider the adjacency and other spatial rela-

tionship between regions. We use the term adjacency in the sense of “the state of being

nearby”, that is the spatial relationship between a region and nearby regions that is not its

background. This relationship gives us a perception of how regions are arranged in images

and also carries contextual information.

Problem statement:

The inclusion relationship gives us a flexible way to handle the objects-background rela-

tionship while the adjacency and other spatial relationship give us the relative position of

regions in images. Such a drastic (but structured) information retrieval opens up possibil-

ities for image analysis. Being able to consider both adjacency and inclusion information

is a real issue in order to successfully express spatial relationships between objects of in-

terested, i.e., between regions of a segmentation. The problem and the subject of this

thesis are how to get a representation that takes advantage of both inclusion and adjacency
information and how to analysis the information encoded in that structure.

Solution and contribution:

We explore one approach that starts with the inclusion of level lines, which already en-

coded in the ToS, then we add adjacency or other spatial relationship between these by a

low-cost spatial search. This eventually leeds to the construction of a graph of shapes (or

shape-spaces), from which regions of interest will be extracted with the help of connected

filters. The contributions of this work are:

2

• A variant of ToS: the Tree of Shapes of Laplacian sign (ToSoL), which encodes the in-

clusion of 0-crossing of a Morphological Laplacian map and an efficient algorithm to

construct such representation. This representation has a high resistance to contrast

change thanks to the robustness of Morphological Laplacian.

• A simple grouping process on the ToSoL which take advantage of both inclusion and

adjacency.

• An extension of the shape-spaces morphology [115].

• A graph, representing a shape-space, that is construct from both inclusion and spatial

arrangement, called spatial alignment graph w.r.t inclusion.

• Application of the generalized shape-spaces morphology and spatial alignment graph

w.r.t inclusion in text detection, with the possibility to expand to other application

such as image filtering, image simplification.

Manuscript organization

This thesis is organized into three main chapters. Chapter 1 presents the mains theoret-

ical background that relates to our works which include a review of hierarchical repre-

sentations provided by the mathematical morphology framework, the connected operator

framework which deals with these representations and a short review of text detection in

natural images, which is the application aspect in which we are interested.

• Section 1.1 is a quick review of classical image representations, in particular, the

definition of some image concept through the representation of images as a graph.

We also discuss the necessity of hierarchical representations and the general concept

of tree-based image representation.

• Section 1.2 is a review of the first type of hierarchical, namely the hierarchies of

segmentation. We will discuss some well-known structures which include the α-tree

[94] and the Binary Partition Tree [81]

• Section 1.3 reviews the morphological hierarchies based on the threshold decompo-

sition which include the Min/Max-trees [40] and the Tree of Shapes [59]. We also

review an extension of Tree of Shapes to multivariant images [16].

• Section 1.4 reviews the connected operators, which is a class of filters that has

an interesting property: they do not create new contours nor modify positions of

existing ones. We review the tree-based implementation of connected filters [84], as

well as the tree-based shape-spaces frameworks [115].

• Section 1.5 is a small review of different approaches on text detection and recogni-

tion in natural images, which is the focused application of this thesis.

3

Chapter 0 – Introduction

Chapter 2 presents our first approach in using both inclusion and adjacency informa-

tion in the application of text localization and segmentation. In this chapter, we propose

a variant of Tree of Shapes called the Tree of Shapes of Laplacian sign (ToSoL) and a

regrouping process that uses both these types of information to obtain text candidates.

• Section 2.2 and 2.3 present the ToSoL, which is a Tree of Shapes since it encode the

inclusion of level lines. However, instead of the level lines of the image function like

the classical ToS, the ToSoL encode the inclusion of the 0-crossing of the morpho-

logical laplacian. Although using Laplacian operator for contour detection a classical

idea, our version is innovating for two reasons. First, we rely on the morphological

Laplace operator which have higher resistance to uneven illumination, which is a

common problem in natural images. Second, we organize the 0-crossings into an

inclusion tree, from which the object-background relationship could be deduced. We

also present a top-down linear time complexity algorithm to compute the ToSoL, as

well as the possibility to directly perform filtering operator during its construction.

• Section 2.4 and 2.5 we focus on text localization and segmentation in natural

images using ToSoL. In these section, we presents a text characters segmentation

method which is a good trade-off between efficiency (linear time complexity) and

quality (with a competitive F-score) with an efficient grouping of characters into text

boxes, taking full advantage of the inclusion information encoded in ToSoL as well

as the adjacency of regions obtained by a simple spatial search.

Chapter 3 introduces the spatial alignment graph w.r.t inclusion with respect to inclu-

sion as well as the generalization of shape-spaces morphology [115]. In the same chapter,

we will apply the generalized shape-spaces morphology framework and the spatial align-

ment graph w.r.t inclusion for text detection.

• Section 3.2 presents our extension of shape-spaces morphology [115]. Our exten-

sion is twofold. First, we expand the shape-spaces definition to any spaces repre-

sented by the graph G(V,E) where the vertices set V corresponding to the nodes set

of a hierarchical image representation. Second, instead of following Xu et al. [115],

who use the second tree, which represents the shape-spaces, to select nodes that

are filtered from the first tree. We propose to reconstruct the shape-spaces, and as a

result, the first tree, in the same manner as the image space is reconstructed from

the first tree: through the associated function. This extension has two main conse-

quence: 1) We can fit any graph that encodes the relationship between nodes on a

tree to shape-spaces morphology framework rather than only the graph that repre-

sents the parent-children relationship. 2) We can perform any tree filtering strategy

proposed by the connected operator frameworks rather than only tree pruning ones.

• Section 3.3 presents the general structure of a spatial alignment graph w.r.t inclu-

sion. The graph is constructed by generalized the grouping process presented in

4

Section 2.4. That graph represents the alignment of regions encoded in the ToS.

Neighbors of a node are regions that are not its background (regions in which it is

included) and spatially aligned (regions that are in the desired direction in the im-

age space). This structure takes advantage of both types of information. The distance

on the tree, as well as the distance on image space, will be reflected in the weight

of the edges. This graph represents a shape-spaces and could be analysis follow the

generalized shape-spaces morphology.

• Section 3.4 we present the application of generalized shape-spaces morphology on

a spatial alignment graph w.r.t inclusion for text detection in natural images. By

constructing an α-tree with a dissimilarity measure adapt to the application, we

demonstrate that nodes on thats tree represent text characters on the images with

high quality. We also propose some approaches to obtain a small set of candidates

for the later stages of end-to-end text detection and recognition pipeline.

In Chapter 4, we conclude this thesis by a quick review of our approaches on taking ad-

vantage of both inclusion and spatial arrangement, in which “adjacency” is encompassed.

We also present some possible improvement and further research on these applications.

Finally, we give some suggestion for additional study of our approach.

5

Chapter 1

Background

1.1 Classical Image Representations

1.1.1 Image representation

Digital image processing is a process performed on an image in order to enhance or extract

useful information. An image is a projection of the 3D real-life scene into the 2D plane

of the image sensor. It is stored as a finite set of digital values, called picture elements

or pixels, corresponding to the smallest elements of the image sensor. Each pixel holds

values represent the data collected. Typically, the pixels are stored and displayed as a grid

map to reflect the image sensor array. Like any other signal, images can be modeled and

processed by different mathematical tools.

Classical image representation decomposes the image into fundamental elements: pix-

els. An image could be defined as a function with the spatial support is defined as a subset

of Z2 to represent the pixel grid, and the values space depends on the type of image. Some

classical tools for this representation include Fourier transform or wavelet transform for

geometric analysis, image denoising, image compression, and texture analysis. The image

grid could also be expressed as a matrix. Thus matrix tools are also applicable, especially

eigen-decomposition for principal component analysis. Another interesting representation

is modeling images as a graph. Graph-based image representation allows us to use tools

provided by the graph theory framework.

With an increasing number of applications in image processing and computer vision

that need a higher level of image understanding, handling the image at the pixel level is

not sufficiently efficient. In a higher level representation, the region-based image repre-

sentation, the images are modeled in general not by individual pixel but by sets of pixels

or regions. This representation includes superpixels and hierarchical image representa-

tion. The latter is the focus of this work and will be reviewed in later sections. Usually,

these region-based image representations are built on lower representation. Some term,

e.g., connected components, path, flat-zones, could be easily explained by the graph-based

representation. Let us take a look at some of these terms, presented within the graph-based

representation of images.

7

Chapter 1 – Background

Image as a graph

In graph theory, a graph is a pair G(V,E) where V is a set of vertices (or nodes, points)

and E the set of edges. Each edge in E joins two vertices in V . We usually denote the edges

connecting two vertices v1, v2 as ev1,v2 . The two vertices v1, v2 are endpoints of ev1,v2 and

they are said to be adjacent or neighbors. Edges may be directed or undirected. Directed

edges, also called arcs or arrows, define an order between their two ends. Undirected

edges, also called lines, are used when the direction from one vertice to another is not

important. A graph is said directed or undirected according to this nature of its edges.

In the graph-based image representation, an image is usually depicted as an undirected

graph G(V,E). The set of vertice V could be naturally chosen to correspond to the set of

image pixels. However, the set of edges does not come that naturally. We have to define

the connectivity to determines the set of edges. The most commonly used connectivities

are 4- or 8-connectivity for 2D images and 6- or 26-connectivity in 3D ones. In this rep-

resentation, only vertices corresponding to image boundary have a lower degree (number

of edges connected to it) than the value defined by the connectivity. The image function

will then map each vertex to a value on the value space.

On a graph, a path π in G from x to y is an ordered set of vertices π(x → y) =
{p1 = x, . . . pN = y} that for every 1 ≤ i < N , epi,pi+1 ∈ E. Two vertices x and y is said to

be connected in G if ∃π(x → y). A graph is said to be connected if every pair of vertices

are connected. Usually, the image domain is connected.

A subgraph X(VX , EX) of G(V,E) is a graph that VX ⊆ V and EX ⊆ E. X is said

an induced subgraph if it is a subgraph and EX = {ep,q|p, q ∈ V ∧ ep,q ∈ E}. X is said a

spanning subgraph of G if VX = V .

A subgraph X is a connected component of G(V,E) if it is the maximal connected

subgraph of G, i.e. if there exists a connected subgraph X ′(VX′ , EX′) of G and VX ⊆ VX′

then VX = VX′ . We denote the set of connected components of a graph G by CC(G).
Let R be a set of pixels of image I represented by graph G(V,E). We called R a region

of I. If not specified, the graph representing R (the set of vertices corresponding to the set

of pixels of R) is an induced subgraph of G denoted by GR(VR, ER).
The region boundary of R is the set: Eboundary(R) = {ep,q ∈ E|p ∈ VR ∧ q 6∈ VR}. The

inner (resp. outer) boundary points of R is the set of endpoints of Eboundary(R) belong

(resp. do not belong) to R.

LetGR the graph presentingR (the complement set ofR). The set of connected compo-

nents of GR could be divided into two class depend on whether that connected component

contains image boundary pixels or not. The latter would be called holes and the former

outer regions. We denote Sat(R) the hole filling operation that returns the regions Sat(R)
that equal the union of R and all of its hole.

Let G0(V,E0) a subgraph of G(V,E), formed from the same vertice set V and a subset

E0 ⊂ E that ∀ex,y ∈ E0, I(x) = I(y). Connected components of G0 are flat zones of the

images. It is implied that a total order could be defined over the image’s value space. It

8

1.1. Classical Image Representations

is most successfully used with gray level images [83] where the flat zones are connected

regions of the maximal size having the same gray level.

Flat zones are local maxima (minima) if all pixels on its outer boundary have strictly

lower (higher) value.

In similar way, the semi-flat zones can be defined as connected component ofGα(V,Eα)
that generate from G by Eα ⊂ E that ∀ex,y ∈ Eα, |I(x)− I(y)| ≤ α. The partition by semi-

flat zones (and its hierarchy) will be present in later section.

1.1.2 Hierarchical representations of images

In this section, we will take a deeper look into the hierarchical representation of images,

also called tree-based image representation. Motivated by the multi-scale nature of im-

ages, this representation has received attention in image analysis, especially in the field of

mathematical morphology. In section 1.1.2.2 and 1.1.2.3, we will introduce the tree-based

image representations by a mathematical morphology viewpoint. Section 1.2 and 1.3 will

take a deeper look in some well-known hierarchical images representation.

1.1.2.1 The necessity of hierarchical representations

A digital image is a pixels grid where each box is associated with a value. For a human, that

set of pixels may have more than their individual value. We process the images by groups

of neighboring pixels that have some semantic meaning and how these groups relate with

each other. How exactly the human brain does that is in the scope of another field of study,

in the field of images processing, we try to achieve that level of understanding (and maybe

better). In traditional images processing, we work at with a small neighborhood of pixels.

When a higher level of image understanding is needed, to become pattern recognition or

computer vision, it is no longer sufficient to work at that level. To better analyze the scene,

we need to consider larger regions.

The regions of interest can be of various sizes anywhere in the image. Therefore a se-

mantic analysis of the images should be capable of doing so. Sometimes, the scale at which

the image should be analyzed may be dictated by the underlying application. For example,

separate the sky and building Figure 1.1 only require a coarse analysis of the scene since

these regions are large; counting the number windows may need a finer analysis. Retrieve

texts is that image challenging task since they appear at different scales, some are at the

same scale as the windows, some are near the pixels level and barely readable.

Because of this multiscale nature of images, image processing methods would benefit

from a multiscale representation. It is more useful to decompose the image into potential

scales of interest and browse that collection for the proper one than to chose a priori which

scale is best for each application.

One popular multi-scale analysis tool for multiscale image analysis is the scale-space

representation. It represents an image as a one-parameter family of smoothed images

9

Chapter 1 – Background

Figure 1.1 – The view outside my office window.

[11]. The most popular is the linear Gaussian scale-space. However, by using a smoothing

kernel, they usually modify images contour, and they are not invariant to contrast changes.

Because of that, we are more interested in another multiscale image representation:

the tree-based image representation. Contrast to the scale-space, connected components

in the shape-space are already presented in the original image and their contour is actually

those of the original image. Consequently, they are more interesting than scale-space in

terms of contours shapes and locations. The tree-based image representation has been

popularized by connected filters (will be reviewed in Section 1.4). Moreover, there are

many applications in image processing and computer vision relying on this kind of image

representation.

1.1.2.2 The lattice of partitions

The complete lattice theory is widely accepted as the appropriate algebraic basic for math-

ematical morphology[2]. This section recalls some mathematical background notions, es-

pecially lattice theory which are required when working with the hierarchical representa-

tion of the image, e.g., hierarchies of segmentation or hierarchies of partial partitions. As

their name implies, they comprise of partitions, and they are hierarchies which consist of

an order defined on a set. We will go through the definition of partitions, the lattice of

partitions and how it leads to the so-call tree-based image representation.

Let an image I defined as a function from the domain space DI to the value space V :

DI →V

p 7→I(p) = v

10

1.1. Classical Image Representations

A partition P of an image I is a division of its definition domain DI into non-void,

non-overlapping regions R which cover the entire DI . Mathematically speaking, let DI be

an arbitrary set. A partition P of a set DI is a family {Ri 6= ∅|Ri ⊂ DI} of subsets of DI so

that ∀Ri 6= Rj ∈ P,Ri ∩Rj = ∅ and
⋃
R∈P R = DI . If the second condition is not satisfied,

P is a partial partition. Let denote the set of all partition of a set DI by ΠI .

Let recal the notion of partially ordered set (poset) in order theory. Let S a set and ≤ a

relation on S. The relation ≤ is a partial order if it is:

• Reflexivity: ∀a ∈ S, a ≤ a

• Transitivity: ∀a, b, c ∈ S, a ≤ b and b ≤ c⇒ a ≤ c

• Antisymmetry: ∀a, b ∈ S, a ≤ b and b ≤ a⇒ a = b

A partital order will become a total order if it is totality: ∀a, b ∈ A, a ≤ b or b ≤ a.

In [85], Serra noted that two partitions of an image I could be ordered to reflects their

refinement. We denote the refinement order defined on then set of all partition of the

domain of image I ΠI by ≤. For any two partition P, P ′ of a set DI , P is said to be finner

than P ′, denote by P ≤ P ′, if ∀R ∈ P , ∃R′ ∈ P ′ that R ⊂ R′. The partition P ′ is said to

be coarser than P . Informally, we can say that P ≤ P ′ if P “contains” all the boundaries

of P ′.

The couple (ΠI ,≤) is a partially ordered set (poset), any subset Π′ ∈ ΠI may admit

a greatest lower bound (or refinement infimum) and a least upper bound (or refinement

supremum). The former, denoted by
∧

P∈Π′
P , is the coarsest partition P ∈ ΠI that is finer

than any element of Π′. The latter, denoted
∨

P∈Π′
P , is the finest partition P ∈ ΠI that is

coarser than any element of Π′. The poset (ΠI ,≤) is a complete lattice because all subsets

have both a supremum and an infimum [92]. The coarsest element has one region which

is the whole set DI itself, the finest partition is the set of all singletons of DI [85].

The hierarchies of segmentation which we will present in Section 1.2 consist of a

subset Π ⊂ ΠI so that the refinement order has the totality property. The finest partition

is a starting partition of the image, and the coarsest one is always the image domain

itself. However, handling Π would be redundancy since one region may appear in more

than one partition. This is resolved by replacing the set of partition Π by the set of regions

Tp = ⋃
π∈Π{π} and the refinement order≤ by the set inclusion⊆, on which the refinement

order is based.

The hierarchies based on threshold decomposition in Section 1.3 in general only pro-

duce partial partitions of images. The set of regions Td in all of these partial partitions

could also be ordered by inclusion ⊆.

On both types of hierarchical image representation, the region sets Tp and Td consist

of disjoint or nested regions. Therefore, the cover graphs of the posets (Tx,⊆) are trees

(in graph theory terminology) since they are acyclic and connected graphs. This leads to

the tree-based image representation.

11

Chapter 1 – Background

≤

≤

≤

P1

Pa

Pb

Ra

Rb

(a)

P1 ⋁ P2

P1 ⋀ P2

P1 P2

(b)

Figure 1.2 – Illutration of refinement order 1.2(a), infimum and supremum 1.2(b). The
refinement order ≤ defined on ΠI is a partial order. In 1.2(a), we see that P1 ≤ Pa and
P1 ≤ Pb because every region of P1 is included in one of the regions of Pa and Pb. However
Pa and Pb are incomparable because ∃Ra ∈ Pa but @R ∈ Pb that Ra ⊆ R and ∃Rb ∈ Pb
but @R′ ∈ Pa that Rb ⊆ R′. In 1.2(a), two set P1 and P2 and its infimum and supremum
are represented in a The Hasse diagram ordered by refinement.

1.1.2.3 Tree-based image representation

A tree-based image representation (T,⊆) (or usually T with the inclusion order implied)

of an image I is a set of non-empty, disjoint or nestest regions T ordered by inclusion ⊆:

T = {DI} ∪ {R ⊆ DI |R 6= ∅} and ∀Ri, Rj ∈ T,Ri ∩Rj ∈ {∅, Ri, Rj}
(T,⊆) may be couple with a set function F : T → V that return the value associated

with each region. F could return the level at which the region is obtain (e.g., in case of

Min-,Max- tree or Tree of Shapes), the mean or median of image value in that region.

(T,⊆, F)This is an equivalent image representation since the image could always be

reconstructed from the set of regions (T,⊆) and its associated value function F . The re-

constructed image I ′ from a tree-based image representation (T,⊆) has the definition

domain DI′ = ⋃
R ⊂ T and the image function I ′:

DI′ →V

p 7→I ′(p) = F (Min{R ∈ T |p ∈ R})

In words, the value of a pixel p of the reconstructed image is the associated value of

the minimum of all regions containing p in T . Because the disjoint or nested property,

there always exists such mini=imum.

The tree-based implementation of connected operators discussed in Section 1.4.2 rely

partially on this reconstruction process to obtain a filtered image.

T is usually presented as a graph GT (V,E) where each vertex v ∈ V accosicated with a

region R(v) ∈ T and each edges ex,y ∈ E connect two vertex x, y so that R(x) covers R(y)
in (T,⊆) (i.e., R(y) ⊂ R(x) and @x′ that R(y) ⊂ R(x′) ⊂ R(x)) or reverse. That graph is a

12

1.1. Classical Image Representations

tree (in graph theory terminology) and its root is alway chosen to be the node associated

with the entire definition domain DI . If there is not any confusion, we may use the node x

and its associated region R(x) interchangely. Several terminology are usually used when

speaking about nodes on a tree-based representation:

In a tree-based representation (T,⊆) of a set I, let x ∈ GT (V,E)

• The parent of x is the node par(x) that is on the path from x to root and to which

x is directly connected. We always have R(x) ⊂ R (par(x)) Every nodes except the

root has a unique parent. Sometime we may refer to the grand-parent of x which is

par(par(x))

• The children of x are all node x′ ∈ T that x is its parent. We denote the set of

children of x by C(x)

• The leave nodes are nodes that have no children.

• The sibling of x is the set of nodes Sib(x) that have the same parent as x. Sometimes,

we may refer to uncles of x which is the set Sib(par(x)).

• Ancestors of x are elements on the path from x to root.

• Descendants of x are either children of x or a descendant of any of the children of

x. In another word, it is the set of nodes for which x is an ancestor.

• The subtree root at x, denote by T (x) contain x and all of its descendant.

• The height of a node is the length of the longest downward path to a leaf from that

node. The height of the tree is the height of the root.

• The depth of a node is the number of its ancestors.

Some of these terms are illustrated in Figure 1.3.

13

Chapter 1 – Background

I = root(T)

HA

O

CBB D

F

K

M N
C(B)

uncle(B)
G

Sib(B)

par(B)

...
ancestor(B)

E

G
descendant(B)

h
e
ig

h
t(

B
)

d
e
p
th

(B
)

Figure 1.3 – Illutration of tree-based representationt terminology.

1.2 Hierarchies of Segmentation

1.2.1 Minimum spanning tree

The Minimum Spanning Tree (MST) is not defined as a tree-based image representation.

However, the MST, especially Kruskal’s algorithm [47], is the core of some efficiency algo-

rithms to compute other hierarchical image representation [65].

Given an edge-weighted undirected graph G(V,E), a spanning tree of G is a subgraph

that is a tree and includes all the vertices of G. By definition, an unconnected graph

could not contain a spanning tree (but a spanning forest). A connected graph would have

more than one spanning tree. On an edges-weighted connected graph, we are interested

in finding a minimum spanning tree (MST) [47] which is a spanning tree and its total

weight is less than or equal any other spanning tree of the same graph. An example of

MST is given in Figure 1.4.

There are several algorithms that compute MST for undirected graph, include Boru-

vka’s algorithm [6], Prim’s algorithm [38], reverse-delete algorithm and Kruskal’s algo-

rithm [47]. All of them are the greedy algorithm. Kruskal’s one is the most commonly

used and could be present as in Algorithm 1.

The MST is a well-known problem in graph theory and has found application in images

analysis [99]. It is also useful in the construction of other structure in the image process-

ing field. In [20], Cousty et al. introduce watersheds as optimal spanning forest. In the

follow-up works [65], Najman et al. introduce several variations of Kruskal’s algorithm

to compute various hierarchical structures, in particular, the tree corresponding to hierar-

14

1.2. Hierarchies of Segmentation

Input: An Edge-weighted graph G(V,E)
Output: A minimum spanning tree if G is connected, a minimum spanning forest

otherwise
1 Kruskal(G(V,E)):
2 Create a forest where each vertex in V is a separate tree ;
3 For each edge e ∈ E in increasing order, if e links two trees then merge them

into a single one and add e to the forest;

Algorithm 1: Kruskal’s Algorithm.

(a) An image represented as a Graph (b) Its Minimum Spanning Tree

Figure 1.4 – An example of a minimum spanning tree, 1.4(a) is the input image, repre-
sented as a graph whose vetices weighted by their gray value and edges weighted by their
gray value different. 1.4(b) shows one of the Minimum Spanning Tree of that graph.

chies of watershed cuts and α-tree. This is achieved by post-processing a binary partition

tree corresponding to an ordered version of the edges of the minimum spanning tree.

1.2.2 Binary partition tree

The Binary Partition Tree (BPT) proposed by Salembier et al. [81] encodes the hierarchical

decomposition of an image. The BPT reflects the similarity between neighboring regions.

Nodes on the BPT represents image regions at different scales. Those that are close to the

root usually correspond to larges regions while leaves represent small detail.

Its construction starts from initial partitions (pixels, flat zones or precompute parti-

tion). At each step, a similarity measure between all neighboring region is calculated, and

only the most similar pair of regions will be merged (thus the hierarchy is a binary tree).

The merging repeat until only one component left. The BPT is obtained by keeping track of

this merging process. The leaves in BPT are regions in the initial partitions. Each merging

is done by creating a new parent node which is linked to its children.

The region model, which specify how to model the region and their union, and the

15

Chapter 1 – Background

merging criterion, which is the similarity measure between two region models, drive the

construction of the BPT and thus define the meaning of the final structure. The region

model proposed in the first paper [81] was the mean color of each region, with an as-

sumption that the color is homogenous within each region. The mean color could be a

scalar (gray-level image) or a vector (color image). That region models have been apply-

ing in different color space: RGB [4], CIELUV [81], CIE L*a*b* [54] [53]. The similarity

measure should depend on the application. One measure that has been used by paper

mention above is express by:

O(R1, R2) = |R1| × ||MR1 −MR1∪R2 ||2 + |R2| × ||MR2 −MR1∪R2 ||2

With R1, R2 denote two region, MR denotes the region model of R and ||.||2 is the L2

norm. Other norms such as L1 or L∞ could also be used.

Depend on how the similarity measure is defined, the similarity measure would need

to be updated for every step. One example of BPT is given in Figure 1.5.

BPT found application in image segmentation and object detection [81, 104, 54]. The

BPT framework is also a versatile hierarchy representation. It has been extended to hyper-

spectral image [102] by redefining the region models and similarity measure. The Binary

partition Tree by altitude ordering formalized in [65] is an intermediate step to obtain a

hierarchy of watershed cuts and α-tree.

1.2.3 Alpha-tree and its variations

The α-tree [94], which is also known as quasi-flat zone hierarchy [57], is a hierarchical

structure built from the α-connected components (or quasi-flat zone). It is based on the

α-connectivity, which could be seen as a parameter-dependent connectivity [109] or con-

strained connectivity [94]. A similar method has been described by Nago et al. [63] in

1979.

The connectivity is defined on image I presented as a graph G(V,E). Two pixels x, y

are α-connected (i.e., belong to the same quasi-flat zone) if there exists a path π(x →
y) = {p1 = x, . . . , pN = y} from x to y that d(pi, pi+1) ≤ α;∀1 ≤ i < n. Usually, the

α-connectivity is demonstrated on a scalar image and edges are weighted by the intensity

difference between a pair of neighboring points d(x, y) = |I(x)− I(y)|.
The α-connected relationship is an equivalence relation. First, it is reflexive because

a point is α -connected to itself. Second, it is symmetric because if x is α -connected to y

via π then y is α -connected to x via the reversal of π. Finally, it is transitive because if x

is α -connected to y via π1 and y is α -connected to z via π2 then x is α -connected to z

via the concatenation of pi1 and pi2. The α-connected components (α-CC) is defined as

equivalence classes on the image definition domain [94], i.e. the maximum set of points

that are α -connected. Consequently, the set of all α-CCs on an image definition domain

defines a partition of that domain.

The greater the value of α is, the larger α-CCs. Moreover, the α-CCs contain a pixel

16

1.2. Hierarchies of Segmentation

1 0 5 6

0

3

1 0 4 5

3 6 2

0 5 2

1 5 1

0

0

1 4 1

3 4

5 3

0 0 1 1

3

2 3 2 3

3 1 0

A B
C E

FD

G

H
K

I

J

{1,1} {0,0}

{3,3}

{0,0}

{5}

{4}

{6}

{5}

{2,2}

{5}

{6}

2.251.00

2.00

5.56

2.25

3.56

2.00

2.00

1.00

1.00

0.25

3.56

2.00

0.25

2.25

0.25

0.25 A B
C E

FD

GH K
I

J

{1,1} {0,0}

{3,3}

{0,0}

{5}

{4}

{5,6} {2,2}

{5}

{6}

2.251.00

1.69

7.69

2.25

2.00

1.00

1.00

0.25

3.56

2.00

0.25

0.67

0.25

3.19

AB
C E

FD

GH K
I

J

{1,1,0,0}

{3,3}

{0,0}

{5}

{4}

{5,6} {2,2}

{5}

{6}

1.69

7.69

2.25

2.00

1.00

1.00

0.25

3.44

2.16

0.25

0.67

3.19

1.56

AB CD
E

F

GH K
I

J

{1,1,0,0}

{3,3}

{0,0}

{4,5}

{5,6} {2,2}

{5}

{6}

1.69

7.69

2.25

2.00

0.22

0.67

0.25

0.50

3.19

1.56

3.81 AB CDF
E

GH K
I

J

{1,1,0,0}

{3,3}

{0,0}

{4,5,5}

{5,6} {2,2}

{6}

1.69

7.69

2.25

1.84

0.50

0.40

3.19

1.56

4.49 AB
CDFGH

E

K
I

J

{1,1,0,0}

{3,3}

{0,0}

{4,5,5,5,6}

{2,2}

{6}

1.10

5.39

2.25

2.12

0.47

1.56

5.33 AB
CDFEGH

K
I

J

{1,1,0,0}

{3,3}

{0,0}

{4,5,5,5,6,6}

{2,2}

1.23

5.35

2.25

2.23

1.56

5.61

AB

CDEFGHI

K
J

{1,1,0,0}

{0,0}

{3,3,4,5,5,5,6,6}

{2,2}
4.41

2.09

4.69

AB

CDEFGHKI

J

{1,1,0,0}

{0,0}

{2,2,3,3,4,5,5,5,6,6}

4.08

4.21

AB

CDEFGHKIJ

{1,1,0,0}

{0,0,2,2,3,3,4,5,5,5,6,6}

4.72 ABCDEFGHKIJ
{0,0,0,0,1,1,2,2,
3,3,4,5,5,5,6,6}

(a) Input image and step-by-step BPT construction

A BI JC D EF KG H

(b) The Binary Partition Tree

Figure 1.5 – An example of a Binary Partition Tree. A region is modeled by the set of its
pixels’ value, and the similarity measure is the variance of the union. With this merging cri-
teria, the neighborhood and similarity measure is needed to be updated for every step. In
this example, we build the BPT of the same image in the MST section. Figure 1.5(a) shows
the original image and the regions adjacency graph at each step (blue edges, weighted by
variance). The red edge is the one with minimum weight, which connects regions that will
be merged next step.

p form of an ordered sequence when the value of α is increased : α-CC(p) ⊆ α′-CC(p)
with α ≥ α′. As a consequence, when α increase, α-CCs grow and merge and the chain of

17

Chapter 1 – Background

α-partition forms a hierarchy. An α-tree example is given in Figure 1.6

From the implementation point of view when constructing the α-tree, the alpha level

where two adjacency region A and B merge is determined by the edge(s) of minimal

weight connecting them. Other edges connecting the two subsets could be ignored without

effect the final tree. This is why the implementation of the α-tree is related to MST and

single-linkage clustering [30]. For that reason, Kruskal’s MST algorithm allows an effective

way to compute the α-tree [65].

The α-tree has two well-known major problems. The first one could be observed clearly

in noisy images. Noise pixels will form small isolated regions close to root because of

its high different to surrounding pixels. A segmentation using α-tree would need post-

processing (e.g., a gain filter) to remove those small regions. The second problem is the

chaining effect in regions with a low gradient. Because the α-connectivity consider only

local parameter (dissimilarity between two pixels), clusters may grow faster than expected

for a specific α.

To address the chaining effect, in [31] Hambrusch et al. proposed a technique to con-

trol the growth of α-CC by using a global parameter to limit the property variation (e.g.,

pixel intensity) within a component. With d is the dissimilarity between two adjacent pix-

els and R returns the maximum dissimilarity in π, the (α,ω)-Hambrusch relation (as called

in [94] by Soile et al.) could be presented as:

x, y are (α,ω)-Hambrusch related⇔ ∃π(x→ y) = {p1 = x, ..., pN = y}

: ∀i < N, d(pi, pi+1) ≤ α ∧R(p ∈ π) ≤ ω (1.1)

Because the (α,ω)-Hambrusch relation is not an equivalence relation (it is not transi-

tive), it does not lead to a unique partition of the image definition domain. For this rea-

son, the image partition algorithm of Hambrusch et al. needs a decision making process to

guide the growing of (α,ω)-Hambrusch components. In their paper, Hambrush et al. define

the (α,ω)-Hambrusch component is the set of pixels that all pairs are (α,ω)-Hambrusch

related. A partition produced by (α,ω)-Hambrusch relation is required to satisfy the max-

imum property: no valid segment could be merged with other valid segments to form a

valid segment.

Unsatisfy with the non-unique nature of the (α,ω)-Hambrusch partition of image, in

[94], Soille et al. propose another connectivity relation relying on both local and global

parameters. According to Soille’s notion, (α,ω)-connected component contains a pixel p

(α,ω)-CC(p) is the largest αi-CC(p) that αi ≤ α and value range is not greater than ω:

(α, ω)− CC(p) = max {αi-CC(p)|αi ≤ α ∧R(x ∈ αi-CC(p)) ≤ ω} (1.2)

Finding (α, ω)-CC(p) is actually finding the nearest node to root on α-tree that contains

p and satisfies the local and global variation parameter. An (α, ω)-partition of the image

could be obtained simply by a cut on the α-tree. Thanks to the ordering relation between

18

1.2. Hierarchies of Segmentation

(a) 0-CCs (b) 1-CCs (c) 2-CCs (d) 3-CCs

A B I J C D E F KG H

A B
C E

FD

G

H
K

I

J

0-CC

1-CC

2-CC

3-CC

A∪B

A∪B∪I

C∪D∪E∪F

C∪D∪E∪F∪G∪H

A∪B∪I∪C∪D∪E∪F∪G∪H∪J∪K

α

A∪B

(e) The alpha tree

Figure 1.6 – An example of an alpha tree.

α-CCs, the following ordering relation holds for every pixel p:

(α, ω)-CC(p) ⊆ (α′, ω′)-CC(p) with α ≤ α′ and ω ≤ ω′ (1.3)

However, due to the unknown order when α ≤ α′andω ≥ ω′, the set of all (α, ω)-CCs

cannot form a hierarchy [7].

In the same paper, observing that the local parameter does not play a role when α ≥ ω
because (α′ > ω, ω)-CC(p) = (α = ω, ω)-CC(p), Soille et al. proposed the concept of

(ω)-CC. It is the largest α ≥ ω whose global range does not exceed ω. The set of ω-CCs

forms a hierarchy, called the (ω)-tree. The (ω)-tree could be seen as a reorganized of the

α-tree. A non-horizontal cut on the α-tree using global ranges as criteria corresponds to

a horizontal cut on the (ω)-tree. Similar to the notion of (α,ω)-CC of Soille et al., it does

not contain any region that is not already on the α-tree and therefore, does not solve the

chaining effect. However, it does reflect better the region criteria.

The α-tree have been generalized for multichannel images [94].

19

Chapter 1 – Background

1.3 Trees Based on the Threshold Decomposition

In this section, we review the three classical hierarchical representations based on thresh-

old decomposition, to be specific, the Min- and Max- tree [82] and the topographic maps

[17] which are also known as the Tree of Shapes (ToS) [59]. The Min- and Max- trees

are dual, which mean that the Min-tree of an image is the Max-tree of its complemen-

tary and vice versa. The ToS is a self-dual representation which is obtained by merging

the Max-tree and Min-Tree. These trees are fundamentally different from the hierarchy of

segmentation discussed in the earlier section. First, a horizontal cut in the former yields a

partial partition while a horizontal cut in the later yields a partition. Second, the former

represents the inclusion of components while the later renders the adjacency of regions.

1.3.1 Min/Max tree

The component trees were introduced by Jones [40, 41] and popularized as the Min-

and Max-trees by Salembier et al. [82] who found them to be an efficient image repre-

sentation adapted for connected filters[83]. The Min (resp. Max)-tree based on inclusion

relationship between dark (resp. light) structures in the image.

Given X a image definition domain, let an image u : X → F where F is endowed

with an ordering relationship ≤ and a level λ ∈ F , the lower and upper level sets at level

λ are respectively defined by [u ≤ λ] = {x ∈ X | u(x) ≤ λ } and [u ≥ λ] = {x ∈
X | u(x) ≥ λ }. We denote CC, the operator that takes a set of pixels and gives its set of

connected components. The Γ−λ = CC([u ≤ λ]) and Γ+
λ = CC([u ≥ λ]) are the lower

and upper peak components at level λ. The lower and uper set of connected components

are denote by Γ− = ⋃
λ{Γ−λ } and Γ+ = ⋃

λ{Γ+
λ }. If the ordering relation ≤ is total,

two connected components in the lower or upper set are either disjoint or nested. The

inclusion relationship between connected components of Γ− and Γ+ yields the structure

of Min-tree and Max-tree respectively. The leaves of Min (resp. Max)-trees corresponds to

local image minima (resp. maxima). The root node of the tree is the whole image domain.

In implementations, the node representing the connected component at level λ only

store pixels that have level λ. We refer these pixels as proper pixels. The set of pixels of the

connected component represented by n is given by the whole subtree rooted at n. Images

could always be reconstructed from the Min- and Max- trees [17]: u(x) = sup{λ ∈ F |x ∈
Γ+
λ } = inf{λ ∈ F |x ∈ Γ−λ }. An image reconstructed from a pruned Min (Max)-tree will

have their dark (light) regions enlarged.

Various algorithms have been proposed to compute efficiently the Max-tree and Min-

tree. They are classified in [15] into three classes: the flooding algorithms, the immersion

algorithms, and the merge-based algorithms. The first one is based on the flooding pro-

cedure [82, 71, 111] which is a top-down construction. It starts with pixels at the root

(pixels with the maximum value in case of Min-tree and the minimum value in case of

Max-tree), then a depth-first propagation is performed to build the final tree. The second

20

1.3. Trees Based on the Threshold Decomposition

approach [64] based on the Tarjan’s union-find algorithm [100]. It consists of two steps.

First, N image pixels are sorted according to their intensity value and then form N dis-

joint singleton sets. In the second step, in reverse order, those singletons are merged to

form a tree. A complexity comparison of these two approaches is given in [7]. Finally, the

merge-based algorithm [73, 61] is an adaptation of the first two classes for parallelism. It

starts by dividing the image into blocks. Then Min/Max-trees for each block is computed

by another algorithm and then merged to form a single tree for the whole image.

1.3.2 Tree of Shapes

The Min- and Max-tree represent the bright and dark components on image respectively.

Representing both types of objects at the same time by handling both trees leads to re-

dundant and difficulty in ensuring consistency. Several authors proposed to consider the

inclusion of level lines (the topological boundaries of the upper and lower level sets). This

representation of images is called the Tree of Shapes (ToS) [59], which is also known

as the topographic map [59], monotonic tree [97] or level line tree [96]. The ToS could

represent both the bright and dark structure simultaneously since it makes no assumption

about the object contrast.

The Tree of Shapes is based on the concept of shapes [59]. A shape is a connected

component of the upper or lower level sets with the holes filled. With CC, the operator

that takes a set and gives its set of connected components, and the cavity-fill-in operator

Sat mentioned in Section 1.1.1, the set of shapes of an image u : X → F is defined as

S(u) = ⋃
λ∈F { Sat(Γ); Γ ∈ CC([u < λ]) ∪ CC([u ≥ λ]) }. These shapes are proven

to be either nested or disjoint [59], thus S(u) could be organized into a tree. The ToS

is self-dual which means that S(u) = S(ū). It is because the upper and lower sets are

only swapped in the dual image ū thus they yield the same ToS. Although being seen as

a combination of the Min- and Max-tree, the hole-filled operation may create components

that do not belong to both tree.

Similar to the Min- and Max-tree, in implementation, nodes on the ToS only store

their proper pixels. An image could be reconstructed from the Tree of Shapes by a direct

or indirect reconstruction [18]. The direct reconstruction recovers the value at x by getting

the level of the smallest shape containing x. The indirect reconstruction deduces the upper

or lower level sets and then reconstructs the image in the same way as with the Min- and

Max-tree.

The early approaches to construct the ToS include the fast level line transform and

its improved version, fast level set transform by Monasse et al. [59]. They take a region

growing approach to build both the Max- and Min- tree and then compile them. A top-

down approach was proposed by Song et al. [96] which find the level lines directly instead

of level set components. Both this approach have the worst-case time complexity of O(N2)
and cannot easily be extended to multidimensional images. Géraud et al. [29] overcome

both these drawbacks. Their approach is based on the immersion algorithm to compute

21

Chapter 1 – Background

D

E

B
A

C

F

O

(a) A simple image. (b) Its 3D representation.

[u ≤] [u ≤] [u ≤] [u ≤]
(c) Lower level set.

[u ≥] [u ≥] [u ≥] [u ≥]
(d) Upper-level set.

(e) Inclusion relation of lower level sets. (f) Inclusion relation of upper level sets.

(g) The Min-tree. (h) The Max-tree.

A

O

F

B C

D E

(i) The Tree of Shapes.

Figure 1.7 – An image and its Min-,Max-trees and ToS.

22

1.3. Trees Based on the Threshold Decomposition

Max-tree, with the sorting step replaced so that images pixels are placed in a top-down

browsing order of the ToS. To enable that, the image is represented as a set-valued map

on a Kahlimsky grid to describe the inter-pixel space. For a low quantized image, this

algorithm runs in O(kD).

1.3.3 Tree of Shapes for multivariate image

The Tree of Shapes requires the image value space to be totally ordered. It is trivial for

a scalar image, but in case of multivariant images, e.g., RGB images, a total order that

fits the rule of color perception is not apparent, hence making the extension from gray-

scale to multivariate image challenging. In practice, there are two approaches to handle

multivariate image: marginal and vectorial. The vectorial approaches define an ordering

on the vectorial value space while the marginal ones process each scalar channel of the

image independently. A comparative review of these aspects could be found in [2].

We are interested in an extension of the ToS to color images by Carlinet and Géreaud

[16] which feature marginally the same properties of the gray-level ToS. Instead of impos-

ing an arbitrary ordering to the value space, they only rely on the inclusion relationship

between marginally computed shapes. Carlinet’s Multivariate Tree of Shapes (MToS) com-

putation is summarized in Figure 1.8(a). It could be divided into two main step:

• Computation of the Graph of Shapes through merging marginal ToSs : The input

image I is decomposed in individual channels I1, I2, . . . , In, which could be treated

as scalar image for the computation of their marginal ToS T1, T2, . . . , Tn. The Graph

of Shapes of I the cover graph of the poset (G,⊂), with G obtained from the union

of marginal ToS G = ∪Ti. Because regions of two different tree are not guaranteed

to have the nested or disjoint properties, the Graph of Shapes no longer has the tree

form.

• Deducing an MToS from the GoS: In this step, some elements of G are merged, and

then their holes are filled so that the final set forms a valid ToS. First, we weight each

element of G by a decreasing shape attribute ρ i.e ∀x, y ∈ G, x ⊂ y ⇒ ρ(x) > ρ(y).
This attribute was chosen to be the depth, i.e., the longest path to the node represent

the whole image domain. Then we perform the merging process. If two elements of

G have the same attribute and intersect but are not nested, they will be replace with

their holes filled union: ∀x, y ∈ G, x ∩ y 6∈ {∅, x, y} ⇒ G = G − {x, y} ∪ {sat(x ∪ y)}.
Because of this merging strategy, the MToS may contain shapes that do not exist in

any of the marginal trees. The cover graph of the final set has been proved to be a

tree. The authors implement this by three small step:

– Computation of the decreasing shape attribute ρ. The authors choose the

depth amongs three proposed attributes because it is the fastest to compute.

– Create a ρ map from G for every point of I. The deep map is defined by

23

Chapter 1 – Background

ω(x ∈ DI) = max
X∈G,x∈X

ρ(X), in other word, each pixel is map to maximum

depth of shapes that contains that pixel.

– Obtain MToS by the hole filled max-tree of the depth map ω:MToS = {Sat(CC([ω ≥
h]))|h ∈ (N)}. The hole filling Sat operator ensures that components are valide

shapes. The associated value for each shapes on MToS is chosen to be the

average vector value from the original image.

Although the original image could be obtained from the GoS, by merging (and hole

filling) element of G, the MToS lost information. Therefore the MToS is not an equivalent

representation of the image. However, the MToS is still interesting enough to be considered

since the merging process is done “in the most sensible way as possible” and the authors

have demonstrated its usefulness in various application [16].

24

1.4. Connected Operators

ToS T1

ToS T2

ToS T3

GoS G

0

1

2

3

2

1 1

2

3

2

ρ computation
on G

49

96

50

39

52

18

88

52

60

ω
reconstruction

T (u) = Tω

Hole-filled

maxtree of ω

Graph construction Tree deduction

(a) Computation steps of MToS.

A
B

C D

E F

1
2

3 2

4 3

Ω
0

A
1

B
2

C
3

Ω
0

D
1

E
2

F
2

T1 T2 Ω
0

A
1

B
2

C
3

E
4

D
2

F
3

G

Ω

A

B ∪D

C

E

F

Tω

ω
reconstruction

Hole-filled

maxtree of ω

GoS G

ρ computation

on G
2-chanels input

marginal

ToSs

(b) A simple example of MToS.

(c) Input. (d) Some meaningfull level lines from the MToS

Figure 1.8 – Illustration of Carlinet’sMToS. 1.8(a) shows the 5-steps of MToS construc-
tion. (1) Marginal ToS computation, (2) Merges ToSs to create GoS, (3) Computation
of a decreasing shape attribute, (4) yields an attribute map ω, (5) obtain the final tree.
1.8(b) shows the computation process with a simple 2 chanel image.1.8(d) show some
meaningful level lines extract from a MToS computed on 1.8(c).

1.4 Connected Operators

In this section, we will review a class of morphological operators called connected opera-

tors and its popular implementation based on tree filtering. The connected operators [39,

83, 82, 84], also called attribute filters [9] or connected filters [41], is a class of mor-

phological operators based on attributes rather than on structuring elements. The most

interesting about connected operators is that they can remove boundaries but will not add

25

Chapter 1 – Background

new nor shift existing ones.

1.4.1 General definition

In general, the connected operators work with a set of connected components (C) in-

stead of individual pixels as in the case of classical morphological operators. They act by

preserving or by removing some element in (C) [115].

These operators are first defined for binary image X where the set of connected com-

ponents can be divided into two classes: objects and background. An operator Ψ working

in X is said to be connected if the set of different X \ Ψ(X) is exclusively composed of

connected components of X or its complement XC [39]. This implies that Ψ preserve or

remove connected components of foreground and background of X. The class of morpho-

logical filters called "filter by reconstruction", e.g., opening by reconstruction, is an early

example of binary connected operators.

To extend this notion for grayscale image Salembier and Serra [83] replies on the

elemental connected components: flat zones. An operator Ψ is connected if the partition

of flat zone of the input image X is finer than the partition of flat zone of the output:

FZ(X) ≤ FZ(Ψ(X)). By this definition, regions of the output partition are a union of

regions of the input partition. As a result, connected operators cannot create any new

boundary and keep the location and shape of preserved ones. Because of this, connected

operators have good contour preservation properties.

The connected operators are usually considered as a filtering tool because they trans-

form an input grayscale image into a filtered grayscale image. Moreover, because the

conception of grayscale connected operators relies on the notion of partition, they often

claimed to bridge the gap between classical filtering and segmentation [41, 27]. Some

theoretical notions about connected operators have been extended to pure segmentation

applications [85]. This approach is known as connective segmentation.

One of the successful implementations of these connected operators is based on the

reconstruction process, which is reviewed in [84]. Another popular implementation of

these operators replies on transforming an image into a hierarchical representation, e.g.,

Min/Max-tree, α-tree, BPT [82, 81]. This efficient implementation is the main focus of the

following section.

1.4.2 Tree-based implementation of connected operators

In this implementation, the image is first transformed into a tree-based image representa-

tion such as those reviewed in Section 1.2 and 1.3. These trees are equivalent representa-

tions in the sense that the original image could be reconstructed from its associated tree.

The choice of a tree depends on the input image and the application so that interesting

connected components present in that tree. The tree is then filtered by an attribute (cri-

terion) that tell which node to be preserved and which one to be removed. The filtering

26

1.4. Connected Operators

image is then reconstructed from the filtered tree. The schematic overview is depicted in

Figure 1.10

1.4.2.1 Increasing and non-increasing attributes

After the tree construction, an attribute function A is designed to weight some interesting

feature of nodes on the tree. Such attribute could be as simple as the gray level at which

the node first appears or its distance from the leaves. On the other hand, A could also

be a complicated function that measure “shape attributes” which do not depend on the

value of the points inside the connected components such as circularity, compactness or

elongation [110] or other measures based on the whole connected components such as

average gray levels.

The attribute function are distinguished based on whether they are increasing or not

because it affects the tree filtering strategy. On a hierarchical represenation (T) of image

f , an attribute function A is said to be increasing if ∀n ∈ (T),A(n) ≤ A(par(n)). Some

increasing commonly use attributes include:

• Area: number of point in n.

• Height: Max
p∈n

(f(p))−Min
p∈n

(f(p)).

• Diameter of maximum inscribed circle and minimum covering circle of n [9].

However, many interesting attributes are not increasing, especially those “shapes at-

tributes”. Some examples are given as follows:

• Perimeter P (n).

• Compactness [60] (4πArea(n)
P 2(n)) .

• Elongation [110]: ratio of major to minor axes of the minimum covering ellipse of

n.

• Maximum geodesic distance [60]

1.4.2.2 Tree filtering and reconstruction

The filtering process will remove some nodes on the tree based on A. Depend on the

filtered nodes, tree filtering could be divided into two classes: tree pruning and no-pruning

strategies. Tree pruning consists of removing the whole sub-trees rooted in some nodes.

If a node is filtered, then all of its descendants are also filtered. The idea is to eliminate

image components represented by leaves and branches (e.g., image extrema in case of ToS

or union of the most similar flat zones in α−tree or BPT). In contrast, with a non-pruning

strategy, descendants of a filtered node may be preserved. When a node is removed, its

contents (e.g., its points, children) are merged with its nearest preserved ancestor.

27

Chapter 1 – Background

When the attribute functionA is increasing, tree pruning strategies is straight-forward.

If a node does not pass the threshold, neither do its descendant. In case the attribute A
is not increasing, several tree filtering strategies have been proposed which include three

tree pruning strategies: Min, Max, Viterbi [82]; and a non-pruning one: attribute thresh-

olding [82, 112]. Given an attribute threshold t, these filtering strategies are described

as:

• Min: A node is removed if A(n) < t or if there exists one of its ancestors anc(n) that

A (anc(n)) < t.

• Max: A node is removed if A(n) < t and for all of its descendants des(n) that

A (des(n)) < t holds.

• Viterbi: The filtering is determined by a cost optimization process using Viterbi al-

gorithm [105]. From a leaf to the root, each transition of decision is assigned a cost.

The minimal path cost for each leaf is then chosen. This strategy is a tree pruning

one because the cost of keeping a node while removing its parent is infinity.

• Attribute thresholding: A node is removed if and only if it does not pass the thresh-

old, other nodes are preserved. This approach is simple and straightforward since the

decision is made locally. Based on the image reconstruction rule, two tree filtering

rules are defined: direct and subtractive.

– Direct rule [82]: when a node’s contents merged with its ancestor, all of its

descendants retain their value. This rule is straightforward. However, the local

contrasts of reserved nodes will change. This may cause problems, for example

filtering a Tree of Shapes using direct rule may lead to a reconstructed image

that does not correspond to the tree from which it is reconstructed. This could

be resolved by using the subtractive rule.

– Subtractive rule [9, 112, 101] aims to preserve the contrast between the re-

maining components. In this approach, the value difference between the re-

moved node and its parent is passed to its descendants.

Some examples of filtering strategy are given in Figure 1.9

The image reconstruction from the filtered tree depends on the type of tree that we

are working with. The filtered image is guaranteed to be coarser than the input image

because the tree filtering process only merged existing nodes.

28

1.4. Connected Operators

D
E

B
A

C

F

O

K

K

O

C, D, E

FA

B
5

3 7

6

10

2

(a) Input

D
E

B
A

C

F

O

K

O

F, K

C, D, E, A, B

(b) Min

O

A

B

F, K

C, D, E

D
E

B
A

C
O

F
K

(c) Max

O

B

O

C, D, E, A

F, K

D
E

B
A

C

F

O

K

(d) Direct

O

B

C, D, E, A

F, K

D
E

B
A

C

F

O

K

(e) Subtractive

Figure 1.9 – Tree filtering strategies. First row: input and filtered Min-trees, Second row:
Input image and reconstructed images from the corresponding tree. Third row: image
function at the red line on the second row. The first column is the input image with its
Min-tree. Nodes on the Min-tree are weighted with the red value shown on the corner of
the node. It is obvious that our attribute is non-increasing. We set the threshold t = 4 so
that only nodes ’A’ and ’K’ does not pass. Min and Max are pruning strategy since they
remove the whole subtree. On the other hand, direct and subtractive only remove nodes
that do not satisfy the threshold. We could observe in the reconstruct images the direct
strategy preserves the local value of preserved nodes but alter the local contrast while the
subtractive strategy does the opposite.

1.4.3 Tree-based shape-spaces connected filtering

In [115], Yongchao Xu et al. propose another approach on connected filtering which they

called the tree-based shape-spaces connected filtering. A schematic overview is presented

in 1.10. Roughly speaking, the filtering step of the classic tree-based connected operator

implementation is replaced by a pruning process on the second tree, which is constructed

from the first one. This approach is more flexible and brings new possibilities than filtering

strategy in Section 1.4.2.2.

1.4.3.1 First tree construction

Similar to the tree-based connected operator implementation above, a tree-based image

representation of the image will be obtained. The tree choice depends on the application

so that objects of interested appears as nodes of that tree. We will refer to this tree as

the first tree T . An attribute A weighted each node of T . In the earlier section, T is then

filtered by thresholding A. However, Yongchao Xu argues that more than one object of

interest may appear on one branch of the tree so a pruning strategy could not adapt. On

the other hand, attribute thresholding strategies only takes into account local parameter

of a single node but ignore the tree structure. Moreover, a single threshold may not be

enough to retrieve all relevant objects.

29

Chapter 1 – Background

Image
f

Image
f'

Tree
T

Tree
T '

Tree
construction

Image
restitution

Tree
filtering

Tree
TT '

Tree
TT '

Tree
construction

Tree
restitution

Tree
prunning

S
p

a
c
e
 o

f s
h

a
p

e
s

x

Figure 1.10 – Schematic overview of tree-based connected operators implementation [82,
112] (black path) compare to tree-based shape-spaces connected operators [115] (black
and red path).

That thresholding problem on T , in a way, is the same as the problem when threshold-

ing image that leads us to tree-based image representation in the first place. Yongchao Xu’s

solution is to construct a second tree from T so that we could analyze it in a structured

way.

1.4.3.2 Second tree construction

As we explained in Section 1.1.2.3, T is usually presented as a graph 1 T (V,E) with the set

of nodes V is the set of regions (shape) and the set of edges E represented the parenthood

relationship. Just like how the first tree T is constructed from the graph representing the

input image, the second tree TT is built from T based on the attribute A. TT is chosen

to be either a Min-tree or a Max-tree. The choice of TT is based on the nature of A. For

example, if we would like to remove non-desired shape and A reflex how likely a node is

what we are looking for, a Min-tree of T would be ideal since all the local minimum will

become leaves of TT . These local minimum (on T) are more likely to be unwanted shapes

in comparison to their neighbors.

1.4.3.3 Second tree filtering

A second attribute AA is introduced to characterize nodes on TT . That second attribute

is chosen to be increasing, so the second tree filtering becomes a simple tree pruning.

AA could the A range of each node so that could be computed incrementally during TT

construction or based on the part of the image domain that each node represents.

Depend on the application, the tree filtering would be a pruning strategy or a branch

reserving one. The pruning strategy removes subtrees rooted at nodes that do not pass the

threshold. The branch preserving strategy, in contrast, remove nodes that are closer to the

root node of TT and preserve small branch near leaves.

1. That graph is acyclic and connected, hence it is a tree

30

1.5. Text Detection on Natural Image

1.4.3.4 Tree and image restitution

The simplified tree is obtained by removing nodes corresponding to filtered nodes on TT

and update the parenthood. The filtered image could be then deduced from the simplified

tree. The image-restitution could be similar to direct rule to preserve the local value of

remaining nodes or similar to the subtractive rule to preserve the local contrast.

1.5 Text Detection on Natural Image

This section presents the scene text understanding problem which is the main applica-

tion subject of our work. In this section, we provide information about the problems, its

applications, and challenges.

1.5.1 Text in images and challenges

In document image analysis, the extracted information could be divided into two cate-

gories: textual information (which are text elements) and graphics (symbols, diagram,

logo) [72]. Text in images can be later divided into two classes: born-digital text and nat-

ural scene text [45]. Born-digital text (Figure 1.11(a)) includes text in digital images or

graphically added into an image, e.g., on overlay captions, subtitles, and notation in videos

and images on webs and email. Scene text refers to those that are captured in their natural

environment (such as signs, advertising, clothing, vehicle license plates). They could be

in focus (Figure 1.11(b)) or incidentally captured (Figure 1.11(c)). The later would be a

difficult task, even for the human brain.

Text in images and video contains valuable information. They can provide semantic

information and useful features for many content-based images and video analysis tasks.

Examples are content-based image search and multimedia retrieval, visual input and ac-

cess, and industrial automation.

• Content-based image search and multimedia retrieval:

(a) (b) (c)

Figure 1.11 – Example of different text in image problems. 1.11(a) Born-digital text,
1.11(b) Focused scene text, 1.11(c) Incidental scene text.

31

Chapter 1 – Background

Texts in web images and videos are usually relevant to its content. Graphically added

captions and captured scene texts usually give information about the situation of

the event such as location, people. Text recognition and keyword extraction in these

resources improve multimedia retrieval.

• Visual input and access:

With the spread of imaging devices and the improvement of digital processors, a mo-

bile visual input application can be realized. A mobile device can be used to digitize

documents or automatically input name cards, bank cards, whiteboards [50]. As the

input becomes automatic, user experience and efficiency are improved.

Since signs, banners, advertises and product labels carry relevant information, auto-

matic text recognition, and translation can help people overcome language barriers

or support visually impaired people in daily life.

• Industrial automation:

Text recognition in images of packages, letters, containers, houses, signs, and maps is

beneficial for industrial automation. For example, a mail sorting system will benefit

addresses recognition. Another example, the automatic identification of container

numbers will improve logistics efficiency [33].

Although many approaches have been proposed, and many advances have been made

on text detection in digital born images, text detection in scene images is an open and

challenging problem which has been receiving much attention. This is a difficult task

due to high variations of scene texts such as illumination, contrast, blur, distortion, and

variation of text content [50]. They are summarized in Table 1.1 .

Scene complexity: Man-made objects in real life could have similar shapes and pre-

sentations to texts. Background complexity also degrades the ability to discriminate text

from non-text.

Uneven illumination: Images captured in the natural environment are not always in

good illumination conditions. Text elements may subject to shadow, brightness or reflec-

Table 1.1 – Scene text detection chalenges

Category Challenges
Environment Uneven illumination

Scene complexity
Acquisition Optical aberration

Resolution
Noise
Compression

Text content Variation of orientation and curved text
Variation of fonts
Multilingual

32

1.5. Text Detection on Natural Image

tion which leads to color distortions, degradation of visual feature. This result makes the

segmentation and recognition tasks difficult.

Optical aberration: Photos are not taken with ideal lenses so optical aberrations

might appear. Perspective distortion occurs when the sensor plane and the text plane are

not parallel. Other distortions appear such as barrel, pincushion and mustache distortion

due to the quality of lenses. They can deform text sharp. Defocus occurs because the focus

cannot always be maintained in normal working conditions, e.g., visual aid system for the

visually impaired. At flexible working conditions and focus-free cameras, defocusing and

blurring of text happen. A moving object or a moving camera can also create motion blur,

which is usually present in the video. Chromatic and coma aberration introduce false col-

ors and reduce edge contrast. These optical aberrations make characters lost their sharp

and their edges response. Since sharp edges response is required for character segmenta-

tion and recognition, blurring effect causes serious problem to the system [50].

Resolution: Images that are taken by cameras usually have low resolution. This prob-

lem makes detection and segmentation difficult. While most OCR engines are tuned to the

resolution between 150 and 400 dpi, text in a video frame may be at or below 50 dpi [50].

Noise: Noises degrade the quality of images. It is caused by shutter speed, sensor size,

and temperature.

Compression: Most images captured by cameras are lossy compressed. The compres-

sion process is optimized for general uses instead of document analysis, which means it

does not always preserve the topology and sharpness of contents.

Variation of fonts: Italic and script fonts may have overlap characters, which make it

is difficult to recognize and segment them [51]. Variation of fonts introduces large within-

class-variations, which may challenge approaches which use learning machine.

Multilingual: Languages that use the Latin alphabet have around tens of characters,

but other languages such as Chinese, Japanese and Korean have thousands of characters.

Other languages have characters shape connected or changed such as Arabic and Hindu.

OCR in scanned multilingual documents remains a research problem [93] and it is much

more difficult in case of scene images.

1.5.2 Text detection and recognition system

Scene text understanding is to process and extract textual information from natural (i.e.,

real-world) images into a digital format. This problem is usually divided into two main

stage: text detection and text recognition. They could be later divided into sub-problems:

localization, validation, extraction, rectification and optical characters recognition (OCR).

They are processed individually [113] [52] [21] [120]) or jointly [68]. In these prob-

lems, the text detection modules are the most important part. It has been shown to affect

the performance of text in image retrieval algorithms critically [21]. Text detection in

scene images poses significant challenges to state-of-the-art methods. The research com-

munity has proposed numerous dataset to push development in this field, see [117] for

33

Chapter 1 – Background

extra
ction extraction

"extraction"

Text detection Text recognition

Input Localization Validation Extraction Rectification OCR
Find text candidate's

 regions
Remove false positives Separate text from

background
Correct text for OCR Convert detected CCs

into digital format

Figure 1.12 – Stages of an end-to-end scene text understanding system.

a summary of commonly used datasets. Notably the ICDAR RRC datasets, which include

a database of Focused Scene Text and Incidental Scene Text [44], as well as the COCO-Text
dataset, which is the largest scene text dataset currently available [103].

Text localization aims at finding the location of text components. These methods as-

sume that text regions can be regarded as a kind of uniform patterns. In consequence,

there are some features that are invariant over this patterns such as color, edges, strokes

width and texture. Related works can be divided into three catalogs: texture-based, con-

nected components-based and hybrids methods.

Texture-based methods [113, 48, 42, 19] and deep learning based methods [108, 89,

80, 34] use a sliding window to look for all possible texts in the image. It is based on

hypotheses that text regions in images have distinct textural properties from non-text re-

gions (gradient distribution, texture, structure, or learned features) that can be identified

with a classifier such as Adaboost [48], Random Ferns [42], linear SVM [19] or neural

network [108]. These approaches may be expensive in computation when uses complex

classification methods or a large number of windows with different scales need to be an-

alyzed. These approaches are also limited by the training database, and it is sensitive to

text alignment orientation [23].

The connected-component-based methods [21, 120, 69, 49] group pixels that have

similar properties such as color, luminance or geometrical arrangement of edges, into

connected regions. These methods separate the input images into small connected com-

ponents. The advantage of this approach is the detection of texts regardless of image

properties such as scales, orientation, and font type. It also provides a segmentation that

can be useful in the OCR step. On the other hand, it might produce a high amount of

false positives that usually removed in a validation step. Detected characters are usually

grouped together to form higher level detection (words, lines).

The hybrid methods combine both approaches. For example, Pan et al. in [75] uses

HOG features and a Waldboost cascade classifier to generate a text confidence map, based

on which connected-components extraction is done by a local binarization. Liu et al. [52]

is also a hybrid approach since it uses an edge detector on three channels to separate

connected components which will be verified using Harr wavelet transform as texture

characterization.

Text validation eliminates the false positives introduced by the text localization steps.

34

1.5. Text Detection on Natural Image

They could be divided into knowledge-based methods and feature discrimination methods

[117]. The former presumes a priori knowledge of text characters (e.g., size, color or

projection profile). The latter makes no assumption on the characteristics of text but relies

on “learned” features.

Text extraction, also referred to as segmentation, separates text from non-text at the

pixel level. This extraction could also be at character, word or line level. Segmentation is

one of the most challenging problems [117].

Text Rectification corrects detected text regions for OCRs. Current OCRs are tuned for

horizontal texts. On the other hand, texts in natural images often appear inclined because

they are subject to perspective deformation. We could also face curved or vertical texts

due to design.

Text recognition converts text candidates into machine-encoded texts. The characters

recognition classifies each CC while at a higher level, word recognition usually integrates

a language dictionary to predict the detection.

These steps are summarized in Figure 1.12. However, an end-to-end text detection and

recognition system may not consist of all these steps or in that orders. For example, a con-

nected components-based method does not require a segmentation step. The validation

step may be performed multiple times, during the localization, e.g., by eliminating some

CCs and OCR stage. Some methods only focus on the detection stage and are referred to

as text detection algorithms.

1.5.3 Text features

Different features were used in text localization including color in different color spaces

[119] [56], edges and gradient [77], [113]. New features such as stroke width [98] [21]

, corner [114], extremal region [69] [120] or character appearance [118] have been re-

cently studied.

Color: A readable text must have a consistent and distinguishable color which con-

trasts with its background [50]. Color is widely used as the feature to localize text [37]

[46] [49] although it seems to be sensitive to uneven lighting, multi-color and compli-

cate textured texts. Nikolaou etal. [70] simplifies the color images by color reduction, and

then clusters and groups connected components into candidates. Some authors use differ-

ent color spaces to extract and analyze the color feature, such as Hue-Saturation-Intensity

(HSI) [26], HSI plus intensity gradient [68] or Hue-Lightness-Saturation [43]

Edge and gradient approach: They assume that texts have strong edges against their

background. Therefore edge detector and gradient map can be used to detect character

candidate. Edge detectors and gradient [78] [77] [91] was used widely in the connected

component. Sometimes they are used as a feature in sliding window-based approaches

[113] [32].

Stroke width: From the assumption that text stroke is consistent within a character,

Epshtein et al. proposed the stroke width transform (SWT) [21]. The SWT returns a map

35

Chapter 1 – Background

which shows for each pixel the stroke width of the stroke to which it most likely belongs.

Recently, Mosleh et al. [62] showed that SWT could be improved by introducing a bandlet-

based edge detector which enhances text edges and dismisses noisy and foliage edges.

Corner: With assumption that dense presences of corner points in text region, [114]

[35] used Harris corners detector as the feature. Text candidate will then be detected using

connected components-based approach [35] or analysis with a decision tree classifier.

Extremals region has been widely explored in [68] [120] [90]. Using the same as-

sumption that text components usually have significant color contrast with backgrounds

and tend to form homogenous color regions, MSER algorithms adaptively detects stable

color region to localize them as text candidate. The effectiveness of using MSERs as char-

acter candidates is the main advantage of this approach.

36

Chapter 2

Text Localization and Segmentation
With Tree of Shapes of Laplacian

Sign

2.1 Introduction

With the dramatic increase of images and video acquired with mobile devices, content-

based analysis techniques have received a great deal of attention over the last few years;

this is, in particular, the case of text detection. In this chapter, we focus a simple version

of ToS that targets application of text localization and segmentation in natural images,

that is, finding candidate components for text characters; see Fig. 2.1 for an illustration.

To accomplish this task, we propose a hierarchical image representation based on the

morphological Laplace operator, also called morphological Laplacian, with an application

that segments text characters, and groups them into text boxes/lines thanks to two kinds of

spatial relations: adjacency and inclusion. The contributions of this work are the following:

• a hierarchical (i.e., tree-based) representation of the image contents, where adja-

cency between components is related to inclusion;

• a character segmentation method which is a good trade-off between efficiency (lin-

ear time complexity) and quality (with a competitive F-score);

• an efficient grouping of characters into text boxes, taking full advantage of the tree

structure;

• an illustration on another application (document binarization) of the capabilities of

the proposed tree-based representation.

In the first part of this chapter, we focus on two points: how we can rely on some

discrete topology tools to get a sound definition of a hierarchical decomposition of an image

into regions, and how we take benefit from some properties to get an efficient algorithm
to compute such a representation. In the second part, we address the application of this

representation in text localization and segmentation. This method is interesting for several

reasons:

1. To select candidate regions for characters, we rely on the morphological Laplace

operator. We can observe that this operator is relatively well robust to poor contrast and

37

Chapter 2 – Text Localization and Segmentation With Tree of Shapes of Laplacian Sign

uneven illumination in Section 2.2.1.

2. Based on the 0-crossings of the morphological Laplace operator, we compute a hier-

archical representation of the image contents, so that regions form an inclusion tree. Such

a structure is attractive because we have a strong simplification of the image contents,

and because dealing with a simple tree structure allows for some powerful decision taking

when grouping regions/characters into text boxes. Although using the 0-crossings of the

morphological Laplace operator as a contour detector is not new [106], getting such a

hierarchical representation from it is a novelty.

3. This text segmentation method is suitable for real-time implementation on mobile

devices. Indeed computing the hierarchical representation eventually translates to a sim-

ple labeling algorithm that gives both an inclusion tree and a label image; in addition,

identifying and grouping text components are achieved by an easy tree-based processing.

4. As compared with many methods of the literature, the method that we propose in

this chapter features many properties: it is invariant to contrast inversion (so we also ex-

tract reverse-video text without any special processing); it is invariant to contrast change;

it is invariant to scale and rotation; and it handles a large variety of scripts (Latin, He-

brew, Chinese, etc.). Although some apparently irrelevant components were filtered out,

this study does not cover the whole text detection pipeline. However, according to the

quantitative results of the proposed text candidate, our method outperforms some widely

used text component extraction methods.

In Section. 2.2 we recall the morphological Laplacian and how that leads to the inclu-

sion tree of 0-crossings. Then, an effective algorithm to compute the hierarchical structure

is presented in Section. 2.3. In Section. 2.4 we detail on how we rely on the ToSoL to re-

group components. In Section. 2.5 we proceed to experiments and show that we compete

with classical component-based text segmentation methods. Last we conclude and give

perspectives in Sec. 2.6.

Figure 2.1 – A hierarchical image decomposition (center) leading to text detection (right).

38

2.2. A Tree of Shapes of Laplacian Sign (ToSoL)

2.2 A Tree of Shapes of Laplacian Sign (ToSoL)

2.2.1 Morphological Laplace operator

A seminal method to detect objects in an image is looking for their boundary with the

background and other objects using contour detection. That boundary could be as simple

as the 0-crossings of a discrete Laplace operator: given a gray-level image u, the contours

of interest are given by ∆u = uxx+uyy = 0. This method is interesting for several reasons:

1. it is a very simple approach; 2. it provides closed contours; 3. labeling the components

of the image having the same sign, resp. positive and negative; gives a segmentation; 4. it

is self-dual, i.e., it processes dark objects and bright ones the same way.

The simplest discretization of this linear operator relies on a cross-shaped convolution

kernel. Yet this elementary operator is very sensitive to noise, so many 0-crossings arise

as it can be seen in Figure 2.2(b). To get rid of this problem, one can rely on a larger

kernel, e.g., by considering the approximate given by the Laplacian of Gaussian (LoG)

operator. Unfortunately, its smoothing effect alters the location of contours, as illustrated

by Figure 2.2(c).

The morphological Laplace operator has been defined in [107] by ∆N = (δN − id) −
(id− εN), relying on the elementary dilation (δ) and erosion (ε) morphological operators.

A natural extension of the elementary operator uses a structuring element B to replace the

neighborhood N ; it is depicted in Figure 2.2(d) with B being a centered square (denoted

by �) of size 17 × 17. Although it has the same “simplification strength” as the linear

LoG version, one can see when comparing the resulting 0-crossings (LoG in Figure 2.2(c)

vs. morphological in Figure 2.2(e)) that the morphological non-linear version features a

much higher fidelity to actual object contours than the linear version. Furthermore, when

increasing the size of the structuring element, 0-crossing contours keep a strong fidelity to

data, as illustrated in Figure 2.2(f) with B now being a 51× 51 square.

One can also observe that the salient object contours are curiously very stable—they

are not altered—when the size of the structuring element (the “morphological kernel”)

increases. From Figure 2.2(e) to Figure 2.2(f), the contours of the “Yes” word remain the

same, whereas spurious non-interesting contours disappear. Furthermore, the size of the

structuring element B, a 51×51 square, is much larger than the character thickness (note

that the input image u has 130×100 pixels). It means that obtaining salient contours,

thanks to the morphological Laplace operator hardly depends on the size of the parameter

B. Despite this great advantage, the morphological Laplacian has been almost never used

in the literature [95, 66].

Contours obtained by the 0-crossings also shows high resistance to uneven illumina-

tion. The image depicted in Fig. 2.3(a) has been created by the authors of [5] to make clas-

sical binarization methods fail, due to the presence of uneven illumination. On Fig. 2.3(c),

one can observe that the object boundaries belong to the 0-crossings of the morphological

Laplace operator.

39

Chapter 2 – Text Localization and Segmentation With Tree of Shapes of Laplacian Sign

(a) Input u. (b) ∆4(u) = 0. (c) LoG17(u) = 0.

(d) ∆�17 (u). (e) ∆�17 (u) = 0. (f) ∆�51 (u) = 0.

Figure 2.2 – Zero-crossing contours of different Laplace operators: (b) and (c) come from
classical linear operators; (e) and (f) come from the morphological operators. On (d), the
scalar morphological Laplacian is depicted with positive and negative values tinted resp.
in green and red.

(a) Input. (b) Laplacian. (c) 0-crossings.

Figure 2.3 – Contour characterization by morphological operators; 2.3(b) is the morpho-
logical Laplacian ∆B = δB + εB − 2id; 2.3(c) depicts on ∆B = 0 the gradient values
∇B = δB−εB (inverted) showing that the contours of actual objects are effectively salient.

2.2.2 Relativity of the objects-background notion

The 0-crossings of morphological laplacian do highlight regions of interest in images. From

here, we could continue with the classic object detection scheme: filter these 0-crossings

to keep only wanted objects, the grouping process will ignore all other regions as they

are the background. However, as will be explained below, the objects-background notion

depends on and imply the context, treating all unwanted regions as a single background

40

2.2. A Tree of Shapes of Laplacian Sign (ToSoL)

(a) (b) (c)

Figure 2.4 – The notion of objects-background is highly contextual. On the other hand,
that notion brings more context to the image. In image 2.4(a), the word “hungry” could
be considered as objects or part of the background (if we focused in “[falling on my
knees]” parts). In contrast, that notion carries contextual information. In images 2.4(b)
and 2.4(c), words and numbers in different backgrounds are implied to be separated.

leads to a loss of information.

The objects-background notion in images sometimes gets fuzzy. Objects sometimes

become the background of other objects. This could be explained by the highly contextual

of the objects-background notion. To illustrate this statement, let’s look at an image taken

from ICDAR Robust Reading Competition. In the color image 2.4(a), if we focus on the

bigger word “hungry” then all the outer region including some lighter words will be the

background. Furthermore, we can choose the fainter sentence “[falling on my knees]”,

therefore the “hungry” regions should be treated as part of the background.

On the other hand, the objects-background notion often carries contextual informa-

tion. Objects on the same background usually have a closer connection. Numbers and

words in image 2.4(b) should be grouped and process based on their different background.

Or words on red advertise stands in image 2.4(c) should be grouped into threes groups

based on which banner they are on. That contextual information would be lost if we only

focused on the relevant objects.

We consider that the inclusion of the 0-crossings parallels the objects-background no-

tion. For that reason, we are interested in encoding the inclusion in a hierarchical struc-

ture: the Tree of Shapes of Laplacian sign (ToSoL).

2.2.3 A Tree of Shapes of Laplacian Sign

The hierarchical nature of the morphological laplacian makes it suitable to arranged into

a tree of shapes, which encodes the inclusion of the level sets, i.e., the connected compo-

nents whose border is a level-line. For a reason explained in an earlier section, we are only

interested in one type of level-line, the 0-crossing of Laplacian. We call this representation

the Tree of Shapes of the Laplacian sign image (ToSL), S(sign(∆wc
�

(u))), which encodes

only level-line related to 0-crossings. It contains nodes corresponding to positive, negative,

and null regions. It is depicted in Fig. 2.7(d).

Yet the 0-crossings, corresponding to nodes at level 0 (depicted in white), can be

“thick”, that is, they can contain pixels (2-faces) instead of being only defined by 1D

41

Chapter 2 – Text Localization and Segmentation With Tree of Shapes of Laplacian Sign

D

E

B
A

C

F

O A

O

F

B C

D E
> 2 2> 2

> 2

> 0

2

1

>4
>

>

>
(a) The tree of shapes of an image.

5 7 11

0 -3 9

-1 1 -1

5

0

-1

7

-3

1

11

9

-1

5

4

7

9

-1

-1

1

-1

4 4 4

4

4 4

-1

-1

(b) Level set contours as Jordan curves.

Figure 2.5 – Topological representations and some topological considerations.

application

input

Laplacian

gradient

well-composed
interpolation

inclusion tree + label image

((
HIERARCHICAL REPRESENTATION

1
2

3
4

5

6

+

1

2

3

4

5

6

Figure 2.6 – Overview of the proposed method to get a hierarchical image decomposition.

objects (set of 0-faces and 1-faces). In Fig. 2.7(c) for instance, we can see that some pixels

of the ’s’ contour belong to the 0-crossing region. Since we want to obtain a partition of

the image into “positive” and “negative” regions, we merge null regions with their parent

regions; that way, instead of the tree of shapes depicted in Fig. 2.7(d), we consider the

simplified one, depicted in Fig. 2.7(e). Eventually, the actual “0-crossings” we are looking

at are the boundaries of the shapes of this final tree, so they are effectively 1D objects. It is

illustrated in Fig. 2.5(b) : the null region is merged with the negative one, so we consider

the blue contour to be the 1D “0-crossing” separating regions having different signs.

To compute the hierarchical representation, we do not consider that we have a cubical

complex as the space structure: we just ignore that 0-faces and 1-faces exist. Though, from

a theoretical point of view, the contours / 0-crossings expressed in terms of 0-faces and

1-faces really are Jordan curves.

There exists effective algorithm to compute the ToS for scalar image [29] which would

be applicable to the Laplacian map. Because we only interested in the 0-crossings for

reasons explained earlier, therefore, the ToS computed from Laplacian map have to be

42

2.2. A Tree of Shapes of Laplacian Sign (ToSoL)

(a) u. (b) ∆wc
�

(u). (c) ∆wc
�

(u) = 0.

background

s pixels

e hole interior

Ypixels

e pixels

(d) S(sign(∆wc
�

(u))).

background

s pixels

e hole interior
Ypixels

e pixels

(e) Final simplified S, called
ToSL.

Figure 2.7 – Tree of shapes of Laplacian sign (ToSL): positive and negative regions are
respectively green and red nodes of the ToS, and null regions are white nodes.

simplified to keep only shapes corresponding to 0-crossings. This approach is computa-

tion heavy because we have to process unnecessary level-line. Consequently, we decide

to develop a new approach that is not only adapt to the construction of ToSoL but also

integrate part of the tree simplification step. The construction of ToSoL from the input

image is straightforward. The method is composed of several steps, depicted in Fig. 2.6,

and described and justified just below:

We start with a gray-level input image. If the primary data is a color image, we just take

the luminance value of its pixels (we lose color information, but it almost never negatively

affects text retrieval). We then compute its morphological dilation δ� and erosion ε� to

directly deduce two images. First, we obtain the morphological thick gradient ∇� = δ� −
ε�; it is used later to discard contours that are not enough contrasted. Second, we obtain

the morphological Laplace operator ∆� = δ� +ε�−2 id (where id is the identity function).

The components’ boundaries are expected to belong to the 0-crossing contours of this non-

linear operator (actually they are, and their localization is precise).

We virtually1 compute a particular interpolated image, ∆wc
�

, of the Laplacian image

∆� , having 4 times more pixels than the original. This resulting image is well-composed,

meaning that the boundaries of every component of any threshold set are Jordan curves.

As a consequence, the (boundaries of the) 0-crossings are simple closed curves: they can-

not have the shape of an ‘8’. In addition, they are disjoint, and this set of curves can be

organized in an inclusion tree.

Due to the fact that ∆wc
�

is well-composed, the regions delimited by the 0-crossings can

be labeled very efficiently (by the classical blob labeling algorithm), and their inclusion

1. We will see later that we actually do not interpolate the Laplacian image, but proceed as if there were
an interpolation. Practically, it means that we avoid the need of multiplying by 4 the number of pixels in the
process.

43

Chapter 2 – Text Localization and Segmentation With Tree of Shapes of Laplacian Sign

tree is built. In addition, many 0-crossings are discarded on the fly during the labeling

process, because they are not contrasted enough (based on ∇�), or because they do no

satisfy some geometrical criteria (e.g., when they are too small). The resulting “inclusion

tree + label image” is the hierarchical decomposition of the image contents into regions;

it is depicted on the bottom-right part of Fig. 2.6. We end up with two structures: the

inclusion tree, encoded by a parenthood relationship between labels and an image of

labels so that each pixel is assigned to a region. In addition, we could collect additional

information related to every region, that are computed during the labeling process: the

region area, its bounding box, etc.

2.3 Fast Computation of the Hierarchical Representation

2.3.1 A particular well-composed non-local interpolation

In the following, we do not need to consider the cubical complex, so we only deal with

pixels; they are, for instance, the valued 2-faces in Fig. 2.5(b) (right).

The hierarchical representation is computed from an interpolated image, ∆wc
� (u), which

is a very particular well-composed version of the Laplacian image ∆�(u). This particular

interpolation takes its origin from the work in [29], and is detailed in [8]. Briefly put, it

is a non-local interpolation driven by a propagation from the border of the image, which

browses the nodes of its tree of shapes from the root to the leaves. The interpolated pix-

els are assigned with the current gray-level value, which evolves “continuously” during

the process. This interpolation has two important features [28]: it is related to the tree

of shapes of the input image, so it actually follows the same scheme as a blob labeling

algorithm where a blob would be a level set, and its topological behavior is deterministic.

There are two main consequences: this particular interpolation makes sense in the

present context since we want to label regions that are in an inclusion relationship, and

we can optimize the computation of the hierarchical representation (the label image and

the inclusion tree) by actually emulating the interpolation.

An example on the image of Laplacian sign given in Fig. 2.8(a) is depicted in Fig. 2.8(b)2,

with the signs -1, 0, and 1 respectively depicted in red, gray, and green. We can observe in

Fig. 2.8(b) that we obtain the desired properties: the boundaries of the regions are Jordan

curves, and the regions are in an unambiguous spatial inclusion relationship. The inclusion

tree of the Laplacian sign image, called ToSL, is thus a hierarchical image decomposition.

44

2.3. Fast Computation of the Hierarchical Representation

(a) Sign of ∆�. (b) Interpolation. (c) Label image. (d) Parenthood.

(e) Different stages of the proposed algorithm based on interpolation.

(f) Different stages of the proposed fast algorithm without using interpolation.

Figure 2.8 – An example of the proposed labeling algorithm. Black pixels: contours of
components inside labeled ones. White pixels: pixels that are not yet labeled and are also
not marked as inside contours at the current stage of the labeling process.

2.3.2 Label the interpolated laplacian map to construct the ToSL

Thanks to the fact that ∆wc
� is well-composed, the regions delimited by the 0-crossings can

be labeled very efficiently (by the classical blob labeling algorithm), and their inclusion

tree is built. This resulting inclusion tree is the tree of shapes of the sign of the Laplacian,

a ternary-valued image—with pixels set to -1 (red), 0 (gray), or 1 (green) as depicted in

Algorithm. 2.8. The whole labeling process is depicted in Algorithm. 2. It computes a label

image L (a label is assigned to every region delimited by the 0-crossings of ∆�), and a

tree structure encoded in an array of parenthood parent. Having parent(l1) = l2 means

that the region with label l1 is included in the region with label l2, and the particular root

label, say lr, is such that parent(lr) = lr. Q is a queue of pixels, border is an auxiliary

image that marks the inner component contours as active a or inactive ā state, nlabels is

the current number of labels, ` is the current label value, and N represents a neighborhood

2. Note that the two identical local configurations enclosed by red rectangles in Fig. 2.8(a) do not lead to
the same interpolation; this is due to the non-local interpolation process that depends on the outer region,
which is different in the two cases: respectively negative for the top configuration, and positive for the bottom
one.

45

Chapter 2 – Text Localization and Segmentation With Tree of Shapes of Laplacian Sign

1 LABELING (∆�,∇�):
2 forall p do
3 L(p)← 0;
4 border(p)← undef;
5 nlabels← 1;
6 forall p do
7 if L(p) 6= 0 then
8 continue;
9 if p = p0 then

10 `← 1;
11 parent[`] = 1;
12 else
13 P ← FOLLOW_CONTOUR(p);
14 if evaluate(P) then
15 nlabels← nlabels+ 1;
16 `← nlabels;
17 parent[`]← L(p−1);
18 else
19 `← L(p−1);
20 BLOB_LABELING (p,`);
21 return parent, L ;

22 BLOB_LABELING (p, `) :
23 L(p)← `; Q.push(p);
24 while Q is not empty do
25 q ← Q.pop(), N ← N4;
26 if border(q) = undef then
27 N ← N8; /*optimized*/
28 forall n ∈ N(q) do
29 if L(n) = 0 and
30 ∆�(p)×∆�(n) ≥ 0 then
31 L(n)← `; Q.push(n);
32 else
33 border(n)← a;
34 FOLLOW_CONTOUR (p) :
35 P.init(); border(p)← ā; Q.push(p) ;
36 while Q is not empty do
37 q ← Q.pop(); P.update(q);
38 for n ∈ N(q) /* N8 or N4*/ do
39 if border(n) = a then
40 Q.push(n) ;
41 border(n)← ā;
42 return P ;

Algorithm 2: Computation of ToSL by labeling interpolated image (black part) and
its fast version (adding red part) without using interpolation.

corresponding to either 4-connectivity (N4) or 8-connectivity (N8).

The core of the algorithm is an alternate application of the following two routines (de-

picted on the right side of Fig. 2): BLOB_LABELING is a classical queue-based “blob labeling”

algorithm that labels the underlying connected component with current label value `, and

also marks the inner component contours as active state a. Note that actually, we do not

want regions representing null values in the final tree, so we merge nodes corresponding

to 0-crossings with their parent (see line 30 and Fig. 2.7). FOLLOW_CONTOUR is also a

queue-based process which is similar to previous “blob labeling” algorithm, but applied on

the underlying active contour of an unlabeled connected component. Instead of labeling

the active contour, this routine browses it and marks it as inactive ā (see lines 35 and 41),

and collects a measure P characterizing the contour (e.g., its length). Note that both these

two routines are very efficient thanks to the queue-based “blob labeling”.

More precisely, for the main algorithm (depicted on the left side of Fig. 2), we browse

the pixels in raster scan order (main loop, line 6). When we reach an unlabeled pixel p,

if this is the first pixel p0 in the scan order (i.e., the top left pixel), we know that its label

value is 1, and the label value of its parent (i.e., itself) is also 1 (lines 9 to 11), because p0 is

in the root node thanks to the added external boundary described in the previous section.

For all other unlabeled pixels p 6= p0, we follow the contour of the unlabeled region,

which is a hole in the label image, thanks to the border image. The FOLLOW_CONTOUR

routine computes on the fly a contour-based measure P characterizing the hole, such as

46

2.3. Fast Computation of the Hierarchical Representation

the average of gradient’s magnitude along the contour and the bounding box of the hole.

If this contour-based measure P does not satisfy some criterion (for instance if it is not

contrasted enough), or if it does not satisfy some geometrical criterion (for instance if the

hole is too small), we do not create a new label value for this region; this acts as if the

region were discarded (in Fig. 2.8, two regions are discarded between the 2nd and the 4th

columns). Let p−1 be the pixel just before p in the raster scan order (p−1 is guaranteed to

be labeled), we assign the label value of p−1 to the underlying hole region, which means

we merge it with its parent region. If the contour measure P satisfies the corresponding

criterion, we create a new label value to label the hole region, and update the parenthood

relationship of this new label value to L(p−1) (see lines 14 to 19). Then we proceed the

routine BLOB_LABELING to label the connected set of pixels having the same Laplacian

sign as p or being null and update the auxiliary border image. Note that since we use

the 4-connectivity neighborhood (N4) in the routine BLOB_LABELING to label regions and

mark neighboring pixels having different sign of ∆�, we need to use the 8-connectivity

neighborhood (N8) to follow completely the active contour of an unlabeled region (see

also the longest contour in the left image in Fig. 2.8(e)).

An example of the proposed algorithm on the interpolated image in Fig. 2.8(b) is

depicted in Figs. 2.8(c-e). Different stages of the algorithm are depicted in Fig. 2.8(e).

Note that the pixels having null Laplacian sign are grouped with the parent region. The

two small regions inside cyan and respectively yellow region are also discarded, they

are grouped with the parent region. The resulting “label image + tree” are depicted in

Figs. 2.8(c) and 2.8(d).

2.3.3 Optimization of ToSL Construction

The well-composed interpolation described in Section 2.3.1 resolves all the topological

issues at critical configurations with the cost of quadrupling the number of pixels. Yet, in

practice, we do not need to apply this interpolation, which can be emulated efficiently

without subdividing the image domain thanks to the particular non-local way of interpo-

lation described in Section 2.3.1.

The optimized version of the proposed algorithm by emulating the interpolation is de-

picted in Fig. 2 by the black and red parts. More precisely, the used particular non-local

interpolation is based on the inclusion relationship of components. The interpolated values

at critical configurations are given by the values of the outer region. Besides, the proposed

algorithm for such interpolated image labels regions from outside to inside. Consequently,

it is equivalent to use 8-connectivity (N8) when we use blob labeling algorithm to la-

bel pixels that are not yet activated thanks to the border image (see line 26 and line 27 of

BLOB_LABELING in Fig. 2). This makes the other two pixels of critical configurations having

a different sign of Laplacian disjoint and marked as active contours. Consequently, when

we proceed the FOLLOW_CONTOUR routine in the following, we need to use 4-connectivity

(N4) (see line 38 of FOLLOW_CONTOUR in Fig. 2) to avoid connecting two disjoint unla-

47

Chapter 2 – Text Localization and Segmentation With Tree of Shapes of Laplacian Sign

beled regions.

An example is given in Fig. 2.8(f) which shows different stages of the proposed op-

timized algorithm without using interpolation. Note that the green pixels (resp. red pix-

els) of the critical configuration in the top (resp. bottom) red rectangle in Fig. 2.8(a)

are considered as connected using 8-connectivity (N8) when we proceed the routine

BLOB_LABELING. The active contours (black pixels) in Fig. 2.8(f) are processed using 4-

connectivity (N4). The two runs depicted in Figs. 2.8(e) and 2.8(f) result in the same

“label image + tree” depicted in Figs. 2.8(c) and 2.8(d).

2.4 Text Extraction With Tree of Shapes of Laplacian Sign

In this section, we focus on how the Tree of Shapes of Laplacian sign can be used to

segment text in images.

2.4.1 Method overview

The method that we propose to segment text in natural images is very simple; put very

shortly, text components are selected among nodes on the ToSoL of the input image. The

advantages of ToSoL are threefold: first, regions contours are localized precisely thanks

to the morphological Laplacian; second, its computation is efficient; finally, the inclusion

encodes by the ToSoL parallel the object-background relationship, which carries useful

contextual information.

After the ToSoL is computed, we group similar components together to form text boxes.

For that, we only consider the bottom of this tree (the leaves and sometimes their parent):

for each component, we search spatially in the label image what are their left and right

components to be grouped into a text box. In this step, we highly take advantage of the

tree structure: it allows very easily to discard many regions as non-text and to determine

if a leaf region is a character hole or a plain character.

The leaves (and sometimes their parents) of the resulting tree are then grouped to-

gether to form text line candidates. We only consider roughly horizontal words, containing

at least two characters. We assume that related characters belong to the same background,

this implies that they have the same parent in the tree structure. As a consequence, the

grouping process can be performed efficiently: the only candidate regions for characters to

be grouped into text lines are siblings in the tree structure. Starting from each tree leaf, we

thus use a classical search in the image space to group siblings (some additional geomet-

ric information such as region height and maximal inter-distance between regions are also

used to control the grouping process). Note that we know when a leaf is a character hole

because both left and right neighbor regions are its grand-parent in the inclusion tree (the

background region being the parent); we then consider its parent node (its background

being the character). An illustration is given in Figure 2.9.

48

2.4. Text Extraction With Tree of Shapes of Laplacian Sign

(a) Original image. (b) Morphological Laplacian.

(c) Result of labeling. (d) Node selection and text boxes.

Figure 2.9 – Illustration of the proposed method: mathematical morphology tools are
contrast-invariant so we successfully deal with low-contrasted data (note that the Lapla-
cian image (b) has been lightened to be readable).

The key features of this method are the following: 1. It runs very fast since the pro-

cessing chain is very simple and since all operations have a linear time complexity (see

Sec. 2.4.4); 2. The proposed method, based on the morphological Laplace operator, out-

performs more “classical” component-based methods that select candidate regions for

characters (see Sec. 2.5); 3. The fact that regions form an inclusion tree, thanks to the

well-composedness property, allows for powerful decision taking when grouping regions

into text boxes.

2.4.2 Construction and simpification of ToSoL

The ToSoL is computed as described in earlier sections. The Morphological Laplacian and

gradient are computed using an 11x11 square as the structuring element. Although the

structuring element size does not alter contours, a larger one will increase resistance to

noises and compression artifacts as shown in Section 2.2.1. For this particular applica-

tion, some geometric criteria are used to simplify the ToSoL on the fly (Algorithm 2

lines 13 and 26) are average gradient magnitude on the contour and some geometric

properties of that region. The average gradient magnitude threshold is fixed at 30 for a

scalar luminance map in range 0-255. That value is roughly 10% of maximum luminos-

ity different, which, according to [3], allow human subjects to obtain more than 90%

recognition performance. The height and width threshold is chosen at 5px so that remain

components is big enough to distingue both ‘E’ and ‘M’. A criterion on the height-width

ratio is set to eliminate thin and long components. 0-crossings that do not satisfy these

49

Chapter 2 – Text Localization and Segmentation With Tree of Shapes of Laplacian Sign

Property Criteria
Average Gradient Magnitude Gavg > 30
Height and Width h > 5px and w > 5px
Height over Width 0.1 < h

w < 10
Area over Bouding Box area * area

h∗w > 0.1

Table 2.1 – 0-Crossing filtering criteria.

Property Criteria
Parent par(ci) = par(cj)
Distance d(ci, cj) < 2min(hci , hcj)
Height similarity SH(ci, cj) = min(hci ,hcj)

max(hci ,hcj) < 0.5

Table 2.2 – Grouping criteria.

criteria will be discarded. These criteria are summarize in Table 2.1. All criteria except

the last one use properties that are obtained by the subprocess contour following. The last

criterion is defined with the region’s area, that is obtained by the labeling process and

thus does not require a second pass through the whole image. Our tree construction and

labeling are therefore effective.

2.4.3 Component grouping by spatial search

In this step, a classic spatial search is performed to group remained segments. Only roughly

horizontal text lines are considered but the searching direction could be modified to in-

clude vertical text lines. We consider only nodes at the bottom of ToSoL (leaves and parents

of leaves) as the candidate. Each component will be linked with at most two neighbors,

which are the firsts on each side that satisfy grouping criteria. The neighborhood find-

ing accomplishes by searching pointers going on the horizontal line through the center of

that component. These pointers will go pixel by pixel of the label map on both directions.

Text candidates of our method are groups that have more than two components. With

ci, cj and h respectively denote two components and the height property, a link between

components is created if these criteria are met criteria in Table 2.2.

The first criterion takes advantage of the inclusion structure to limit the search space

effectively. The classic spatial search would stop after stepping out of the parent’s region.

The second criterion further limits the search space because semantic characters normally

close together. The third criterion makes sure the height of characters in the same group

does not vary more than two times. More criteria could be added to improve precision.

However, we should note that this method focuses only on proposing candidate but not

remove all the false positive. Nevertheless, a large variety of feature use by common false

positive elimination methods are collected during the ToSoL construction (contour length,

bounding box size, color, area, number of hole. . .)

50

2.5. Experimental Results

Method Recall Precision F-score Consistency
SWT [21] 0.464192 0.8861 0.609232 0.505042
ER [67] 0.613059 0.892023 0.629221 0.726689

TMMS [22] 0.784568 0.7522 0.768043 0.791303
Our 0.636168 0.933058 0.756528 0.849754

Table 2.3 – Text segmentation comparison.

2.4.4 Complexity analysis

The morphological gradient and Laplacian rely on dilation and erosion using a square

structuring element, which can be efficiently implemented thanks to a 2-pass (horizontal

then vertical) incremental (heap-based) process. In addition, this local process is easily

parallelizable, and eventually, it has a linear time complexity w.r.t. the number of pixels.

The blob labeling process (see Algo. 2) has also a linear time complexity: every pixel are

only visited once with the main ‘for’ loop and the queue-based propagation, and browsing

the 0-crossings contours is also limited by the number of pixels. Last the grouping process,

dealing with very few nodes of the tree and browsing a few pixels of the label image, is

trivially linear.

2.5 Experimental Results

2.5.1 Quantitative results on text segmentation

We have evaluated the proposed method of text segmentation in the context of task 2

of Challenge 2 in ICDAR 2015 “Robust Reading” competition. The dataset contains 233

natural images with focused scene texts. The ground truth of text segmentation results is

available. Some qualitative results are given by Figure 2.10; they include reverse-video,

uneven illumination, fancy fonts, blur, and different text sizes.

We have compared our method with three popular methods for generating text can-

didate regions: Stroke Width Transform (SWT) [21]3, text detection based on Extremal

Regions (ER) [55, 67] (implemented in OpenCV), and Toggle Mapping Morphological

Segmentation (TMMS) [22]. The first two methods are widely used as the first step of

many state-of-the-art pipelines. For a fair comparison, we compare the performance of

text candidate region generation of the four methods, that is text segmentation, and we

discard the rest of the pipeline (mainly false positive removal). For that, we only consider

generated regions that touch the ground truth (GT) texts. We use the evaluation scheme

proposed by [13, 14], based on the recall and precision scores in terms of pixels; we also

compute a consistency value measuring how much ground-truth text components are split

into several pieces. The results are given by Table 2.3; our method achieves a competitive

recall with high precision. Figure 2.11 depicts in detail how each method behaves w.r.t. all

the ground-truth texts in the dataset: the plots illustrate the distribution of the segmented

3. The implementation of SWT is provided by https://sites.google.com/site/roboticssaurav/
strokewidthnokia.

51

https://sites.google.com/site/roboticssaurav/strokewidthnokia
https://sites.google.com/site/roboticssaurav/strokewidthnokia

Chapter 2 – Text Localization and Segmentation With Tree of Shapes of Laplacian Sign

Figure 2.10 – Qualitative results using “ICDAR RRC: Focused Scene Text” database: input
(left), labeling (middle), final boxes (right).

text components at different coverage level (left) and accuracy level (right). The coverage

(resp. accuracy) represents the percentage of the matched surface between the GT and a

detection object with respect to the GT (resp. detection) surface; see [12] for details. One

can see that our method covers the ground-truth texts at relatively high coverage levels

(mostly distributed between 50% to 100%), which is not the case of the other methods.

2.5.2 Applying the method to document binarization

The method proposed in this paper has been applied to binarize documents in the chal-

lenge #2 (Smartphone OCR) of “ICDAR 2015 Competition on Smartphone Document

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

0.1

0.2

0.3

0.4

0.5

0.6

SWT

ER

TMMS

Our

Coverage level

D
i
s
t
r
i
b
u
t
i
o
n

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

SWT

ER

TMMS

Our

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0

Accuracy level

D
i
s
t
r
i
b
u
t
i
o
n

Figure 2.11 – Evaluation based on coverage and accuracy [12].

52

2.6. Conclusion

(a) Original image. (b) Self-dual binarization.

Figure 2.12 – Text segmentation with our method can be seen as a binarization technique,
providing also reverse-video text.

Capture and OCR (SmartDoc)” [10]. We ranked 2nd in this competition among 8 contes-

tants, with a character accuracy of 95.85% (note that the winner has taken advantage of

the redundancy of documents in the test set to correct each individual document). Relying

on the Laplace operator has turned out to be robust for the binarization of both blurred

text and low-contrasted text. In addition, our method is self-dual since it naturally handles

the same way the case of dark objects over bright backgrounds and the opposite case, as

depicted in Figure 2.12.

2.6 Conclusion

In this chapter, we have presented a hierarchical representation of the image contents

based on the inclusion of the 0-crossings of the morphological Laplace operator. Although

we use the very “classical” idea of relying on the 0-crossings of the Laplace operator image

to obtain the objects of interest, our version is innovative for several reasons. First, we

rely on the morphological Laplace operator, which performs well in the case of uneven

illumination, which is a common defect in natural images. Second, we ensure that the

“0-crossings” are really 1D objects. For that, we use a well-composed Laplacian image,

we compute the tree of shapes of its sign, and we consider the 1D topological boundary

of shapes. As a consequence, the positive and negative regions can be organized into a

tree without topological ambiguity. Last we present a linear time complexity algorithm,

which is a hardly more sophisticated blob labeling algorithm, to compute the hierarchical

structure. We also provide a way, directly during the computation process, to ignore some

regions if they are not relevant, and an optimization that mimics well-composedness and

then avoids to duplicate pixels.

We have explained how to rely on this representation to segment text lines in natural

images, and we have shown that it competes with classical methods of text candidate ex-

traction. Thanks to the linear time complexity of the ToSoL algorithm, our methods are

also efficient (from our first experiments with an ordinary computer, it runs in about 0.2s

53

Chapter 2 – Text Localization and Segmentation With Tree of Shapes of Laplacian Sign

on a 1M Pixel image). We also have applied a similar scheme to document image bina-

rization, which has been used in the ICDAR 2015 SmartDoc competition. As a perspective,

we intend to integrate our text segmentation approach in a text detection pipeline, thus

including false positives detection, to get an end-to-end evaluation.

54

Chapter 3

Spatial Alignment Graph With
Respect to Inclusion

3.1 Introduction

Classical image representations, such as those review in Section 1.3, are based on the

notion of connected component (CC) with the assumption that each object of interest

could be represented by a CC. However, due to various reason (noise, illumination con-

dition, occlusion, nature of that object), we could found that an object is represented by

several CCs. On the other hand, some application require the analysis of a group of ob-

jects of the same class and sometimes these objects are not connected. One example is

the field of text detection in image. Because text characters are usually appears in group

(e.g., words, sentences, paragraph), processing groups of text-like CCs will not only re-

duce false possitive but also yield a better understanding of the scene (e.g., individual

characters “s”,“t”,“o”,“p”, versus a word “stop”). In this chapter, we will explore the prob-

lem of non-connected components grouping using a generalized shape-space morphology

on a graph constructed with both inclusion and adjacent information.

The most straightforward approach on non-connected components grouping is making

a complete graph out of these regions. This graph is then segmented to obtain groups of

similar objects that satisfy some criteria. This approach is computation expensive and

therefore it is only reasonable if we working with a low number of CCs. However, the

number of CCs could be large, especially in case of hierarchical image representations. A

reduction graph order (number of vertices) or graph size (number of edges) is desirable if

we want to keep the computation cost reasonable.

The graph order could be reduced by binarizing the image, i.e.,by marking some rele-

vant CCs as objects, and the others as background. We will then build a graph to analyse

the relationship between objects and ignored all the backgrounds. The graph size would

be reduced by changing the way the edges set are created. We could use more a priori as-

sumption about objects of interest, especially the spatial relationships which usually carry

contextual information. Usually, the adjacency, aligment relationships between objects, or

the distance between them are used in this case while another important information, the

background/object relationship, is discarded. The reason is that all unrelevant CCs are

treated as they belong to the same background. For example, most text detection methods

reviewed in Section 1.5 could be divided into two-step: an image binarization into text

55

Chapter 3 – Spatial Alignment Graph With Respect to Inclusion

and background; and then a regrouping of horizontal regions which may or may not be

guided by a refining classifier.

We argue in Section 2.2.2 that treating all non-objects regions as the same background

regions would cause the loss of contextual information. Firstly, related objects are on the

same background. Secondly, sometimes it is difficult to make a clear binarization of the

image because the object/background relationship is relative, which means that an object

could be a background of other objects (of the same class or different class). In order to

consider this powerful contextual information, we are interested in the inclusion relation-

ship. We find that the background-object relationship could be deduced from the inclusion

of regions: It is reasonable to treat the region that contains the object as its background.

This information along with other spatial relationship will give us a better understanding

of the scene.

In Chapter 2, we tackle this idea. Instead of making a clear object-background separa-

tion, we try a more dynamic one: all nodes on the ToS could be treated as objects and its

ancestors are the background. On a highly simplified ToS as the ToSoL, we could expect

that only siblings nodes are semantically related. In other words, we assume the distance

on the tree between semantically related nodes equal two. The regrouping process only

groups these sibling nodes which results on a disconnected graph where each connected

one is a grouped of relevant objects. While providing a fast way to group text characters,

that method is based on an assumptions that only hold on a simplified inclusion tree such

as the ToSoL. However, in cases that the objects of interest appear on both the fin and

coarse parts of the image, we may want to work with a less simplified representation so

that we could preserve more detail. In that case, our workflow needs to be extended. This

is the main focus of this chapter.

Our extension results in a graph of shapes that is build from both inclusion and spatial

relationship between image regions. By applying the connected operators frameworks on

that graph, we could analyse both these information at once. This approach requires the

construction of two trees and one graph. The first tree is a hierarchical representation of

the input image. Then we create a graph that represents the relation between nodes on

that tree, which we will call collectively “shapes”. Finally, we use a second tree, which

is a hierarchical representation of that graph, to analyze that graph. This approach is

summarized in Figure 3.1. Our approach fits into the connected operators frameworks: it

does not create, nor shift flat zones’ boundaries.

The structure of this chapter is as follows: First, we will recall the connected opera-

tors framework and an earlier approach that rely on a graph of shapes, the shape-space

morphology, in Section 3.2. In the same section, we will explain our central concept: a

generalized shape-space morphology. Second, in Section 3.3, we will discuss the necessity

of using a less simplified tree, and how we handle the background/object relationship,

which is deduced from the inclusion of regions. We also consider different strategies to

obtain the spatial relationship between nodes on a tree. In the end, we chose a spatial

search approach to make the final graph of shapes which we call the spatial alignment

56

3.2. Expansion of Shape-spaces Morphology

graph w.r.t inclusion. Thirdly, in Section 3.4, we will present how the spatial alignment

graph w.r.t inclusion could find application in text detection and segmentation. Finally, we

will conclude the chapter and give some perspectives.

3.2 Expansion of Shape-spaces Morphology

In this section, we will present the concept of a shape-space and the application of mor-

phological tools on that space. Compare to the shape-based morphology of Xu et al. [115],

we still use connected filters on the shape-space but with two main differences. The first

difference is that the edges set of our shape-spaces does not necessarily coincide with the

inclusion relationship between image regions. Such shape-spaces are desired if we want

to analyze the relationship between nodes that do not have a parent-children relationship

on a tree representing the image. The second difference is the way we apply connected

operator on the shape-spaces. We have to take a different approach that is more consistent

with the way connected operators act on image space. First, we briefly recall the classical

tree-based connected operator and tree-based shape-spaces morphology of Xu et al [115].

Then we will then present how connected operator could be applied on more general

shape-spaces.

I

Shapes SpaceImage Space

g o g o

I'

g o

image
restitution

detectionA
B

CD

T+F

5

4 1

2 3

3

1st tree
construction

C

B

A

D

o

g

G+F

graph
construction

5

4 1

2 3

3 C

B

A

D

o

g

G+F'

graph
restitution

5

5 1

1 5

3 C

B

A

D

o

g

1st tree
restitution

T'+F'

5

11

53 C

BA

D

g o

T + F

5

2 1

5

4 5

3 3

3

1

2nd tree
construction

AB

DC

og

AB

CD

T ' + F

1

3

1

2nd tree
filtering

C

go

Figure 3.1 – Shape-space filtering overview. Blue and purple number: nodes’ associated
value. Red characters: labels of region. After obtaining the second tree T , we could retrieve
groups of objects of interest among its nodes, or we could filter that tree and reconstruct
a filtered image. Compare to Xu et al.[115], there are two main differences: firstly, the
graph represents our shape-space does not necessarily have the same topology as the first
tree; secondly, the tree reconstruction process works by the restitution of the associated
value of nodes (on the shape-space and the first tree), similar to how we restitute the
image function from the first tree.

57

Chapter 3 – Spatial Alignment Graph With Respect to Inclusion

3.2.1 Classical tree-based connected operators implementation

We have reviewed in Section 1.4 the classical tree-based implementation of connected

operators. It consists of three steps that can be summarized as follows:

• Tree construction: From an image I : DI ⊆ Z2 → V with V the value space and DI

the domain of I, let T a set of disjoint or nested regions T = {R ⊆ DI}, Ri, Rj ∈
T ⇒ Ri ∩ Rj ∈ {∅, Ri, Rj}. The set of shapes T could be the set of connected

components obtained by thresholding the image at different levels in case of trees

based on threshold decomposition (Section 1.3), or by merging adjacent regions

of an initialized partition of the image in case of the hierarchies of segmentation

(Section 1.2). The poset (T,⊆) is tree-based image representation. It may couple

with an associated function F : T → V that give the value of each region. F could

be the mean value of each region, or the threshold that we obtain it.

• Tree filtering: In this step, we remove some regions from the set T . Each element

of T is evaluated by an attribution function A which could be increasing or non-

increasing. Based onA, we remove from T some sub-trees (pruning strategy) or only

nodes that do not pass the criteria (non-pruning strategies). This process results in a

filtered tree T ′ ⊂ T . The associated function F ′ of the filtered tree could be just the

restriction of F to T ′ or a modified function (e.g., with subtractive rule).

• Image reconstruction. A filtered image I ′ is reconstructed from (T ′,⊆) and F ′. Each

pixel gets the value of the smallest regions (when ordered by inclusion) that contain

that pixel:

I ′(p ∈ DI) = F ′
(
Min{R ∈ T ′ : p ∈ R}

)
(3.1)

The most important process of the tree-based connected operator is the tree filtering

step. If the attribute function A is increasing, the filtering is simply done by removing all

nodes that do not pass the threshold. When the attribute function A is non-increasing,

which is usually happens, there are different approaches. The pruning strategies take into

account the attributes A of more than one nodes. However, because they remove or pre-

serve a whole subtree, these strategies may not be suitable in case several relevant objects

are on the same branch of the tree. On the other hand, the attribute thresholding strate-

gies do not have that drawback. Being non-pruning strategies, they can remove any nodes

that do not pass the threshold. However, they are based only on local information of a

single node without considering their relationship with others.

3.2.2 Tree-based shape-spaces morphology

In [115], Xu et al. come up with a non-pruning approach that can take into account

the attributes of multiple nodes. They notice that the tree-based image representation

58

3.2. Expansion of Shape-spaces Morphology

could be regarded as a node-weighted graph, and therefore classical tools that treat an

image as a graph could also be applied. Such graph is called a “tree-based shape-space”.

The shape-spaces consist of a set of “shapes”, which are nodes of the tree-based images

representation, and a neighborhood, which is defined by the parent-children relationship

between these nodes. This type of neighborhood comes naturally and allows the inclusion

of nodes on the tree to be considered at the same time as the attribute function. This

approach was reviewed with more detail in Section 1.4.2. In short, the method applies

the tree-based connected filters on the tree-based shape-space. First, a Min/Max-tree or

the ToS of the tree-based shape-space will be constructed. That second tree will be pruned

based on another attribute, which is designed to be increasing. Finally, the set of pruned

nodes will be then removed from the original tree, which is an equivalent representation

of the filtered image. This method allows us to remove nodes on the first tree that are local

extrema and the neighboring nodes. An example of this method is given in Figure 3.3.

By defining the neighborhood of the shape-space coincided with the parent-children

relationship of nodes on the first tree, the authors integrate that information into the

shape-space. This is an interesting idea because later analyses of that graph will be affected

by that information. However, Xu et al. only use the internal relationship which creates the

tree-base image representation in the first place. We are interested in expanding this idea

to analyze other relationship between nodes. In particular, we want to take into account

not only the inclusion of shapes but also their spatial arrangement on the image space. As

explained in Chapter 2, we found both these pieces of information would be interesting

in case objects of interest is not represented by a single node but by multiple nodes on

different branches. Another concern about the original approach of Xu et al. is that the

reconstruction of the first tree from the second tree is not consistent with how the image

is reconstructed from the first tree. As a results, that process only allows pruning approach

on the second tree, which may not always be our intention.

Before getting into a specific shape-space, in the next section, we try to address these

concerns, 1) how to expand Xu’s framework to a shape-space defined with a neighborhood

different from parenthood relationship of the first tree; 2) and how to allow non-pruning

strategies on the second tree.

3.2.3 The shape-spaces and the tree-based connected operator on the shape-
spaces

In this section, we formulate the notion of shape-spaces, which is a generalized version of

tree-based shape-spaces. This space consists of a set of points, which is the set of regions

of the first tree, and a neighborhood, which is defined to encode the information that we

would like to analyze. We will also discuss what we could obtain from a shape-space and

how we fit it into the connected operator framework.

59

Chapter 3 – Spatial Alignment Graph With Respect to Inclusion

3.2.3.1 Shape-spaces

Like any space, a shape-space must consist of a set of points and a set of edges. We define

the shape-space as any graph created from the set of regions (or “shapes”) of hierarchical

image representations and any set of edges. By this definition, the tree-based shape-space

is a particular case of the shape-space, when the parent-children relationship defines the

neighborhood.

We could obtain a shape-space by creating a complete graph from the set of shapes

and then filter out edges that do not pass specific criteria. We could obtain it differently

by doing a constrained neighborhood search. The latter is preferable when computational

cost is a concern since the former is O(n2) with respect to the number of nodes on the first

tree. We will explore that approach in later sections to obtain a shape-space that have the

neighborhood defined with both types of spatial relationships of image region: inclusion

and spatial alignment.

3.2.3.2 First tree construction and shape-space formation

The first step is to construct a tree-based image representation (T,⊆) of the input image I.

The tree and its associated function F : T → V form an equivalent representation of the

image. The choice of trees depends on the targeted application so that we could find nodes

on the tree represent the objects of interest. During or after the construction of the tree,

the features characterizing each node are computed. These attributes could be classified

as increasing or non-increasing, some of them are reviewed in Section 1.4.

From T , we create a shape-space by defining a neighborhood which will form a graph

G(T,E) with T the set of shapes and E the set of edges. E should encode the relationship

between nodes that we would like to analyze. This graph could be node-weighted (e.g.,

by its attributes) or edges-weighted (e.g., by a dissimilarity measure between nodes).

Let us denote the image region represented by a node n ∈ T by R(n).

3.2.3.3 Second tree construction

With the same motivation that leads us to a hierarchical representation of the image in the

first place, we create a second tree T to represent the shape-space G(T,E) hierarchically.

The second tree comprises of a set of regions T = {R ⊆ T} ∪ {T}, whose elements satisfy

the disjoint or nested properties, along with an association function F : T → V . It is an

equivalent representation of T , which means that we could restitute T from T and F .

Each node of the second tree represents a group of nodes on the first tree.

The type of second tree also depends on the application, and the nature of the graph

representing the shape-space. In case of objects detection, we may want to have regions

with desire properties represent by some nodes on the tree. As a result, we may want to

chose a tree that can be guided to form such shapes. For example, if we want to obtain a

group of regions with similar color, we could use a BPT that prioritize the merging nodes

60

3.2. Expansion of Shape-spaces Morphology

that are closer in term of color. In another case, if a node on the shape-space could be

weighted with an attribute function A that reflects how likely a shape to be of the desired

type. The minima and its neighbors on that shape-space would be nodes that less likely

to be the desired objects. We could perform non-desire shapes filtering by building and

pruning leaves on a Min-tree represented the shape-space.

Nodes on the second tree should be characterized by a second attribute to guide the

filtering of the second tree. The second attribute could be designed as an increasing one

if we want to perform a simple tree pruning. It could also be a non-increase attribute

to select particular nodes on the hierarchy with pruning or non-pruning strategies. We

should emphasize that non-pruning strategies are not supported in the original tree-based

shape-spaces approach but, they are with ours. In case the second attribute is deduced

from the characteristic of nodes on the first tree, it could be computed effectively during

the construction of the second tree.

The image region represented by a node N ∈ T is R(N) = ⋃
{R(n)|n ∈ N}. Let

us denote the set of all image regions represented by nodes on the second tree <(T) =
{R(N)|N ∈ T }.

3.2.3.4 Second tree filtering and image reconstruction

According to the application, the filtering of second tree T is performed by removing some

nodes on the second level tree based on the second attribute. For some applications, e.g.,

object detection, objects or groups of objects of interest could be retrieved from remaining

nodes on the second tree (the detection step in Figure 3.1). For other applications such as

image simplification, we could reconstruct the filtered image from the simplified second

tree.

Let us look into our proposed image-restitution process, which is different from the

original approach and allows non-pruning strategies on the second tree. The set <(T ′)
does not guarantee to have the disjoint or nested property. Therefore, the subset of <(T ′)
that contains a certain pixel may not have a minimum (when ordered by set inclusion).

An example is shown in Figure 3.2. On T ′ the image regions represented by the rectangle

node (which is the union of the hole of ’g’ and the small rectangle surround ’r’) and the

triangle one (which is the union of the shapes of ’g’ and ’r’) have an intersection but are not

nested. For that reason, we can not reconstruct the image directly from < by Equation 3.1

as we reconstruct the image from T . Instead, we have to reconstruct the first tree first.

In the original approach, the filtered tree T ′ is achieved by subtracting from the orig-

inal tree T the set of nodes that are contained in the filtered nodes of the second tree,

i.e., T ′ = T − {R|R ∈ R|∀R ∈ T − T ′}. The filtered tree T ′ has the disjoint or nested

property because T ′ ⊆ T . In this approach, the associated function of the tree will re-

main the same, i.e., F ′ = F |T ′ , and the filtered image is obtained by I ′(p ∈ DI) =
F ′ (Min{R ∈ T ′|p ∈ R}). We should remark that the root node of the original tree T must

not be removed if we want I ′ to cover the original image domain. In this approach, despite

61

Chapter 3 – Spatial Alignment Graph With Respect to Inclusion

I T+F

Shapes SpaceImage Space

G

g r
a

b c

c b

1st tree
construction graph

construction

T + F

a

c c

b

b b

c

2nd tree
construction

a

T '+ F

a

b c

2nd tree
filtered

a

g r g r

Figure 3.2 – Example of second tree filtering. In this example, T is a ToS. The associated
value is shown in blue next to each node. Dashed windows show the image regions asso-
ciated with each node on T and T . We see that the regions represented by nodes on the
first tree satisfy the disjoint or nested property, but those represented by nodes on T ′ (and
T) do not, e.g., the yellow rectangle and red triangle nodes on T ′.

the filtering strategy on the second tree, it will always act like a tree pruning. The reason

is that a node on T is a superset of any of its descendants. Therefore, the act of removing

a node gives the same T ′ as removing the subtree rooted at that node. This limitation

could be seen as a disadvantage if we may want to perform a non-pruning strategy on the

second tree, e.g., when two interesting nodes appear in the same branch.

We propose using another restitution approach. Because T is a complete represen-

tation of the shape-space, we can restore that space similar to the way we restitute the

image space and image value from the first tree T . With the filtered second tree T ′, and

its associated function, which is the restriction of F to T ′, i.e., F ′ = F|T ′ , the restored

shape-spaces could be obtained by:

• The set of point: T ′ = {R ∈ R|R ∈ T }

• The set of edges: E′ = {ex,y ∈ E|x, y ∈ T ′}

• The associate function: F ′(R) = F (Min{R|R ∈ T ′ ∧R ∈ R}).

In other words, the restituted shape-space is the induced subgraph of G(T,E) from the

set of first tree’s nodes remains in the T ′. The associated value of each node is the value

of the smallest node of T (by inclusion order on T) that contains that node. If the root of

T remains, the restituted shape-space is identical to the original one. However, changes

in the filtered second tree are still reflected by the associated function F ′ : each node has

a new value, which is the value of the smallest node on T ′ containing it.

In application, we are more interested in the filtered tree T ′. The cover graph of (T ′,⊆)
is usually a tree (if the root node is removed, it would be a forest). There may exist

nodes on T ′ whose children have the same associated value, which is redundant and make

no impact on the reconstructed image. We could make T ′ more compact by removing

all nodes that have the same associate value with their parent. The final filtered tree is

therefore T ′ = {R|R ∈ R ∧ R ∈ T ∧ F ′(R) 6= F (par(R))}. From (T ′,⊆) and F ′, the

restitution of filtered image I ′ is trivial.

62

3.3. Spatial Alignment Graph With Respect to Inclusion

This approach is still a connected operator because it only removes some region bound-

aries (a region n is removed in image space if F ′(n) = F ′ (par(n))) or simplifies the value

space (when two nodes were merged on T , but they are not connected to the image space)

but does not create new one nor shift existing boundaries.

We present a comparison of two approaches when the G is a tree-based shape-space

and the second tree is filtered with a pruning strategy in Figure 3.3 or non-pruning one

in Figure 3.4. In the former example, we see that our approach yields a different result

from Xu’s. However, it still is a connected filter. In the latter example, our approach is

able to keep two nodes in the same branch (node {C,E,H} and the root of the tree) while

Xu’s removes a whole branch. Xu’s approach could be modified to remove only “proper”

element (those that does not belong to any of its descendants). However, this only works

if the second tree is a hierarchy based on the threshold decompositions.

3.3 Spatial Alignment Graph With Respect to Inclusion

In this section, we present one shape-space that is created from two types of information:

inclusion and spatial arrangement of image regions. This shape-space could be analyzed

by shape-spaces framework in an earlier section. We are motivated in using these types

of information because they are useful for non-connected components grouping, e.g., text

characters grouping, especially after the results presented in Chapter 2. As present ear-

lier, the inclusion relationship, from which the background/object relationship could be

deduced, and the spatial relationship give us a better scene understanding.

This section will present general ideas on the shape-spaces. First, we will discuss how

we handle the background/object relationship on the inclusion tree. Then, we will ex-

plain how we encode the spatial arrangement of image regions into the shape-spaces. Its

application will be presented in the following section.

3.3.1 Handling the objects-background relationship by the inclusion in the
ToS

In Chapter 2, we deduce the background/object relationship from the inclusion of 0-

crossing since the boundary of the background should contain the boundary of objects

on it. This relationship is encoded in the ToSoL. In the same manner, the inclusion of im-

age level lines encoded in the ToS would serve the same purpose. For example, thanks

to the ToS in Figure 3.5(b), one could say that the flat zone B is included in A because

it is A’s descendant in the inclusion tree. In addition, the ToS have the advantage of be-

ing self-dual, i.e., we could build it without any assumption about the contrast of objects.

The ToS could be computed effectively for scalar image [29]. A sound extension of ToS

for multivariate images (MToS) [16] has also been reviewed in Section 1.3.3. For these

reasons, we will use the MToS to deduce the background/object relationship.

However, we should note that the ToS may face performance reduction in uneven

63

Chapter 3 – Spatial Alignment Graph With Respect to Inclusion

G-1
J-3

I-5

H-1
E-3

C-2 B-5A-4

D-4
F-3

K-6

I

54

2 4

5

3 13

1 3

6

A B

C

E

H

K

I

F

D

G

J

TTT T
{H} {G}

{C}

{G,J}{F}{C,E,H}

{A,C,E,H}

{A,B,C,E,H}

{A,B,C,D,E,F,G,H,I,J,K}

{F,D,I}

{F,D}

0

0

2

3

4 2

5

1

0 2

01

2

3

4

5

6

GJ-3
FI-5

CE-3
B-5A-4

D-4
HK-6

I'

54

2 4

5

3 13

1 3

6

A B

C

E

H

K

I

F

D

G

J

TTT'

{H} {G}

{C}

{G,J}{F}{C,E,H}

{A,C,E,H}

{A,B,C,E,H}

{A,B,C,D,E,F,G,H,I,J,K}

{F,D,I}

{F,D}

0

0

2

3

4 2

5

1

0 2

0

T '
1

2

3

4

5

6

GJ-3
I-5

B-5A-4

DF-4
K-6

I''

CEH-3

Tree-based Shapes Space
Second Tree

Image Space

Xu's
approach

our
approach

T''

54

4

5

4 33

3

6

A B

C

E

H

K

I

F

D

G

J3

3

Figure 3.3 – Our approach to shape-spaces filtering compares with Xu’s in case the second
tree is filtered with a pruning strategy. Blue number: associated value F which is also the
attribute function A in this example; Purple number: second attribute (which is the height
of A). Flat zones of top-left images are denoted by a letter along with a number showing
its gray value. In this example, we prune the leaves of the second tree. The shape-space is
a tree-based shape-space, i.e., it has the same topology as the first tree, which is the ToS
of the input image. The second tree is a Min-Tree. Xu’s approach is shown in the second
row and our approach, the reconstruction through shape function, is shown in the third
row. Red contours and red highlights indicate notable changes (removed or to be removed
nodes, changes in value).

lighting condition. For example, in the ToS whose labeling map shown in Figure 3.6(b),

we could not find any node or group of nodes that could represent some characters in the

input image (e.g. “s” in “short”). The best representation is a set of unconnected regions,

represented by nodes on different branches of the ToS, whose lowest common ancestor

represents a large region of the background. However, since our objective comprises the

regrouping of unconnected components, we expect that these “broken” objects would be

retrieved.

64

3.3. Spatial Alignment Graph With Respect to Inclusion

G-1
J-3

I-5

H-1
E-3

C-2 B-5A-4

D-4
F-3

K-6

I

54

2 4

5

3 13

1 3

6

A B

C

E

H

K

I

F

D

G

J

TTT T
{H} {G}

{C}

{G,J}{F}{C,E,H}

{A,C,E,H}

{A,B,C,E,H}

{A,B,C,D,E,F,G,H,I,J,K}

{I,F,D}

{F,D}

0

0

2

3

4 2

5

1

0 2

01

2

3

4

5

6

GJ-3
DFI-5

CE-3

ABCEHK-6

I'

54

2 4

5

3 13

1 3

6

A B

C

E

H

K

I

F

D

G

J

TTT'

{H} {G}

{C}

{G,J}{F}{C,E,H}

{A,C,E,H}

{A,B,C,E,H}

{A,B,C,D,E,F,G,H,I,J,K}

{I,F,D}

{F,D}

0

0

2

3

4 2

5

1

0 2

0

T '
1

2

3

4

5

6

GJ-3
DFI-5

B-6A-6

K-6

I''

CEH-3

Tree-based Shapes Space
Second Tree

Image Space

Xu's
approach

our
approach

T''

66

5

5

5 33

3

6

A B

C

E

H

K

I

F

D

G

J3

3

Figure 3.4 – Our approach to shape-spaces filtering compares with Xu’s in case the second
tree is filtered with a non-pruning strategy. We filtered nodes whoseAA 6= 2 while keeping
the root node of the second tree to make sure the image domain could be restored.

O-10
A-4

B-0

(a) A simple image

A

B

O

(b) The ToS

A BO 0

4

6

(c) The α-tree

Figure 3.5 – A simple example of ToS and α-tree. The inclusion of level lines is encoded
from the ToS, but that information could not be obtained naturally from the α-tree, and
other hierarchies of segmentation in general

We acknowledge that sometimes it is easier to form desired shapes in a hierarchy of

segmentation, e.g., by controlling the initial segmentation, the region models and merging

65

Chapter 3 – Spatial Alignment Graph With Respect to Inclusion

criteria of a BPT, or by modifying the dissimilarity function of an α-tree. For instance

in Figure 3.7, there are nodes on an α-tree, with dissimilarity function is ∆E∗94
1, that

better represent some characters than the ToS. However, because these type of tree form

higher nodes by merging adjacent lower ones with no concern for their inclusion, the

same inclusion relationship could not be deduced naturally as in the ToS. For example, in

Figure 3.5(c), we know that two flat-zones A and B are adjacent because they are both

contained in A ∪ B (the higher node). However, we cannot deduce that B is included

in A or vice versa. This inclusion of a quasi flat-zones’ boundary should be retrieved by

an external process. For instance, by hole-filling connected components of and verify their

inclusion: B is contained in A⇔ Sat(B) ⊂ Sat(A). However, this research direction would

require more study.

In Chapter 2, because of the simple nature of the ToSoL, we can expect all relevant

nodes will be children its background. This dramatical reduction has been proved to be

useful in text characters grouping. However, we have based on two assumptions: there

exist nodes on the simplified ToS that represent text characters, and related ones are

siblings.

The first hypothesis may not hold because it is difficult to adjust the ToS simplification

process to preserve objects of interest. A simplification process based on low-level features

may not be able to preserve objects of interest at different scales (e.g., text characters).

For example, the tree filter using the area and average gradient magnitude (for ToSoL

[36]) or the tree filter by minimizing the Mumford-Shah cartoon model (for MToS [16])

both aim at keeping “meaningful level lines” which may not be ones that represent text

characters (or parts of them). Text characters may appear in the fine part of the image,

which is more likely to be removed on a more simplified ToS. For example, in Figure 3.9,

small characters are removed when we increase the simplification level. We may also face

“broken” objects on ToS as mention earlier. These broken parts, when being evaluated

independently, are easily misclassified as unmeaningful nodes. For example, in Figure 3.8,

uneven illumination and reflection make the “A short break” difficult to be segmented

correctly. In this case, a higher level of simplification leads to more parts of these characters

merged with the background. However, a simplified ToS is more desirable. Although a

non-simplified ToS preserves all the detail, having to deal with all the level lines, some

of which are slightly different from the other is expensive. For that reasons, we still work

with a simplified tree for keeping the computational cost reasonable, but we will try to

keep the tree simplification strength low to retain more detail.

The second assumption may not hold in a less simplified ToS. The less simplify the

ToS is, the higher the chance those regions that we would call the background will be seg-

mented, i.e., be represented by multiple nodes on the tree. In that case, semantic objects

would become cousins, uncle-nephew nodes or even further on the hierarchical structure.

One example is presented in Figure 3.10 where sibling regions in a more simplified tree

become nephews-uncles in a less simplified one. The segmented background may also re-

1. A color distance metric by CIE

66

3.3. Spatial Alignment Graph With Respect to Inclusion

(a) Input Image (cropped). (b) Labeling Map of a simplified MToS.

(c) Nodes on that MToS that best represent text
characters in Input Image.

(d) Shape of the Lowest Common Ancestor of nodes
that best represent “s” in “short”

Figure 3.6 – Non-homogeneous objects of interest in MToS. The MToS [16] is simplified
by minimizing the Mumford-Shah cartoon model [116] with λ = 1000. We filter out all
nodes, except the root, that is not in the best fitting subset (the set of ToS’s nodes that is
best fit the ground truth, more detail in Section 3.4.4). The labeling map of that filtered
tree is shown in 3.6(b). In case of uneven illumination or reflection that objects of interest
is not homogenous, it is possible that a different part of one object will grow in a different
direction and merge very high on the tree structure. Because of that, we may not found a
ToS node that could represent the object of interest.

sult in new connected components in-between relevant ones. Therefore the nearest sibling

(or nephew/uncle or further relative) of a node may not be a semantically related object.

For this reason, we have to extend our assumption to adapt to the changes in the tree’s

structure:

• All ancestors of a node (in a hierarchy that encode inclusion) will be counted as its

background.

67

Chapter 3 – Spatial Alignment Graph With Respect to Inclusion

(a) Input Image (cropped). (b) Best fitting subsets of a simpli-
fied MToS.

(c) Best fitting nodes of a α-tree

Figure 3.7 – Performance of MToS and α-tree on segmentation of a non-homogeneous
objects. The α-tree is computed from the color image using ∆E∗94 [1] as the dissimilarity
function. The best α-CC that fit the GT are shown in 3.7(c). In this case, the line “A short
break” is better segmented using the α-tree.

(a) Labeling Map of the ToSoL. (b) Labeling Map of simplified
MToS with λ = 10000

(c) Labeling Map of simplified
MToS with λ = 1000.

(d) Best fitting subset of ToSoL
whose labeling map in 3.8(a).

(e) Best fitting subset of MToS
whose labeling map in 3.8(b).

(f) Best fitting subset of MToS
whose labeling map in 3.8(c).

Figure 3.8 – Different levels of tree simplification (where broken text characters occured).
Trees are built on from the image in 3.7(a). The ToSoLs (Chapter 2) are built with an
11x11 pixels window and the average gradient magnitude threshold is 30. The MToSs
[16] is simplified by minimizing the Mumford-Shah cartoon model [116]. The higher λ is,
the more simplified the MToS. The best fitting subset is the set of ToS’s nodes that are best
fit the ground truth (more detail in Section 3.4.4). A simplification process using low-level
features (keep only contrast 0-crossing in ToSoL [36] or meaningful level lines [116]) may
lead to loss of desire level lines.

• No limit on the number of neighbors a node could have.

The first point compensates the relative relationship on a complicated hierarchical

structure. It extends the image region treated as background for each object. This modi-

fication allows nodes that have cousins, nephew-uncle relationship and further could be

68

3.3. Spatial Alignment Graph With Respect to Inclusion

(a) input (cropped). (b) Labeling Map of the
ToSoL.

(c) Labeling Map of the
simplified MToSwith λ =
10000

(d) Labeling Map of the
simplified MToS with λ
= 1000.

Figure 3.9 – Loss of detail at different levels of tree simplification (small text characters).
ToSoL and MToS are simplified by same parameter as in Figure 3.8. Small text characters
are more likely to be removed on a more simplified tree, e.g. letter “e” in “free”.

(a) Simplified MToS with λ = 10000. (b) All characters in “IVERSIDE" are in the same
background.

(c) Simplified MToS with λ = 1000. (d) Characters in “IVERS" and “IDE" are nephews-
uncles in the tree structure.

Figure 3.10 – Illustration of the necessity to expand the background assumption. Label-
ing map of a simplified MToS [16] with different level of simplifying (left) and some
noticeable regions (right). Compare to figure 3.10(a), the ToS whose labeling map is in
figure 3.10(c) is less simplified. In consequence, some sibling nodes (for example “S” and
“D”) in figure 3.10(a) now become uncle (“D")- nephew (“S") in a less simplified ToS. Note
that in both cases, the first letter ’R’ of “RIVERSIDE" is further on the hierarchical struc-
ture. For that reason, reflect the objects-background relationship only by children-parent
relationship on the ToS is not satisfaction.

69

Chapter 3 – Spatial Alignment Graph With Respect to Inclusion

viewed as having the same background. The second point, let the searching process con-

tinue even if there are unrelated segments in-between semantic ones. Although it will add

more edges, it also retains more information for later processing. The neighbors finding

could be done with the help of a capable classification method that could tell the neigh-

bors is an object of interest. However, we avoid making binary decisions (because “broken”

objects would be difficult to recognize when it is treated independently).

Rather than a disconnected graph where each connected components is a text candi-

date as the earlier approach in ToSoL, this expansion results in a more complex graph. In

this new graph, each vertex corresponds to a node on the ToS from which it is constructed.

The connectivity of this graph still signifies the spatial relationship w.r.t the inclusion be-

tween the shapes of the ToS. To be specific, neighbors of a node are those it is not included

in and has a spatial relationship (which depend on the searching process). We call this

graph the spatial alignment graph. Because of the extension above, we could not extract

the text candidate directly as have been done with ToSoL. Instead, we will weight this

graph by those properties which were previously handled by binary decisions, e.g., the

distance on the tree, the distance on image, geometry or color similarity.

3.3.2 Handling the spatial alignment by spatial search in the image space

With the extension above, we can handle the inclusion relationship on the ToS. However,

the set of possible neighbors of a node (those that are not its ancestors, which is part of

its background, nor its descendants, of which it is the background) is significantly larger.

Analyzing all these possible neighbor is computation expensive. Instead, we will define

neighborhood with a priori knowledge about the spatial arrangement of objects on image

space or distance on the hierarchical structure (i.e., the scale of objects of interest). This

does not only reduce the size of the graph but also make it more meaningful.

For instance, we could usually assume the spatial arrangement of objects of interest

to restrict the neighborhood, e.g., Latin text usually horizontal or vertical. Along with the

inclusion relation, we could effectively reduce the graph size. Aligned regions could be

found by computing the relative position of a node with all its possible neighbors. How-

ever, because of the size of that set is usually large, the computation would be expensive.

For instance, in Figure 3.11, 353 nodes are neither descendant nor ancestor of the one

represents the letter ’s’ in ’kills’ but only five are horizontally aligned. For that reason, we

prefer making alignment links by a spatial search on the image space.

We could set a maximum distance for the searching process instead, both on image

space (e.g., measured by the number of pixel separate two regions) and the tree space

(e.g., measured by the number of edges of the shortest path connecting two nodes on

the ToS). These limits should be set relatively to the node’s size so that it does not favor

one particular scale. We will address these distances in the weight of the edges by using

a penalty function that reduces (res. increase) the similarity (res. dissimilarity) weight on

edges.

70

3.3. Spatial Alignment Graph With Respect to Inclusion

(a) Labeling Map of simplified
MToS of 3.7(a)

(b) Possible neighbor of ’S’ (c) Horizontally aligned neighbor
w.r.t inclusion of ’S’.

Figure 3.11 – An example of aligned components. There are 353 nodes that are neither
descendant nor ancestor of the one represents the letter “S”. However, only 5 nodes are
horizontally aligned with “S”. These nodes could be retrieved by checking the labeling map
on a horizontal line (e.g. the red line in 3.11(a)), i.e. a spatial search on image space. That
approach is less computationally expensive than measuring the relative spatial position of
“S” and all of its possible neighbors.

There are several strategies to do the spatial search. We could use a single searching

line or multiple parallel searching lines. Single line searching strategy checks pixel by pixel

(on the labeling map) for components other than the ones marked as background 2. To

implement searching line strategies, we need to define the line rotation based on con-

text. We use horizontal lines for roughly horizontal aligned text (e.g., Latin script). Single

searching line strategy works on a line going through the center of the current component.

Multiple parallel searching lines strategy checks pixels on multiple parallel lines. Compare

to the former, the latter has a higher cost but is more robust against variation in height or

when the assumed direction is off from the real alignment. In our implementation of this

strategy, we use three parallel lines, one goes through the center of the component and

two line that is 40% nheight away and parallel with the center one. An example of one line

searching strategy is presented in Algorithm 3.

3.3.3 Section summarization

To summarize, this section introduces a shape-space that is created with both inclusion

and spatial alignment information. It is represented by a graph of shapes that we call

spatial alignment graph with respect to inclusion or spatial alignment graph in short. The

neighbors of a node are ToS’s shapes that are aligned and not in the same branch.

To construct this representation, we first create a graph G(V,E) with empty edges set

E = ∅ and the set of vertices V is the set of nodes on ToS. The set of edges will be created

by doing a spatial search on image space from each vertex v ∈ V . A step-by-step example

is given in 3.12. We will weight the edges set by a combination of similarity between

shapes, as well as the distance on image space and distance on the tree. We analyze this

graph with the shape-spaces morphology framework.

2. Note that the relation “is an ancestor of” could be verified in constant times in our implementation with
Pylene.

71

Chapter 3 – Spatial Alignment Graph With Respect to Inclusion

Input: Tree of Shapes ToS, direction vector of the searching line shift, maximum
distance md

Output: adjacency graph G(V,E)
1 ComputeGraph(ToS, shift,md):
33 G(V,E).init_V (ToS.nodes()) ;
55 for n ∈ ToS.nodes() do
77 marker = vector < bool > (ToS.nodes(), true);
99 oneLSearch(G(V,E), n, shift,marker,md);

1111 oneLSearch(G(V,E), n,−shift,marker,md);
1313 return G(E, V) ;
14 oneLSearch(G(V,E), n, shift,marker,md):
1616 p = n.center();
1818 while p ∈ Gdomain and |p− n| ≤ md do
2020 n′ = G.getNode(p) ;
2222 if not marker[n′] or n′.isAncestor(n) or n.isAncestor(n′) then
2424 continue ;
2626 G.addEdge(V [node], V [n′]);
2828 marker[n′] = False ;
3030 p+ = shift ;

Algorithm 3: Computation of adjacency graph G(E, V). The relation “is an ancestor
of” could be verified in constant times in Pylene, see Appendix A for detail. We could
also mark ancestor and descendant of n before calling the searching procedure.

3.4 An α-tree on the Spatial Alignment Graph W.r.t Inclusion

for Text Detection

In this section, we will focus on the application of text detection on natural images, where

regrouping similar components to form a set of text candidate is important. Because text

characters are usually similar (e.g., size, color. . .), regrouping similar segments before

OCR would reduce effort in detection and also serve as a false positive elimilation step.

We will apply the shape-space morphology framework to the spatial alignment graph

to obtains groups of similar and aligned objects. Each node on the second tree will rep-

resent a group of similar components. Let us remark that both inclusion and spatial ar-

rangement are embedded in the connectivity of this spatial alignment graph. Thus, further

analysis that relies on connectivity will passively rely on the semantic relationship implied

by this information. Other assumptions about objects will be used to weight the edges of

the spatial alignment graph with a notion of similarity between shapes. From that edges

weighted graph, an α-tree is constructed. We will demonstrate that nodes on that α-tree

provide good text candidate in compare with the best possible grouping result. We also

propose some simple approach to select a small set of nodes to serve as the text candidate

set.

72

3.4. Alpha-tree on the Spatial Alignment Graph for Text Detection

O
A
B
D

E

C
F

(a) Input and . (b) ToS and branch contains node
B (blue).

(c) Edgeless spatial alignment
graph with vertices correspond to
ToS nodes .

(d) Spatial search for B’s neigh-
bors.

(e) Edges added after a spatial
search from B.

(f) Final Graph.

Figure 3.12 – Example of an spatial alignment graph created with searching line strategy.
From the input image in Figure 3.12(a), the ToS is computed in Figure 3.12(b). We will
run a spatial search for every vertex on the edgeless graph in Figure 3.12(c). For example,
from node B, with nodes on its branch (blue) ignored, we found C and F having pixels on
the horizontal line through B (Figure 3.12(d)). This will result in two new edges in our
spatial alignment graph (Figure 3.12(e)). Continue for every node (except the ToS root)
to obtain the final graph on Figure 3.12(f). Here, we weight the edges by height similarity
between their ends.

3.4.1 Spatial alignment graph w.r.t inclusion for text detection

First, we have to specify the parameters of the spatial alignment graph that we use for our

application. We first built the spatial alignment graph with similar hypotheses as in Chap-

ter 2: semantic text characters are in the same backgrounds, and they are roughly hori-

zontal aligned; they should have some similarity in characteristics (e.g., height, color. . .).

We will use the former criteria to define the neighborhood of our spatial alignment graph

and the latter to weight the edges of our graph.

We first compute a tree of shapes of the input image. Cameras usually capture images

in the sRGB color space which results in a large base of three-channels images. To avoid

imposing a total order on the vector space, we use Carlinet et al.’s MToS [16] as the

inclusion tree representing the input image. The ToS T is then simplified by minimizing

the Mumford-Shah cartoon model constrained by the tree topology. The simplified tree

is obtained as a subset of shapes T ′ ⊂ T that minimizes the energy function E(T ′) =∑
R∈T ′

∑
x∈R|Rx=R

||f(x) − f̄(R)||22 + λ|∂R|. With Rx denote the smallest shape containing a

73

Chapter 3 – Spatial Alignment Graph With Respect to Inclusion

point x, f̄(R) is the average value of the region R and |∂R| the length of the shape’s

boundary. The minimization is done using a greedy algorithm provided by the authors

of [116]. In short, we sort the ToS’s nodes by meaningfulness and then remove the less

meaningful one step by step until the image energy stop decreasing. The parameter λ

affect the level of simplification: the higher λ is, the more simplified the ToS is.

After obtaining the simplified ToS T , we then create the spatial alignment graph w.r.t

inclusion. Using one horizontal searching line strategy, we obtain approximately aligned

neighbor of every node. In our approach, we do not set a maximum distance on the hier-

archical structure nor a maximum distance on the tree. However, these distances will be

used as descriptors for nodes of the second tree.

A second tree will be built from this shape-space. There is two type of hierarchical rep-

resentation we can choose from: the tree based on threshold decomposition and hierarchy

of segmentation. The former, which includes Min-, Max-tree, ToS, is built from a node-

weighted graph. They can handle multivariate features (in the same way as the MToS).

However, this type of tree is somewhat extrema oriented (i.e., leaves are local extrema). It

focuses more on the node’s weight than the connectivity makes it difficult to control and

obtained the desired group. The other type of tree (which includes BPT and α-tree) gen-

erally based on the dissimilarity between image regions. Since the objective is to obtain

groups of similar components, we prefer this type of tree because it is easier to control. We

consider the α-tree since its single linkage structure allows us to faster group a long text

line with small variation between consecutive characters. Moreover, it could be computed

efficiently by a modified Kruskal’s algorithm [65]. When using with a custom dissimilarity

measure, we could force the creation of the desired node on the tree.

To construct a hierarchy of segmentation, the edges of the spatial alignment graph

have to be weighted by a dissimilarity between their ends. We consider some properties,

which are usually used in text grouping methods: the similarity between the bounding box

dimension, filling rate, color

• Shapes’ dimension: We should compare shapes’ height for horizontal texts since

characters should not change significantly between semantically related text char-

acters. Even in the case of perspective distortion, nearby characters’ height does not

dramatically change. The height and width should be obtained by the major and mi-

nor elongation of shapes. However, because the minimum bounding boxes could be

obtained easier during construction of ToS, we prefer using them as an approximate.

We could define the height similarity by the minimum over the maximum:

Sheight(n1, n2) = min (height1, height2)
max (height1, height2)

• Height over width: This ratio should not vary much between semantically related

text characters. With HoWx = Hx
Wx

the height over width of node x, the similarity

74

3.4. Alpha-tree on the Spatial Alignment Graph for Text Detection

could be defined by:

SHoW (n1, n2) = min (HoW1, HoW2)
max (HoW1, HoW2)

• Filling rate: or sometimes called the saturation rate is the shape’s area over its

boundibox’s area:FR(n) = area(n)
H∗W . The similarity could be defined as:

SFR(n1, n2) = min (FR1, FR2)
max (FR1, FR2)

• The color different: The standard means of determining the different in color is the

Euclidean distance. For example, in RGB space:

∆RGB(n1, n2) =
√

(R2 −R1)2 + (G2 −G1)2 + (B2 −B1)2

There are also attempt to weight each element differently RGB to better fit human

perception. A good approximation would be the coefficients of 3,4 and 2 [58]:

∆WRGB
(n1, n2) =

√
3(R2 −R1)2 + 4(G2 −G1)2 + 2(B2 −B1)2

Although their computations are efficient, these measure does not include changes

in sensitivity of the eye caused by changes in the brightness. The International Com-

mission on Illumination (CIE) define a distance metric CIE L*a*b* ∆E∗ which take

into account the human perception of color. The first CIE ∆E∗ was just the Eu-

clidean distance in the CIE L*a*b* color space. Their latter formulas, ∆E∗94 [1] and

∆E∗00[88], address the perceptual non-uniformities. They take into account weight-

ing factors for lightness, chroma, and hue. 3

We also address the distance between regions in image space and tree space by multi-

ply the similarity above to a penalty factor. This factor is defined in such a way that closer

regions should have a higher similarity measure and vice versa. We define the penalty

function to be non-increasing, bounded between 0 and 1 for this purpose:

G(tor,max)n1,n2 : ∆(n1, n2) ∈ (N)→ [0, 1]

With ∆(n1, n2) the distance between two node n1, n2, tor is a tolerant distance and

max the maximum distance we want to make the connection. The latter two are the pa-

rameters of our method. In case of distance on the image space, the max is implemented

directly in the searching process (by stopping that process after getting out of the maxi-

mum range).

3. All RGB to L*a*b* conversion in this work has been made using the D65 white point, standard 2°
observer angle.

75

Chapter 3 – Spatial Alignment Graph With Respect to Inclusion

Because a node is a set of image pixels, distance between them should be either the

length of the shortest path connecting points between two node, i.e. the minimum distance

between two set:

∆I(n1, n2) = min{||x− y||, ∀x ∈ n1, y ∈ n2}

However, since that distance is conputational heavy, we use the Euclidean distance

between two bounding box center as an approximation:

∆I(n1, n2) = ||c1 − c2||

The distance on the tree space is more straightforward: it is the length of the shortest

path connecting two nodes on the tree which equal to:

∆T (n1, n2) = depth(n1) + depth(n2)− 2 ∗ depth (lca(n1, n2))

With lca the lowest common ancestor and depth is the distance from root. 4

To sumarize, we will define the penalty function as:

G(tor,max)n1,n2 =

1 if ∆(n1, n2) ≤ tor

1− ∆(n1,n2)−tor
max−tor if tor ≤ ∆(n1, n2) ≤ max

0 otherwise

(3.2)

An example is given in Figure 3.13. In that example, we set a large max, which is the

image width in image space and twice the height of the tree, so that we retain most edges.

The tor is set to about 20% max. These value will be used in the test presented later in

this Chapter if not stated otherwise.

To keep the notation consists with the classic α-connectivity on image, we assume the

spatial alignment graph G(V,E) has its edges weighted by a dissimilarity value DS which

measure the difference between two node. If the measure is a similarity (e.g. minimum

over maximum), let the dissimilarity is the complement of that measure. For example

DSheight = 1− Sheight ∗ GI(torI ,maxI) ∗ GT (torT ,maxT)

3.4.2 Alpha-connectivity and alpha connected components of the spatial
alignment graph

We first look at α-connectivity and α-connected components on our spatial alignment

graph since it is the basic of the α-tree. Let us recall the α-connectivity notion: two node

x,y are α-connected if there exists a path π(x→ y) = {x = x1, x2, ..., xN = y} from x to y

that the dissimilarity between two consecutive node DS(xi, xi+1) ≤ α.

4. The lca could be obtained effectively thanks to the component tree structure in Pylene. See Appendix A.

76

3.4. Alpha-tree on the Spatial Alignment Graph for Text Detection

O
A
B
D

E

C
F

(a) input

A

O

F

B C

D E
(b) The ToS

0 2 4 6 8 10 12

Distance on Image

0.0

0.2

0.4

0.6

0.8

1.0

P
e
n
a
lt

y
 F

a
ct

o
r

(c) GI(tor = 2,max = 11)

0 2 4 6 8 10

Distance on Tree

0.0

0.2

0.4

0.6

0.8

1.0

P
e
n
a
lt

y
 F

a
ct

o
r

(d) GT (tor = 1,max = 6)

Figure 3.13 – Illustration of penalty factors. (a) The input image; (b) Its ToS, the blue
dash is the path from B to C and the red one is the path from B to F; (c,d) Examples of the
penalty function on image space and on tree space. ∆I(B,C) = ∆I(B,F) = 4 because
C and F have the same center. On the other hand, ∆T (B,C) = 2 and ∆I(B,F) = 3. The
weight of edge B-F in Figure 3.12(f) (which is a similarity measure) will be multiplied by
a factor of 0.47 and 0.62 for edge B-C.

x,y are α-connected⇔ ∃π(x→ y) = {x = x1, x2, ..., xN = y} and DS(xi, xi+1) ≤ α;∀i ≤ N

An α-connected component containing a vertex x, α-CC(x), is the set contains x and

all vertices that is α-connected to x. A set of all α-CCs with a given α value is a partition

of input graph G(V,E). Example of α-CCs of the spatial alignment graph are given in

Figure 3.14 and 3.15.

Because it is defined based on local dissimilarity, one may concern this connectiv-

ity is also affected by “leakages”: two regions in G(V,E) with distinct global properties

could be merged together because of some small number of interconnections (e.g., Fig-

ure 3.16). One common approach for this problem is using a global parameter ω to con-

77

Chapter 3 – Spatial Alignment Graph With Respect to Inclusion

(a) α-CC(B) of the spatial alignment graph in Figure 3.12(f)
with different α value

(b) a partition of image in Fig-
ure 3.12(a) by 2/5-CCs

Figure 3.14 – An example of α-CCs extracted from the spatial alignment graph. α-CCs on
the second tree are presented by reconstructing the image following our approach shown
in Section 3.2.3.3. With the spatial alignment graph in Figure 3.12(f) weighted by height
dissimilarity DSheight, we see in Figure 3.14(a) that the α-CC(B) grows when similarity
threshold increase. In case the graph is complete, the α-CC(B) would grow until it covers
the whole graph. The 1-CC(B) is presented as if unconnected edges on Figure 3.12(f) ex-
iste with dissimilarity value 1. If it is not the case, 1-CC(B) = 4/5-CC(B). In Figure 3.14(b)
all 2/5-CCs is shown, which provides a partition of input image.

trol the growth of α-CC. We have reviewed Hambrusch’s and Soille’s approach on the use

of a global parameter on image space in Section 1.2.3. As discussed earlier, the (α, ω)-
Hambrusch-CCs are not uniquely defined, therefore we cannot create a hierarchical based

on this notion without an arbitrary choice. However, it can still find application in ex-

tracting objects with input markers. Soille’s (α, ω)-connectivities cannot create connected

components that could not be obtained by α-connectivities in the first place, i.e., it cannot

prevent “leakage” from happening.

On the other hand, α-CCs in the spatial alignment graph do not grow as fast as the

α-CC on the gray-scale image. It is because the value space of the proposed dissimilarity

functions is larger than the typical gray-scale one. Even if we quantizer to reduce the

number of levels, we have total control of that process to make sure the CCs does not

grow too quickly. Therefore the leakage is not a big problem in our approach.

3.4.3 Alpha-tree of the spatial alignment graph

The chains of α-partitions on our graph increasing α value form a hierarchy. Unlike in

images, there may not exist an α-CC that covers the whole shape-space because the input

graph G(V,E) may not be connected. For that reason, the set of all α-CCs, ordered by

inclusion, will usually form a forest. To make it a single tree, we define a root node which

is the set of all ToS’s nodes. This result comes naturally by seeing G(V,E) as a complete

graph and any edges that are not originally in E will have the maximum dissimilarity. The

α-tree of Figure 3.12(a) is illustrated in Figure 3.17. We could construct the α-tree with

Najman’s algorithm [65].

As the value space of dissimilarity measure may be continued, the α-tree is mostly a

binary tree, i.e. in most case, a node only have two children. One may want to quantizer

78

3.4. Alpha-tree on the Spatial Alignment Graph for Text Detection

(a) A natural image (b) Segmentation of input by a simplified
MToS (sMToS)

(c) 0.1-CCs of the spatial alignment graph of
sMToS

(d) Some notable 0.1-CCs

Figure 3.15 – An example of α-CCs extracted from the spatial alignment graph of a nat-
ural image. α-CCs are presented by the image regions they represent. The natural im-
age 3.15(a) belongs to the ICDAR RRC test sets [44]. The MToS [16] is simplified by
minimizing the Mumford-Shah cartoon model [116] with a low simplification parameter
(λ = 1000). This provide an under segmentation of the image 3.15(b). The spatial align-
ment graph is constructed using single horizontal line search and weighted by DSheight.
Its 0.9-CCs are shown in 3.15(c). Some notable 0.9-CCs are shown in 3.15(d).

the dissimilarity measure, either to reduce the value space to a certain number of bits, or

to make the difference between two level meaningful (e.g. by each amount of 2.3 for the

∆E∗76 in L*a*b* space, which is its Just Noticeable Difference (JND) [87]).

79

Chapter 3 – Spatial Alignment Graph With Respect to Inclusion

(a) Input image (cropped) (b) Labeling map of MToS (c) 0.2-CC

(d) (0.2, 0.5)-Hambrusch-CC (e) (0.2, 0.5)-Soille-CC (which is
0.13-CC)

(f) Best fitting node (0.06-CC)

Figure 3.16 – “Leaking” on an α-tree of the spatial alignment graph. The simplified MToS
is compute from the input image on 3.16(a). The image region represented by each node is
marked with unique color in 3.16(b). The spatial alignment graph’s edges are weighted by
DSheight to highlight the leaking effect. We could see the 0.2-CC that contains the shape of
‘S’ in ‘SLOW’ (3.16(c)) cover a large potion of the image. The DSheight between the small-
est and largest component is approximate 0.93. Using a global parameter could reduce
the leaking. (0.2, 0.5)-Hambrusch-CC (in 3.16(d)) and (0.2, 0.5)-Soille-CC (in 3.16(e)) are
much smaller and contain more relevants shapes. They are different however, (0.2, 0.5)-
Hambrusch-CC is computed following his greedy algorithm in [31] and (0.2,0.5)-Soille-CC
is actually the 0.13-CC (the largest α-CC that satisfy both local and global condition). Since
our tree grow slowly, we actually can find better nodes such as the 0.06-CC in 3.16(f).

(a) α-tree. (b) α-CCs at different thresholds.

Figure 3.17 – Example of α-tree on the spatial alignment graph. α-tree and α-CC at dif-
ferent similarity threshold for the graph in Figure 3.12(f) with implication that it is a
complete one and all unshown edges are weighted 1.

80

3.4. Alpha-tree on the Spatial Alignment Graph for Text Detection

(a) Input Image and a zone of interest.

(b) Labeling map of simplified MToS.

(c) α-tree and some notable α-CC

Figure 3.18 – Example of α-tree on the spatial alignment graph of a natural image. The
spatial alignment graph built from the simplified MToS (λ = 2000) whose labeling map
shown in 3.18(b) as described in Section 3.4 and the edges are weighted by DSlab. The α-
tree on that graph is shown in 3.18(c) with some notable nodes shown in red. The regions
represented by these nodes are colored corresponding to the ToS node they belong to

81

Chapter 3 – Spatial Alignment Graph With Respect to Inclusion

3.4.4 Quality of nodes on the alpha tree

The group of text characters should be retrieved from the nodes on the alpha tree. How-

ever, because there are different possibility de define the dissimilarity measure, we would

like to measure the quality of nodes on the alpha tree, i.e., the performance of the group-

ing process. Because objects of interest may not be represented or represented partially as

segments on the ToS, we will compare the best fitting nodes (bfn) on the α-trees with the

best fitting subsets (bfs) of the ToS. The best fitting node is the node that represents the

most similar image region to ground truth. The best fitting subsets are the set of nodes

whose representing image regions is the most similar to ground truth.

We use the Intersection over Union (IoU) as the evaluation metric to measure how sim-

ilar a segmentation is in comparison to the GT. With ID the intersection between detection

and GT, which have area RD and RGT , the IoU score is:

IoU = ID
(RGT +RD − ID)

The quality q of the tree for each element of the GT will be determined by the ratio

between the IoU score of bfn and bfs:

q = IoUbfn
IoUbfs

Since nodes on the alpha tree is obtained by merging nodes of the ToS, IoUbfn ≤
IoUbfs and q ≤ 1.

The ground truth contains the pixel-level mapping to each class of characters and the

background. In the ground truth images, white pixels should be interpreted as background

pixels, while non-white pixels as text. Each class of characters is a group of text characters

that have semantic relations: on the same background (e.g., on the same line, on the same

banner, on the same sign) and horizontally aligned. The pixels are color coded so that the

pixels of each class has a unique color.

First, we determine the best fitting node from the α-trees. We evaluate every node on

that tree by how good of a segmentation obtained from that node in comparison to each

class of the ground truth (GT) and chose the best. In our implementation, the tree-based

image representation is stored by a parent map, which tells the parent of each node; and a

labeling map, which maps each pixel to the lowest node to which it belongs. To get all the

intersection, we check the labeling map for all node that intersects with the ground truth

and then propagates the intersection count up the tree structure. Having the intersection,

computing and obtaining the node with the highest score is trivia. An example of btn is

given in Figure 3.19.

After that, we will retrieve a best fitting subset of first tree’s nodes. Such as with the

α-trees, we can easily obtain the set S of nodes that intersect with the GT. From there, we

will choose a subset S′ ⊂ S that maximize the IoU score. Let denote the intersection of a

node or a set of node x and the GT as Ix and its area as Rx. The score of a subset S′ ⊂ S

82

3.4. Alpha-tree on the Spatial Alignment Graph for Text Detection

A
O

C
D

E F

B

(a) Segmentation
by a ToS and
GT(regions limited
by red box)

B C

A D E F

O

(b) The tos (black
edges) and a
spatial alignment
graph (red edges)

A
O

B
C
D

E F

(c) Best fitting sub-
set (cyan)

B C D A E FO
0.12 0.27 0.04 0.050.16 0.13 0.06

0.43

0.52 0.10

0.40

(d) An alpha tree
of the spatial graph

A
O

B
C
D

E F

(e) Best fitting
node (cyan)

Figure 3.19 – Illustration of best fitting subsets and best fitting nodes. We have an image
with flat zones noted by letters in 3.19(a). Its ToS and the spatial alignment graph is
presented in 3.19(b) (with the same set of nodes, ToS edges are colored black and spatial
alignment graph’s edges are colored red). The best fitting subset of the ToS’s node is
{A,B,C,D,E} and these nodes represent the cyan regions in 3.19(c) with the IoU = 0.57.
Let assume there is a dissimilarity function that can produce an alpha tree of the spatial
graph as in 3.19(d). The red number above each node on 3.19(d) is the IoU score of that
node compare to the red GT. The best fitting node represent the cyan region on 3.19(e)
with IoU = 0.52. The quality ratio will be 0.52

0.57 = 91%

after adding a new node x to S′ is:

IoUS′∪{x} = IS′ + Ix
RGT +RS′ − IS′ +Rx − Ix

We observe that IoUS′∪{x} always increase if Ix = Rx. Therefore we initialize set S′

with all nodes in S whose IoU = 1. We continue insert x ∈ S−S′ that maximize IoUS′∪{x}

until S − S′ = ∅ or IoUS′ > IoUS′∪{x}. For example in Figure 3.19, we first generate a

set of nodes that totally included in the GT S′ = {B,C,D,E}. Among other nodes that

proper regions intersect with the GT (which are A,O,E), adding A will increase the score

the most, therefore S′ = {A,B,C,D,E}. After that, adding any other nodes (F or O) will

decrease the score.

We run the comparison on a base of 233 images from the ICDAR RRC: Focus Scene text.

Among some text features mentions in the earlier section, we define some the dissimilarity

measure based on component heights and color. We do not consider filling rate FR or

height over width HoW because they would have a low performance with “broken” text.

With G(tor,max) the penalty function 3.2, these measure are:

• DSheight = 1− Sheight ∗ GI(0, Iwidth) ∗ GT (0.2 ∗ Tdepth, 2 ∗ Tdepth)

• DSrgb = 1− (1− ∆̂RGB) ∗ GI(0, Iwidth) ∗ GT (0.2 ∗ Tdepth, 2 ∗ Tdepth) 5.

• DSlab = 1− (1− ∆̂E∗76) ∗ GI(0, Iwidth) ∗ GT (0.2 ∗ Tdepth, 2 ∗ Tdepth) 5.

Table 3.1 shows the average IoU and node quality of trees built on the spatial align-

ment graph weighted with different dissimilarity measure. Some example of bfs and bfn

5. We denote“ˆ” for normalization to [0,1] range

83

Chapter 3 – Spatial Alignment Graph With Respect to Inclusion

Table 3.1 – Quality of nodes on different α-trees (factor by distance on image space and
on tree)

Dissimilarity function Lambda Average IoU Average Quality q

DSheight
2000 66,29% 79,38%
3000 67,71% 82,63%

∆RGB
2000 70,29% 84,16%
3000 70,26% 85,75%

∆E94
2000 71,18% 87,74%
3000 71,27% 86.48%

Figure 3.20 – Comparison between nodes on different alpha trees and the best fitting
subsets of the ToS. From left to right: Ground Truth, Image labeled by MToS’s node, best
fitting subsets of the MToS, best fitting nodes for tree building using DSheight, ∆RGB and
∆E94. The number of MToS level lines from top to bottom: 4451, 447, 101, 740.

are shown in Figure 3.19. We observe that the color dissimilarity on L*a*b* DSlab gives

the best performance. The simple Euclidian distance of color in RGB space is overall just

a slightly behind, but that measure could be computed more efficiently. The height dis-

similarity, which is the simplest and had high performance on the ToSoL, falls behind. The

reason is that in case the ToS could not provide a good segmentation of the image, the

background could be broken into multiple regions which have the same height as the ob-

ject. On the other hand, the objects could also be broken into smaller pieces. Therefore the

height similarity would introduce more false positives. Even in the best cases (with ∆E94),

the segmentation is still far from producing a perfect one. The segmentation is readable for

human, but it still poses challenges for OCR. For example, the first row of Figure 3.20 con-

tains broken characters or the third row contains multiple characters which are connected

by a long line.

84

3.4. Alpha-tree on the Spatial Alignment Graph for Text Detection

3.4.5 Selecting a set of candidate

Although nodes on the second tree could reflect desired groups of objects on the images,

we still have to select them from a rather large set of nodes. In this part, we consider one

approach to extract some notable nodes from that set. With the advancement of machine

learning, especially deep learning methods, we observe that state-of-the-art text detection

methods usually use strong classification tools to separate text from non-text connected

components. We could take the same approach to verify every node on the second tree

and select the best text groups. In our opinion, this approach is overkill when being used

to refine the text candidate set. The final objective of text recognition always requires

an OCR step, which should be capable of telling text from non-text. For that reason, in

this section, we only consider simple approaches to extract a small number of meaningful

nodes on the α-tree as text candidates.

We could do this without using new hypotheses about objects of interest. For example,

we could detect sudden changes in the node size (e.g., number of shapes, area) along the

path from leaves to root. Higher changes indicate the upper node is much more different

than the lower one. To do that, we weight each nodes by the increasing rate: IRA(N) =
A(par(N)−A(N)

A(N) with A the attributes in analysis. We choose the increasing rate rather than

the difference to make this attribute less scale dependence. Let us look at the second

(“your life”) and third (a large portion of image) marked nodes in Figure 3.21(a) and

3.21(b) which we will refer respectively as node A and B. We see that node A and B

have similar area difference (compare to other nodes), but the increasing rate shows that

the difference between A and parent(A) is significantly more noticeable than between B

and parent(B). We could obtain our set of text candidate by choosing nodes whose IRA
passes a threshold or by choosing a fix-size set of strongest nodes.

We could also use other a priori assumption about text characters that have not been

used to construct the tree in the first place. We propose a simple filter based on the idea of

Soille’s (α, ω)-CC [94]. The idea is to weight each α-CC by a scalar value Ax that represent

the range of an attribute x within that CC.Ax globally represents the variation of x in each

component. The attribute range could be effectively computed during the construction of

α-tree if needed. For the text characters detection application, according to our assumption

about the semantic text, we propose using shapes’ height h. Each node on the α-tree will

be weighted by the Maximum over Minimum of height’s range:

MoMh(N ∈ TT) = Maxn∈N (h(n))
Minn∈N (h(n))

The Maximum over Minimum MoMh is increasing in the α-tree because a higher node

is a superset of the lower one. We will select the largest nodes that satisfy the threshold. In

other words, they are the highest nodes on tree that validate the ranges conditions. This

approach is related to the concept of Soille’s (ω)-CC [94]. Therefore, we will denote them

similarly. Selected nodes at a given threshold ω are denoted:

85

Chapter 3 – Spatial Alignment Graph With Respect to Inclusion

(a) Area and ∆Area

(b) Area and IRArea

(c) Group size and IRsize

Figure 3.21 – Evolution of area and group size, area difference and increasing rate along a
path from a leaf (representing letter “o” in “your life”) to root. The MTOSs are simplified by
minimizing the Mumford-Shah cartoon model [116] with a low simplification parameter
(λ = 2000)

86

3.4. Alpha-tree on the Spatial Alignment Graph for Text Detection

Figure 3.22 – Different approaches to select candidates. Left to right: ToS Labeling Map,
5% highest IRarea, 5% highest IRNodessize, (MoMh < 5)-CCs. Top to bottom: Image 1
(greate difference in illumination) and 5 (text at difference scale) from ICDARRR: Forcus
Scene Text and Image 5 (zoomed, small text, incidentally captured in photo) in ICDARRR:
Incidental Scene Text. In addition to these criteria, we also filter out nodes that represent
an area larger than 30%of the image or have less than 3 CC.

(MoMh ≤ ω)-CC = max{αi-CC|MoMh(αi-CC < ω)}

Compare to Soille’s original approach, there are two main differences. First, the at-

tribute A′ whose global range we keep track of may not be the same as the attribute A
that the α-connectivity is defined. A total order on A’s value space is needed to define a

range. However, this may not be the case in our α-tree. For example, we still can define

a local dissimilarity based on the RGB color space. However, there is no explicit ordering

on that space. Moreover, as we argued earlier, the global parameter does not prevent the

leakage from happening but to signal when that happens. We could use other a priori

assumption about the desired object for this purpose, which is height in our case. Second,

the second attribute does not need to be a range length function. In our case, a small

height difference is noticeable for components at lower scales but could be neglected at

higher ones. We find MoM more interesting due to its invariant to scale.

Examples of these two approaches are presented in Figure 3.22.

87

Chapter 3 – Spatial Alignment Graph With Respect to Inclusion

3.5 Conclusion and Perpestive

In this chapter, we continue working on semantic objects regrouping by using the background-

object relationship imposed by inclusion relation, as well as the spatial arrangement of

nodes on a hierarchical image representation. There are two main contributions: first, an

expansion of shape-spaces framework; and second, a spatial arrangement graph with re-

spect to inclusion for unconnected component grouping and application of that graph in

text characters grouping.

Our expansion on the framework of connected filter on shape-spaces [115] is twofold.

First, We expand the definition of the shape-spaces to encompass spaces that are repre-

sented by a graph of shapes, whose vertices are defined by the nodes set of the tree-based

image representation, and their edges are defined with any relationship between these

nodes, which may not coincide with the parent-children one. Second, we take a different

approach than Xu et al. on applying the connected filter on the shape-spaces. We pro-

pose the reconstruction of the shape-spaces through its associated function. This approach

allows us to performed non-pruning strategy on the second tree while still fits into the

connected filters frameworks.

We apply that framework for text characters detection in natural images. First, we

propose the spatial arrangement graph with respect to inclusion. That graph embeds both

these types of information into a single structure, and is useful for semantic component

grouping. Second, we apply that graph as a method to group similar components, which

are likely to be text characters. We start with a simplified MToS that represent the original

image and construct the spatial alignment graph. On that graph, neighbors of a “shape”,

i.e., node on the first tree, are those that are not its background and spatially aligned.

By constructing an α-tree with customized dissimilarity function on that graph, we could

represent groups of semantically related text characters by nodes on that tree. We have

proven these nodes have good quality in comparison with the best possible group of started

segmentation provided by the ToS. We also propose some approaches to select essential

groups from the α-tree for later processing.

As a perspective, three different research directions are of interest. First, we would like

to study different approaches to construct a graph with both inclusion and spatial relation-

ship, as well as different ways to construct the second tree. Second, we will integrate our

approach into an end-to-end text detection and recognition system. Finally, we also could

study the image simplification aspect of our framework.

To begin, several aspects of our works need more study. As discussed in Section 3.3.1,

although the hierarchical of segmentation such as α-tree and especially BPT is more adapt-

able to obtain objects of interest, the inclusion relationship is not natively encoded. We

consider the possibility of imposing the inclusion relationship on these type of tree to adapt

them to our framework. On the other hand, we are also considering other approaches to

construct the second tree. Instead of presenting the difference between regions’ multi-

variant attributes by a scalar dissimilarity function, we could consider other approaches

88

3.5. Conclusion and Perpestive

in extending hierarchical image representation to multivariant images, e.g., [16, 94]. A

learned dissimilarity function that adapts to each application is also an interesting per-

spective.

Next, we intend to integrate our text detection and segmentation approach in a text

detection pipeline for a complete end-to-end method. A text rectification step (to correct

broken texts) and OCR step is needed for an end-to-end evaluation.

Finally, we intend to study the image simplification aspect of this framework. As men-

tioned in Section 3.2.3, it is possible to reconstruct the filtered image from the second

tree. Because nodes on the second tree (e.g., the α-tree on a spatial alignment graph) are

usually groups of non-connected components, the simplified image may not be simplified

in term of number level lines but the value space.

89

Chapter 4

Conclusion and Perspectives

This thesis has been devoted to the study of inclusion and other types of spatial infor-

mation on hierarchical image representations. The inclusion relationship of regions in an

image is interesting because it allows us to deduce the objects-background relationship

between image regions, which carries contextual information. Along with other spatial ar-

rangement relationship: adjacency, in the sense of "nearby" or more general the alignment

of image regions, they could benefit many context-based applications. Hierarchical image

representations, on the other hand, are great devices that allow us to render the intrinsic

multiscale nature of images in a simple, understandable structure.

The objective of this thesis has been the exploitation of inclusion and other spatial

information in hierarchical image representations, order to better analyze the image con-

textually in a multiscale manner. In that context, we had chosen to integrate spatial infor-

mation into a hierarchical image representation that encodes the inclusion relationship,

which yields interesting results. The main results of the works presented in this disserta-

tion are:

• A variant of ToS, the Tree of Shapes of Laplacian sign (ToSoL) which encodes the

inclusion of 0-crossing of a Morphological Laplacian map. Although we rely on the

“classical” 0-crossings of the Laplace operator image to obtain objects of interest, our

version is innovative for several reasons. First, we rely on the morphological Laplace

operator, which performs well in the case of uneven illumination, which is a common

problem in natural images. Second, we ensure that the “0-crossings” are real 1D

objects. We do that by using a well-composed Laplacian image and considering the

1D topological boundary of shapes. As a consequence, the positive and negative

regions can be organized into a tree without topological ambiguity. Last we present

a linear time complexity algorithm to compute the hierarchical structure. We also

ensure that our algorithm allows us to, directly during the computation process,

ignore some regions if they are not relevant. We also propose an optimization that

mimics well-composedness to avoids the real interpolation process.

• A simple grouping process on the ToSoL which take advantage of both inclusion

and adjacency. Thanks to the structure of the ToSoL, relevant regions are sibling on

the tree structure. Combine with adjacency obtained by a simple spatial search, our

method has a good balance between efficiency (linear time complexity) and quality

(with a competitive F-score).

91

Chapter 4 – Conclusion and Perspectives

• An expansion of the shape-space morphology [115]. Our expansion has two primary

results: 1) It allows the manipulation of any graph of shapes, which encodes differ-

ent information. 2) It allows any tree filtering strategy proposed by the connected

operator frameworks.

• A graph, representing a shape-space, that is construct from both inclusion and spatial

arrangement, called spatial alignment graph w.r.t inclusion. Neighbors of a node are

regions that are not its background (regions in which it is included) and spatially

aligned (regions that are in the desired direction in the image space).

• Application of the generalized shape-space morphology and spatial alignment graph

w.r.t inclusion in text detection. By constructing an α-tree with a dissimilarity mea-

sure adapt to the application, we could obtain groups of semantic text characters

with high quality. We also propose some approaches to obtain a small set of candi-

dates for the later stages of end-to-end text detection and recognition pipeline.

Extension And Future Studies

Improvement of the spatial graph w.r.t inclusion

Choice of the first tree. The ToS may not produce a proper segmentation in some case,

in particular in uneven illumination, which results in “broken” objects, i.e., the object is

represented by a set of unconnected regions. Although we could regroup these broken

parts, one may want to start with a better segmentation. In this case, we may choose with

a different tree, e.g., a BPT adapts to highlight objects of interest, and impose the inclusion

relationship to that tree.

Construction of the second tree. Many interesting attributes of elements of the shape-

space is multivariate, e.g., color. Moreover, we also have the distance on the tree and

the distance on the image to consider. As a results, our shape-space is multivariate. In

this study, we took a simple approach that combines these features into a simple linear

dissimilarity function to construct the α-tree. There are other approaches to this problem:

There are several extension of hierarchical image presentation for multichannel image

[79, 94, 16], which could be adapted to our graph.

On the other hand, one considers a “learned” feature that adapts to the application, so

that desire objects are grouped on the second tree.

Application aspect of our work

Continuation of the text detection application. Because our method only produces text

candidates, integration to an end-to-end text detection and recognition is needed. Depend

on the ability of the OCR step, we could separate the text group into individual charac-

ters easily (by separate a group based on the subtrees they belong to, or by analysis the

distribution of that group, e.g., as in Figure 4.1).

92

(a)

0 200 400 600 800
0

20

40

60

80

100

120

140

0.0

0.2

0.4

0.6

0.8

1.0

1.2

(b)

Figure 4.1 – Separation of a text group into individual characters. These text group in
Figure 3.8(f) could be separate in different way. Most of the time, we face the case of
“kills” where characters are in disconnected subtrees. On the other hand, for “broken”
characters, we may rely on the distribution of the text group for separation. For example,
in 4.1(b), we could use the red function to separate the text group. (The gray function is
the histogram of points in each column. We threshold hist and then filter out small gain
(less than 5-pixel width) to obtain the red function.)

Other applicative aspects of this work, in particular, filtering/image simplification.

Because the shape-spaces framework allows the reconstruction of images from the filtered

second tree, we could use this work for image simplification purpose. The reconstituted

image may not be simplified in the number of flat-zones but the value space. We could

also follow the node removal approach [115] to remove similar repetitive regions. These

regions, especially at a lower scale, sometimes may not be the subject of the application

and should be filtered out.

93

Appendices

A Ancestor Relationship and Lowest Common Ancestor in Py-

lene

A.1 Olena and Pylene

Our works were implemented with the help of Olena and its modernized version, Pylene.

Olena is a platform devoted to image processing and pattern recognition. Its core

component is Milena, a generic and efficient C++ library. Milena provides a framework

to implement simple, fast, safe, reusable and extensible image processing toolchains. The

library provides many ready-to-use image data structures (regular 1D, 2D, 3D images,

graph-based images, etc.) and algorithms. Milena’s algorithms are built upon classical enti-

ties from the image processing field (images, points/sites, domains, neighborhoods, etc.).

This design allows image processing developers and practitioners to easily understand,

modify, develop and extend new algorithms while retaining the core traits of Milena:

genericity and efficiency.

Pylene is a fork of Milena (http://www.lrde.epita.fr/olena), an image processing li-

brary targeting genericity and efficiency. Pylene is a modernized version of Milena with

the following objectives:

• Simplicity: both python bindings and simple C++ syntax

• Efficiency: algorithms are written in a simple way and could be run as if they were

written in C. They follow one guideline: zero-cost abstraction.

• Genericity: algorithms are able to run on any kind of images with, yet, zero-cost

abstraction.

• interoperability: algorithms in Pylene run on images coming from external libraries.

The component tree structure

In pylene, component tree is a data structure that encodes any morphological tree e.g.

mintree, maxtree, tree of shapes, α-tree, binary partition tree. They states the inclusion of

connected components.

This structure is basically a triplet (N, S, pmap) where:

• N is a vector of nodes. Index of a node in this vector is its id.

• S is a vector of points.

95

O
A
B
D

E

C
F

(a) A simple image

A

O

F

B C

D E

(b) The ToS

sentinel O A B D E C F
index: 0 1 2 3 4 5 6 7

•parent:
•prev_node:
•next_node:
•next_sibling:
•

(c) The N vector

Figure A.1 – Example of the component tree structure.

• pmap is mapping S → N . It is the labeling map show the deepest node each point

belong to. In case of a hierarchy of segmentation, this map shows the finnest par-

tition. In case of a hierarchy based on the threshold decomposition, it shows the

proper pixels of each node.

A node is a quintet (parent, prev_node, next_node,next_sibling,first_point)

• parent: Index (in N) of the parent node.

• prev_node: Index (in N) of the previous node.

• next_node: Index (in N) of next node.

• next_sibling: Index (in N) of the next sibling in the subtree. If there is not any

sibling, this field is set with the sibling of its parent.

• first_point: The first point index (in S) of the component

N and S are supposed to be ordered by depth-first search, but it might be too strong for

some application and requires an extra step to produce this ordering, thus the structure

has a tag, that tells if the ordering as been computed. The vector N has an extra sentinel

node at the end to ease traversal processes. This sentinel is at index 0 and is composed by

the quintet (parent: 0, prev_node: root, next: 0, next_sibling: 0, first_point: S.size()). An

example is given in Figure A.1.

96

A.2 Ancestor relationship and Lowest Common Ancestor in Pylene

In our method, the ancestor relationship is required in multiple occassion, for example

during the spatial search on the labeling map to construct the spatial alignment graph,

we have to ignore the background regions which are represented by ancestor nodes on

the first tree (see Section 3.3). The Lowest Common Ancestor is require to compute the

distance on tree, which is a requirement in our approaches.

Thanks to the component tree structure, we could verifier the is-ancestor-of relation-

ship with constant time complexity. Because of the order of N , ID of a node n must

be in between the id its ancestors and their next siblings, except next sibling is the

sentinel. For that reason, we could verify this relationship with constant time complex-

ity. For example, in Figure A.1, we know that F is a decendant of A because id(F) <
id(A)andA.next_sibling = sentinel. On the other hand, F is not an decendant of B

because id(F) 6∈ (id(B), id(B.next_sibling = C)). Because the LCA is needed when we

already have a depth map of the tree (to compute the distance on tree), the LCA is ob-

tained by climbing from the nearest node from root until we reach the other node its

ancestor. This approach take O(h) time with h is the height of the tree. The worst case

is when the every node in the tree have only one child except the root have two, thus h

= floor(N/2)+1. A pseudo code for these two query using the component tree structure

is presented in Algorithm 4. This query could be done in constant time, for example by

reducing the LCA problem into a Range Minimum Query problem [25].

1 Function isAncestor(node, Ancestor):
2 return node> Ancestor and (node < N[Ancestor].next_sibling or

N[Ancestor].next_sibling ==0);
3 Function LCA(node1, node2):
55 if depth(node1)<depth(node2) then
77 swap(node1,node2);
99 while not isAncestor (node1, node2) do

10 node2 = N[node].parent;
11 return node2;

Algorithm 4: Ancestor verification and Lowest Common Ancestor

97

Bibliography

[1] David H. Alman. “CIE technical committee 1–29, industrial color-difference evalu-

ation progress report”. In: Color Research & Application 18.2 (Apr. 1993), pp. 137–

139 (cit. on pp. 68, 75).

[2] E. Aptoula and S. Lefèvre. “A comparative study on multivariate mathematical

morphology”. In: Pattern Recognition 40.11 (Nov. 2007), pp. 2914–2929 (cit. on

pp. 10, 23).

[3] Galia Avidan et al. “Contrast Sensitivity in Human Visual Areas and Its Relation-

ship to Object Recognition”. In: Journal of Neurophysiology 87.6 (June 2002),

pp. 3102–3116 (cit. on p. 49).

[4] C. F. Bennstrom and J. R. Casas. “Binary-partition-tree creation using a quasi-

inclusion criterion”. In: Proceedings. Eighth International Conference on Information
Visualisation, 2004. IV 2004. July 2004, pp. 259–264 (cit. on p. 16).

[5] Ilya Blayvas, Alfred Bruckstein, and Ron Kimmel. “Efficient Computation of Adap-

tive Threshold Surfaces for Image Binarization”. In: Pattern Recognition 39.1 (2006),

pp. 89–101 (cit. on p. 39).

[6] Otakar Borůvka. “O jisíém problému minimálním (About a certain minimal prob-

lem)”. In: Práce moravské přírodovědecké společnosti (1926), p. 24 (cit. on p. 14).

[7] Petra Bosilj, Ewa Kijak, and Sébastien Lefèvre. “Partition and Inclusion Hierarchies

of Images: A Comprehensive Survey”. In: Journal of Imaging 4.2 (Feb. 1, 2018),

p. 33 (cit. on pp. 19, 21).

[8] Nicolas Boutry, Thierry Géraud, and Laurent Najman. “How to Make nD Functions

Digitally Well-Composed in a Self-dual Way”. In: Mathematical Morphology and Its
Applications to Signal and Image Processing. Ed. by Jón Atli Benediktsson et al.

Vol. 9082. Cham: Springer International Publishing, 2015, pp. 561–572 (cit. on

p. 44).

[9] Edmond J. Breen and Ronald Jones. “Attribute Openings, Thinnings, and Granu-

lometries”. In: Computer Vision and Image Understanding 64.3 (Nov. 1996), pp. 377–

389 (cit. on pp. 25, 27, 28).

[10] J. Burie et al. “ICDAR2015 competition on smartphone document capture and

OCR (SmartDoc)”. In: 2015 13th International Conference on Document Analysis
and Recognition (ICDAR). Aug. 2015, pp. 1161–1165 (cit. on p. 53).

99

[11] Wenli Cai et al. “Structure-analysis method for electronic cleansing in cathartic

and noncathartic CT colonography”. In: Medical Physics 35.7 (July 2008), pp. 3259–

3277. JSTOR: {PMC}2809717 (cit. on p. 10).

[12] Stefania Calarasanu, Jonathan Fabrizio, and Severine Dubuisson. “Using histogram

representation and Earth Mover’s Distance as an evaluation tool for text detec-

tion”. In: IEEE, Aug. 2015, pp. 221–225 (cit. on p. 52).

[13] Stefania Calarasanu, Jonathan Fabrizio, and Severine Dubuisson. “What is a good

evaluation protocol for text localization systems? Concerns, arguments, compar-

isons and solutions”. In: Image and Vision Computing 46 (Feb. 2016), pp. 1–17

(cit. on p. 51).

[14] Stefania Calarasanu, Jonathan Fabrizio, and Séverine Dubuisson. “From Text De-

tection to Text Segmentation: A Unified Evaluation Scheme”. In: Computer Vision
– ECCV 2016 Workshops. European Conference on Computer Vision. Ed. by Gang

Hua and Hervé Jégou. Lecture Notes in Computer Science. Springer International

Publishing, Oct. 8, 2016, pp. 378–394 (cit. on p. 51).

[15] E. Carlinet and T. Géraud. “A Comparative Review of Component Tree Computa-

tion Algorithms”. In: IEEE Transactions on Image Processing 23.9 (2014), pp. 3885–

3895 (cit. on p. 20).

[16] Edwin Carlinet and Thierry Geraud. “MToS: A Tree of Shapes for Multivariate

Images”. In: IEEE Transactions on Image Processing 24.12 (Dec. 2015), pp. 5330–

5342 (cit. on pp. 3, 23, 24, 63, 66–69, 73, 79, 89, 92).

[17] Vicent Caselles, Bartomeu Coll, and Jean-Michel Morel. “Topographic Maps and

Local Contrast Changes in Natural Images”. In: Int. J. Comput. Vision 33.1 (Sept.

1999), pp. 5–27 (cit. on pp. 2, 20).

[18] Vicent Caselles and Pascal Monasse. Geometric description of images as topographic
maps. Lecture notes in mathematics 1984. Heidelberg ; London ; New York: Springer,

2010. 186 pp. (cit. on p. 21).

[19] Adam Coates et al. “Text Detection and Character Recognition in Scene Images

with Unsupervised Feature Learning”. In: Proceedings of the 2011 International
Conference on Document Analysis and Recognition. ICDAR ’11. Washington, DC,

USA: IEEE Computer Society, 2011, pp. 440–445 (cit. on p. 34).

[20] Jean Cousty et al. “Watershed cuts: Minimum spanning forests and the drop of

water principle”. In: IEEE Transactions on Pattern Analysis and Machine Intelligence
31.8 (2009), pp. 1362–1374 (cit. on p. 14).

[21] Boris Epshtein, Eyal Ofek, and Yonatan Wexler. “Detecting text in natural scenes

with stroke width transform”. In: Computer Vision and Pattern Recognition (CVPR),
2010 IEEE Conference on. IEEE, 2010, pp. 2963–2970 (cit. on pp. 33–35, 51).

100

http://www.jstor.org/stable/{PMC}2809717

[22] Jonathan Fabrizio et al. “TextCatcher: A Method to Detect Curved and Challeng-

ing Text in Natural Scenes”. In: International Journal on Document Analysis and
Recognition (2016), pp. 1–19 (cit. on p. 51).

[23] Yi-Feng Pan, Xinwen Hou, and Cheng-Lin Liu. “A Hybrid Approach to Detect and

Localize Texts in Natural Scene Images”. In: IEEE Transactions on Image Processing
20.3 (Mar. 2011), pp. 800–813 (cit. on p. 34).

[24] R. A. finkel and J. L. Bentley. “Quad trees a data structure for retrieval on compos-

ite keys”. In: Acta Informatica 4.1 (1974), pp. 1–9 (cit. on p. 1).

[25] Johannes fischer and Volker Heun. “A New Succinct Representation of RMQ-

Information and Improvements in the Enhanced Suffix Array”. In: Combinatorics,
Algorithms, Probabilistic and Experimental Methodologies. Vol. 4614. Berlin, Hei-

delberg: Springer Berlin Heidelberg, 2007, pp. 459–470 (cit. on p. 97).

[26] C. Garcia and X. Apostolidis. “Text detection and segmentation in complex color

images”. In: Proceedings of the 2000 IEEE International Conference on Acoustics,
Speech, and Signal Processing. Vol. 4. IEEE, 2000, pp. 2326–2329 (cit. on p. 35).

[27] D. Gatica-Perez et al. “Extensive partition operators, gray-level connected op-

erators, and region merging/classification segmentation algorithms: theoretical

links”. In: IEEE Transactions on Image Processing 10.9 (Sept. 2001), pp. 1332–

1345 (cit. on p. 26).

[28] Thierry Géraud, Edwin Carlinet, and S. Crozet. “Self-Duality and Discrete Topol-

ogy”. In: International Symposium on Mathematical Morphology and Its Applica-
tions to Signal and Image Processing. Vol. 9082. LNCS. Springer, 2015, pp. 573–

584 (cit. on p. 44).

[29] Thierry Geraud et al. “A Quasi-Linear Algorithm to Compute the Tree of Shapes

of n-D Images.”. In: International Symposium on Mathematical Morphology and
Its Applications to Signal and Image Processing. Vol. 7883. LNCS. Springer, 2013,

pp. 98–110 (cit. on pp. 21, 42, 44, 63).

[30] J. C. Gower and G. J. S. Ross. “Minimum Spanning Trees and Single Linkage

Cluster Analysis”. In: Applied Statistics 18.1 (1969), p. 54 (cit. on p. 18).

[31] S. Hambrusch, X. He, and R. Miller. “Parallel Algorithms for Gray-Scale Digitized

Picture Component Labeling on a Mesh-Connected Computer”. In: Journal of Par-
allel and Distributed Computing 20 (1994), pp. 56–68 (cit. on pp. 18, 80).

[32] Shehzad Muhammad Hanif, Lionel Prevost, and Pablo Augusto Negri. “A cascade

detector for text detection in natural scene images”. In: Pattern Recognition (ICPR),
2008 19th International Conference on. IEEE, Dec. 2008, pp. 1–4 (cit. on p. 35).

[33] He ZhiWei et al. “A new automatic extraction method of container identity codes”.

In: Intelligent Transportation Systems, 2003. Proceedings. 2003 IEEE. Vol. 2. IEEE,

2003, pp. 1688–1691 (cit. on p. 32).

101

[34] Kaiming He et al. “Mask R-CNN”. In: CoRR abs/1703.06870 (2017). arXiv: 1703.

06870 (cit. on p. 34).

[35] Xiaodong Huang and Huadong Ma. “Automatic Detection and Localization of Nat-

ural Scene Text in Video”. In: Pattern Recognition (ICPR), 2010 20th International
Conference on. IEEE, Aug. 2010, pp. 3216–3219 (cit. on p. 36).

[36] Lê Duy Huỳnh, Yongchao Xu, and Thierry Géraud. “Morphology-Based Hierar-

chical Representation with Application to Text Segmentation in Natural Images”.

In: Proceedings of the 23st International Conference on Pattern Recognition (ICPR).

Cancún, México: IEEE Computer Society, Dec. 2016 (cit. on pp. 66, 68).

[37] Anil K. Jain and Bin Yu. “AUTOMATIC TEXT LOCATION IN IMAGES AND VIDEO

FRAMES”. In: Pattern Recognition 31.12 (Dec. 1998), pp. 2055–2076 (cit. on

p. 35).

[38] Vojtěch Jarník. “O jistém problému minimálním (About a certain minimal prob-

lem)”. In: Práce Moravské Přírodovědecké Společnosti 6.4 (1930), pp. 57–63 (cit. on

p. 14).

[39] Jean C. Serra and Philippe Salembier. “Connected operators and pyramids”. In:

vol. 2030. 1993, pp. 2030–12 (cit. on pp. 25, 26).

[40] Ronald Jones. “Component Trees for Image filtering and Segmentation”. In: Pro-
ceedings of the 1997 IEEE Workshop on Nonlinear Signal and Image Processing.

Mackinac Island, 1997, p. 5 (cit. on pp. 1, 3, 20).

[41] Ronald Jones. “Connected filtering and Segmentation Using Component Trees”.

In: Computer Vision and Image Understanding 75.3 (1999), pp. 215–228 (cit. on

pp. 1, 20, 25, 26).

[42] Kai Wang, Boris Babenko, and Serge Belongie. “End-to-end scene text recogni-

tion”. In: international conference on computer vision. IEEE, Nov. 2011, pp. 1457–

1464 (cit. on p. 34).

[43] D. Karatzas and A. Antonacopoulos. “Text extraction from Web images based on a

split-and-merge segmentation method using colour perception”. In: Pattern Recog-
nition (ICPR), International Conference on. IEEE, 2004, 634–637 Vol.2 (cit. on

p. 35).

[44] Dimosthenis Karatzas et al. “ICDAR 2013 Robust Reading Competition”. In: 2013
12th International Conference on Document Analysis and Recognition (ICDAR). IEEE,

Aug. 2013, pp. 1484–1493 (cit. on pp. 34, 79).

[45] D. Karatzas et al. “ICDAR 2011 Robust Reading Competition - Challenge 1: Read-

ing Text in Born-Digital Images (Web and Email)”. In: 2011 11th International
Conference on Document Analysis and Recognition (ICDAR). IEEE, Sept. 2011, pp. 1485–

1490 (cit. on p. 31).

102

http://arxiv.org/abs/1703.06870
http://arxiv.org/abs/1703.06870

[46] Kongqiao Wang, J.A. Kangas, and Wenwen Li. “Character segmentation of color

images from digital camera”. In: Proceedings of Sixth International Conference on
Document Analysis and Recognition. IEEE Comput. Soc, 2001, pp. 210–214 (cit. on

p. 35).

[47] J.B. Kruskal. “On the shortest spanning subtree of a graph and the traveling sales-

man problem”. In: Proceedings of the American Mathematical Society 7 (1956),

pp. 48–50 (cit. on p. 14).

[48] Jung-Jin Lee et al. “AdaBoost for Text Detection in Natural Scene”. In: 2011 In-
ternational Conference on Document Analysis and Recognition. IEEE, Sept. 2011,

pp. 429–434 (cit. on p. 34).

[49] SeongHun Lee et al. “Scene Text Extraction with Edge Constraint and Text Collinear-

ity”. In: Pattern Recognition (ICPR), 2010 20th International Conference on. IEEE,

Aug. 2010, pp. 3983–3986 (cit. on pp. 34, 35).

[50] Jian Liang, David Doermann, and Huiping Li. “Camera-based analysis of text and

documents: a survey”. In: International Journal of Document Analysis and Recogni-
tion (IJDAR) 7.2 (July 2005), pp. 84–104 (cit. on pp. 32, 33, 35).

[51] Jie Liu et al. “A Novel Italic Detection and Rectification Method for Chinese Adver-

tising Images”. In: 2011 11th International Conference on Document Analysis and
Recognition (ICDAR). IEEE, Sept. 2011, pp. 698–702 (cit. on p. 33).

[52] Y. Liu. “A Contour-Based Robust Algorithm for Text Detection in Color Images”. In:

IEICE Transactions on Information and Systems E89-D.3 (Mar. 1, 2006), pp. 1221–

1230 (cit. on pp. 33, 34).

[53] Zhi Liu, Liquan Shen, and Zhaoyang Zhang. “Unsupervised image segmentation

based on analysis of binary partition tree for salient object extraction”. In: Signal
Processing 91.2 (Feb. 2011), pp. 290–299 (cit. on p. 16).

[54] Huihai Lu, J. C. Woods, and M. Ghanbari. “Binary Partition Tree for Semantic

Object Extraction and Image Segmentation”. In: Circuits and Systems for Video
Technology, IEEE Transactions on 17.3 (Mar. 2007), pp. 378–383 (cit. on p. 16).

[55] J. Matas et al. “Robust Wide-Baseline Stereo from Maximally Stable Extremal Re-

gions”. In: Image and Vision Computing 22.10 (2004), pp. 761–767 (cit. on p. 51).

[56] Navid Mavaddat, Tae-Kyun Kim, and Roberto Cipolla. “Design and evaluation of

features that best define text in complex scene images”. In: Proceedings of the
Eleventh IAPR Conference on Machine Vision Applications, p. 4 (cit. on p. 35).

[57] Fernand Meyer and Petros Maragos. “Nonlinear Scale-Space Representation with

Morphological Levelings”. In: Journal of Visual Communication and Image Repre-
sentation 11.2 (June 2000), pp. 245–265 (cit. on pp. 1, 16).

[58] Wojciech Mokrzycki and Maciej Tatol. “Color difference Delta E - A survey”. In:

Machine Graphics and Vision 20 (Apr. 1, 2011), pp. 383–411 (cit. on p. 75).

103

[59] P. Monasse and F. Guichard. “Fast computation of a contrast-invariant image rep-

resentation”. In: IEEE Transactions on Image Processing 9.5 (May 2000), pp. 860–

872 (cit. on pp. 1–3, 20, 21).

[60] Raul S Montero and Ernesto Bribiesca. “State of the Art of Compactness and Circu-

larity Measures”. In: In International Mathematical Forum (), p. 31 (cit. on p. 27).

[61] U. Moschini, A. Meijster, and M. H. F. Wilkinson. “A Hybrid Shared-Memory Paral-

lel Max-Tree Algorithm for Extreme Dynamic-Range Images”. In: IEEE Transactions
on Pattern Analysis and Machine Intelligence 40.3 (Mar. 2018), pp. 513–526 (cit.

on p. 21).

[62] Ali Mosleh, Nizar Bouguila, and A. Ben Hamza. “Image Text Detection Using a

Bandlet-Based Edge Detector and Stroke Width Transform”. In: Proceedings of
the British Machine Vision Conference. British Machine Vision Association, 2012,

pp. 63.1–63.12 (cit. on p. 36).

[63] Makoto Nagao, Takashi Matsuyama, and Yoshio Ikeda. “Region extraction and

shape analysis in aerial photographs”. In: Computer Graphics and Image Processing
10.3 (July 1979), pp. 195–223 (cit. on pp. 1, 16).

[64] L. Najman and M. Couprie. “Building the Component Tree in Quasi-Linear Time”.

In: IEEE Transactions on Image Processing 15.11 (Nov. 2006), pp. 3531–3539 (cit.

on p. 21).

[65] Laurent Najman, Jean Cousty, and Benjamin Perret. “Playing with Kruskal: Algo-

rithms for Morphological Trees in Edge-Weighted Graphs”. In: International Sym-
posium on Mathematical Morphology and Its Applications to Signal and Image Pro-
cessing. Vol. 7883. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 135–

146 (cit. on pp. 14, 16, 18, 74, 78).

[66] Laurent Najman and Hugues Talbot, eds. Mathematical morphology: from theory
to applications. London: ISTE [u.a.], 2010. 507 pp. (cit. on pp. 1, 39).

[67] Lukáš Neumann and Jǐrí Matas. “Real-Time Lexicon-Free Scene Text Localization

and Recognition”. In: IEEE Transactions on Pattern Analysis and Machine Intelli-
gence () (cit. on p. 51).

[68] Lukáš Neumann and Jǐrí Matas. “Real-time scene text localization and recogni-

tion”. In: Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference
on. IEEE, 2012, pp. 3538–3545 (cit. on pp. 33, 35, 36).

[69] Lukáš Neumann and Jǐrí Matas. “Text Localization in Real-World Images Using

Efficiently Pruned Exhaustive Search”. In: 2011 International Conference on Doc-
ument Analysis and Recognition. IEEE, Sept. 2011, pp. 687–691 (cit. on pp. 34,

35).

104

[70] N Nikolaou and N Papamarkos. “Color Reduction for Complex Document Images”.

In: International Journal on Imaging and System and Technology 19.1 (Mar. 2009),

pp. 14–26 (cit. on p. 35).

[71] David Nistér and Henrik Stewénius. “Linear Time Maximally Stable Extremal Re-

gions”. In: Computer Vision – ECCV 2008. Berlin, Heidelberg: Springer Berlin Hei-

delberg, 2008, pp. 183–196 (cit. on p. 20).

[72] Larry O’Gorman. Document Image Analysis: An Executive Briefing. Ed. by Lawrence

O’Gorman and Rangachar Kasturi. 1st. Los Alamitos, CA, USA: IEEE Computer

Society Press, 1997 (cit. on p. 31).

[73] Georgios K Ouzounis. “A parallel implementation of the dual-input Max-Tree al-

gorithm for attribute filtering”. In: International Symposium on Mathematical Mor-
phology (ISMM), 2007. Vol. 1. 2007, p. 13 (cit. on p. 21).

[74] Georgios K. Ouzounis and Pierre Soille. “Pattern Spectra from Partition Pyramids

and Hierarchies”. In: Mathematical Morphology and Its Applications to Image and
Signal Processing. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 108–

119 (cit. on p. 1).

[75] Yi-Feng Pan, Xinwen Hou, and Cheng-Lin Liu. “Text Localization in Natural Scene

Images Based on Conditional Random field”. In: International Conference on Doc-
ument Analysis and Recognition. IEEE, 2009, pp. 6–10 (cit. on p. 34).

[76] T. Pavlidis. “Hierarchies in structural pattern recognition”. In: Proceedings of the
IEEE 67.5 (May 1979), pp. 737–744 (cit. on p. 1).

[77] A. V. Pillai et al. “Detection and localization of texts from natural scene images

using scale space and morphological operations”. In: IEEE, Mar. 2013, pp. 880–

885 (cit. on p. 35).

[78] Qixiang Ye et al. “A robust text detection algorithm in images and video frames”.

In: Proceedings of the 2003 Joint Conference of the Fourth International Confer-
ence on Information, Communications and Signal Processing. Vol. 2. IEEE, 2003,

pp. 802–806 (cit. on p. 35).

[79] Jimmy Francky Randrianasoa et al. “Binary Partition Tree construction from multi-

ple features for image segmentation”. In: Pattern Recognition 84 (2018), pp. 237–

250 (cit. on p. 92).

[80] Shaoqing Ren et al. “Faster R-CNN: Towards Real-Time Object Detection with Re-

gion Proposal Networks”. In: CoRR abs/1506.01497 (2015). arXiv: 1506.01497

(cit. on p. 34).

[81] P. Salembier and L. Garrido. “Binary partition tree as an efficient representation for

image processing, segmentation, and information retrieval”. In: IEEE Transactions
on Image Processing 9.4 (Apr. 2000), pp. 561–576 (cit. on pp. 1, 3, 15, 16, 26).

105

http://arxiv.org/abs/1506.01497

[82] P. Salembier, A. Oliveras, and L. Garrido. “Antiextensive connected operators for

image and sequence processing”. In: IEEE Transactions on Image Processing 7.4
(Apr. 1998), pp. 555–570 (cit. on pp. 1, 20, 25, 26, 28, 30).

[83] P. Salembier and J. Serra. “Flat zones filtering, connected operators, and filters

by reconstruction”. In: IEEE Transactions on Image Processing 4.8 (Aug. 1995),

pp. 1153–1160 (cit. on pp. 9, 20, 25, 26).

[84] Philippe Salembier and Michael Wilkinson. “Connected operators”. In: IEEE Signal
Processing Magazine 26.6 (Nov. 2009), pp. 136–157 (cit. on pp. 3, 25, 26).

[85] Jean Serra. “A Lattice Approach to Image Segmentation”. In: Journal of Mathe-
matical Imaging and Vision 24.1 (Jan. 2006), pp. 83–130 (cit. on pp. 11, 26).

[86] Jean Serra. Image Analysis and Mathematical Morphology. Orlando, FL, USA: Aca-

demic Press, Inc., 1983 (cit. on p. 1).

[87] Gaurav Sharma. Digital Color Imaging Handbook. Boca Raton, FL, USA: CRC Press,

Inc., 2002 (cit. on p. 79).

[88] Gaurav Sharma, Wencheng Wu, and Edul N. Dalal. “The CIEDE2000 color-difference

formula: Implementation notes, supplementary test data, and mathematical ob-

servations”. In: Color Research & Application 30.1 (Feb. 2005), pp. 21–30 (cit. on

p. 75).

[89] Baoguang Shi, Xiang Bai, and Serge Belongie. “Detecting Oriented Text in Natural

Images by Linking Segments”. In: arXiv:1703.06520 [cs]. 2017 IEEE Conference

on Computer Vision and Pattern Recognition (CVPR). Mar. 19, 2017, pp. 3482–

3490 (cit. on p. 34).

[90] Cunzhao Shi et al. “Scene text detection using graph model built upon maximally

stable extremal regions”. In: Pattern Recognition Letters 34.2 (Jan. 2013), pp. 107–

116 (cit. on p. 36).

[91] Palaiahnakote Shivakumara, Weihua Huang, and Chew Lim Tan. “Efficient video

text detection using edge features”. In: Pattern Recognition (ICPR), 2008 19th In-
ternational Conference on. IEEE, Dec. 2008, pp. 1–4 (cit. on p. 35).

[92] Jean Claude Simon. Patterns and operators: The foundations of data representation.

McGraw-Hill, 1986 (cit. on p. 11).

[93] Ray Smith, Daria Antonova, and Dar-Shyang Lee. “Adapting the Tesseract open

source OCR engine for multilingual OCR”. In: MOCR ’09: Proceedings of the Inter-
national Workshop on Multilingual OCR. ACM Press, 2009, p. 1 (cit. on p. 33).

[94] P. Soille. “Constrained connectivity for hierarchical image partitioning and simpli-

fication”. In: IEEE Transactions on Pattern Analysis and Machine Intelligence 30.7
(July 2008), pp. 1132–1145 (cit. on pp. 1, 3, 16, 18, 19, 85, 89, 92).

[95] P. Soille, ed. Morphological Image Analysis—Principles and Applications. 2nd. Springer-

Verlag, 2004 (cit. on p. 39).

106

[96] Yuqing Song. “A Topdown Algorithm for Computation of Level Line Trees”. In:

IEEE Transactions on Image Processing 16.8 (Aug. 2007), pp. 2107–2116 (cit. on

pp. 1, 21).

[97] Yuqing Song and Aidong Zhang. “Analyzing scenery images by monotonic tree”.

In: Multimedia Systems 8.6 (Apr. 2003), pp. 495–511 (cit. on pp. 1, 21).

[98] K. Subramanian et al. “Character-Stroke Detection for Text-Localization and Ex-

traction”. In: International Conference on Document Analysis and Recognition. IEEE,

Sept. 2007, pp. 33–37 (cit. on p. 35).

[99] Minsoo Suk and Ohyoung Song. “Curvilinear Feature Extraction using minimum

Spanning trees”. In: Computer Vision, Graphics, and Image Processing 26.3 (June

1984), pp. 400–411 (cit. on p. 14).

[100] Robert Endre Tarjan. “Efficiency of a Good But Not Linear Set Union Algorithm”.

In: Journal of the ACM 22.2 (Apr. 1, 1975), pp. 215–225 (cit. on p. 21).

[101] Erik R. Urbach, Jos B.T.M. Roerdink, and Michael H.F. Wilkinson. “Connected

Shape-Size Pattern Spectra for Rotation and Scale-Invariant Classification of Gray-

Scale Images”. In: IEEE Transactions on Pattern Analysis and Machine Intelligence
29.2 (Feb. 2007), pp. 272–285 (cit. on p. 28).

[102] Silvia Valero, Philippe Salembier, and Jocelyn Chanussot. “Comparison of merging

orders and pruning strategies for Binary Partition Tree in hyperspectral data”. In:

International Conference on Image Processing. IEEE, Sept. 2010, pp. 2565–2568

(cit. on p. 16).

[103] Andreas Veit et al. “COCO-Text: Dataset and Benchmark for Text Detection and

Recognition in Natural Images”. In: arXiv:1601.07140 [cs] (Jan. 26, 2016) (cit.

on p. 34).

[104] V. Vilaplana, F. Marques, and P. Salembier. “Binary Partition Trees for Object Detec-

tion”. In: IEEE Transactions on Image Processing 17.11 (Nov. 2008), pp. 2201–2216

(cit. on pp. 1, 16).

[105] Andrew J. Viterbi and James K. Omura. Principles of Digital Communication and
Coding. 1st. New York, NY, USA: McGraw-Hill, Inc., 1979 (cit. on p. 28).

[106] Lucas J van Vliet, Ian T Young, and Guus L Beckers. “A nonlinear laplace oper-

ator as edge detector in noisy images”. In: Computer Vision, Graphics, and Image
Processing 45.2 (Feb. 1, 1989), pp. 167–195 (cit. on p. 38).

[107] Lucas J van Vliet, Ian T Young, and Guus L Beckers. “An Edge Detection Model

Based on Non-Linear Laplace filtering”. In: Proceedings of International Workshop
on pattern recognition and artificial intelligence. 1988, pp. 63–73 (cit. on p. 39).

[108] Tao Wang et al. “End-To-End Text Recognition with Convolutional Neural Net-

works”. In: Pattern Recognition (ICPR), 2012 21st International Conference on. Nov.

2012, p. 5 (cit. on p. 34).

107

[109] Yang Wang and Prabir Bhattacharya. “On parameter-dependent connected com-

ponents of gray images”. In: Pattern Recognition 29.8 (1996), pp. 1359–1368 (cit.

on pp. 1, 16).

[110] Michel A. Westenberg, Jos B. T. M. Roerdink, and Michael H. F. Wilkinson. “Volu-

metric Attribute filtering and Interactive Visualization Using the Max-Tree Repre-

sentation”. In: IEEE Transactions on Image Processing 16.12 (Dec. 2007), pp. 2943–

2952 (cit. on p. 27).

[111] M. H. F. Wilkinson. “A fast component-tree algorithm for high dynamic-range im-

ages and second generation connectivity”. In: 2011 18th IEEE International Con-
ference on Image Processing. Sept. 2011, pp. 1021–1024 (cit. on p. 20).

[112] Michael H. F. Wilkinson and Michel A. Westenberg. “Shape Preserving filament

Enhancement filtering”. In: Medical Image Computing and Computer-Assisted Inter-
vention – MICCAI 2001. Vol. 2208. Berlin, Heidelberg: Springer Berlin Heidelberg,

2001, pp. 770–777 (cit. on pp. 28, 30).

[113] Xiangrong Chen and A.L. Yuille. “Detecting and reading text in natural scenes”.

In: Conference on Computer Vision and Pattern Recognition. Vol. 2. IEEE, 2004,

pp. 366–373 (cit. on pp. 33–35).

[114] Xu Zhao et al. “Text From Corners: A Novel Approach to Detect Text and Caption

in Videos”. In: IEEE Transactions on Image Processing 20.3 (Mar. 2011), pp. 790–

799 (cit. on pp. 35, 36).

[115] Yongchao Xu, Thierry Géraud, and Laurent Najman. “Connected filtering on Tree-

Based Shape-Spaces”. In: IEEE Transactions on Pattern Analysis and Machine Intel-
ligence 38.6 (June 2016), pp. 1126–1140 (cit. on pp. 3, 4, 26, 29, 30, 57, 58, 88,

92, 93).

[116] Yongchao Xu, Thierry Géraud, and Laurent Najman. “Salient level lines selection

using the Mumford-Shah functional”. In: Image Processing (ICIP), 2013 20th IEEE
International Conference on. IEEE, 2013, pp. 1227–1231 (cit. on pp. 67, 68, 74,

79, 86).

[117] Q. Ye and D. Doermann. “Text Detection and Recognition in Imagery: A Survey”.

In: IEEE Transactions on Pattern Analysis and Machine Intelligence 37.7 (2015),

pp. 1480–1500 (cit. on pp. 33, 35).

[118] Qixiang Ye and David Doermann. “Scene Text Detection via Integrated Discrim-

ination of Component Appearance and Consensus”. In: Camera-Based Document
Analysis and Recognition. Ed. by Masakazu Iwamura and Faisal Shafait. Vol. 8357.

Cham: Springer International Publishing, 2014, pp. 47–59 (cit. on p. 35).

[119] Chucai Yi and Yingli Tian. “Localizing Text in Scene Images by Boundary Cluster-

ing, Stroke Segmentation, and String Fragment Classification”. In: IEEE Transac-
tions on Image Processing 21.9 (Sept. 2012), pp. 4256–4268 (cit. on p. 35).

108

[120] Xu-Cheng Yin et al. “Robust Text Detection in Natural Scene Images”. In: IEEE
Transactions on Pattern Analysis and Machine Intelligence 36.5 (May 2014), pp. 970–

983 (cit. on pp. 33–36).

109

List of Figures

1.1 The view outside my office window. 10

1.2 Illutration of refinement order, infimum and supremum 12

1.3 Illutration of tree-based representationt terminology. 14

1.4 An example of a minimum spanning tree . 15

1.5 An example of a BPT. 17

1.6 An example of an alpha tree. 19

1.7 An image and its Min-,Max-trees and ToS. 22

1.8 Illustration of Carlinet’sMToS . 25

1.9 Tree filtering strategies . 29

1.10 Tree-based shape-spaces connected operators 30

1.11 Example of different text in image problems 31

1.12 Stages of an end-to-end scene text understanding system 34

2.1 A hierarchical image decomposition (center) leading to text detection (right).

. 382.2 Zero-crossing contours of different Laplace operators: (b) and (c) come

from classical linear operators; (e) and (f) come from the morphological

operators. On (d), the scalar morphological Laplacian is depicted with pos-

itive and negative values tinted resp. in green and red. 40

2.3 Contour characterization by morphological operators; 2.3(b) is the mor-

phological Laplacian ∆B = δB + εB − 2id; 2.3(c) depicts on ∆B = 0 the

gradient values ∇B = δB − εB (inverted) showing that the contours of

actual objects are effectively salient. 40

2.4 The notion of objects-background is highly contextual. On the other hand,

that notion brings more context to the image. In image 2.4(a), the word

“hungry” could be considered as objects or part of the background (if we

focused in “[falling on my knees]” parts). In contrast, that notion carries

contextual information. In images 2.4(b) and 2.4(c), words and numbers

in different backgrounds are implied to be separated. 41

2.5 Topological representations and some topological considerations. 42

2.6 Overview of the proposed method to get a hierarchical image decomposi-

tion. 42

2.7 Tree of shapes of Laplacian sign (ToSL): positive and negative regions are

respectively green and red nodes of the ToS, and null regions are white

nodes. 43

111

2.8 An example of the proposed labeling algorithm. Black pixels: contours of

components inside labeled ones. White pixels: pixels that are not yet la-

beled and are also not marked as inside contours at the current stage of the

labeling process. 45

2.9 Illustration of the proposed method: mathematical morphology tools are

contrast-invariant so we successfully deal with low-contrasted data (note

that the Laplacian image (b) has been lightened to be readable). 49

2.10 Qualitative results using “ICDAR RRC: Focused Scene Text” database: input

(left), labeling (middle), final boxes (right). 52

2.11 Evaluation based on coverage and accuracy [12]. 52

2.12 Text segmentation with our method can be seen as a binarization technique,

providing also reverse-video text. 53

3.1 Shape-space filtering overview . 57

3.2 Example of second tree filtering. 62

3.3 Our approach to shape-spaces filtering compares with Xu’s in case the sec-

ond tree is filtered with a pruning strategy 64

3.4 Our approach to shape-spaces filtering compares with Xu’s in case the sec-

ond tree is filtered with a non-pruning strategy 65

3.5 A simple example of ToS and α-tree . 65

3.6 Non-homogeneous objects of interest in MToS. 67

3.7 Performance of MToS and α-tree on segmentation of a non-homogeneous

objects. 68

3.8 Different levels of tree simplification (broken text characters) 68

3.9 Loss of detail at different levels of tree simplification (small text characters) 69

3.10 Illustration of the necessity to expand the background assumption 69

3.11 An example of aligned components . 71

3.12 Example of an spatial alignment graph created with searching line strategy. 73

3.13 Illustration of penalty factors. 77

3.14 An example of α-CCs extracted from the spatial alignment graph. 78

3.15 An example of α-CCs extracted from the spatial alignment graph of a natu-

ral image. 79

3.16 “Leaking” on an α-tree of the spatial alignment graph 80

3.17 Example of α-tree on the spatial alignment graph. 80

3.18 Example of α-tree on the spatial alignment graph of a natural image. 81

3.19 Illustration of best fitting subsets and best fitting nodes. 83

3.20 Best fitting nodes on different alpha trees and the best fitting subsets of the

ToS. 84

3.21 Evolution of area and group size . 86

3.22 Different approaches to select candidates . 87

112

4.1 Separation of a text group into individual characters. 93

A.1 Example of the component tree structure . 96

113

List of Tables

1.1 Scene text detection chalenges . 32

2.1 0-Crossing filtering criteria. 50

2.2 Grouping criteria. 50

2.3 Text segmentation comparison. 51

3.1 Quality of nodes on different α-trees (factor by distance on image space

and on tree) . 84

115

	ACKNOWLEDGEMENTS
	ABSTRACT
	RÉSUMÉ
	Introduction
	Background
	Classical Image Representations
	Image representation
	Hierarchical representations of images

	Hierarchies of Segmentation
	Minimum spanning tree
	Binary partition tree
	Alpha-tree and its variations

	Trees Based on the Threshold Decomposition
	Min/Max tree
	Tree of Shapes
	Tree of Shapes for multivariate image

	Connected Operators
	General definition
	Tree-based implementation of connected operators
	Tree-based shape-spaces connected filtering

	Text Detection on Natural Image
	Text in images and challenges
	Text detection and recognition system
	Text features

	Text Localization and Segmentation With Tree of Shapes of Laplacian Sign
	Introduction
	A Tree of Shapes of Laplacian Sign (ToSoL)
	Morphological Laplace operator
	Relativity of the objects-background notion
	A Tree of Shapes of Laplacian Sign

	Fast Computation of the Hierarchical Representation
	A particular well-composed non-local interpolation
	Label the interpolated laplacian map to construct the ToSL
	Optimization of ToSL Construction

	Text Extraction With Tree of Shapes of Laplacian Sign
	Method overview
	Construction and simpification of ToSoL
	Component grouping by spatial search
	Complexity analysis

	Experimental Results
	Quantitative results on text segmentation
	Applying the method to document binarization

	Conclusion

	Spatial Alignment Graph With Respect to Inclusion
	Introduction
	Expansion of Shape-spaces Morphology
	Classical tree-based connected operators implementation
	Tree-based shape-spaces morphology
	The shape-spaces and the tree-based connected operator on the shape-spaces

	Spatial Alignment Graph With Respect to Inclusion
	Handling the objects-background relationship by the inclusion in the ToS
	Handling the spatial alignment by spatial search in the image space
	Section summarization

	Alpha-tree on the Spatial Alignment Graph for Text Detection
	Spatial alignment graph w.r.t inclusion for text detection
	Alpha-connectivity and alpha connected components of the spatial alignment graph
	Alpha-tree of the spatial alignment graph
	Quality of nodes on the alpha tree
	Selecting a set of candidate

	Conclusion and Perpestive

	Conclusion and Perspectives
	Appendices
	Ancestor Relationship and Lowest Common Ancestor in Pylene
	Olena and Pylene
	Ancestor relationship and Lowest Common Ancestor in Pylene

	Bibliography
	List of Figures
	List of Tables

