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Abstract. Nowadays, cyberattacks have become a significant concern
for individuals, organizations, and governments. These attacks can take
many forms, and the consequences can be severe. In order to protect
ourselves from these threats, it is essential to employ a range of differ-
ent strategies and techniques like detection of patterns, classification of
system behaviors against previously known attacks, and anomaly detec-
tion techniques. This way, we can identify unknown forms of attacks.
Few of these existing techniques seem to fully utilize the potential of
mathematical approaches such as spectral graph analysis. This domain
is made of tools able to extract important topological features of a graph
by computing its Laplacian matrix and its corresponding spectrum. This
framework can provide valuable insights into the underlying structure of
a network, which can be used to detect cyberthreats. Indeed, significant
changes in the topology of the graph result in significant changes in the
spectrum of the Laplacian matrix. For this reason, we propose here to
address this issue by considering the network as a dynamic graph com-
posed of nodes (devices) and edges (requests between devices), to study
the evolution of the Laplacian spectrum, and to compute metrics on
this evolving spectrum. This way, we should be able to detect suspicious
behaviors which may indicate that an attack is occurring.

Keywords: cybersecurity · cyberattacks · anomaly detection · graph
analysis · Laplacian Matrix · graph spectrum · graph topology.

1 Introduction

Cybersecurity is a critical concern for computer networks in the current century
[10], where these networks are sensitive to countless types of attacks that can
undermine their security and integrity. Several forms of attacks exist on com-
puter networks [37], two common forms of attacks are the Distributed Denial
of Service (DDoS) and Denial of Service (DoS). DoS and DDoS attacks can
have significant impacts on the targeted systems and networks, causing down-
time, service disruptions, and other adverse effects that can undermine their
functionality and performance.

Cybersecurity community tries to detect them using different types of algo-
rithms, often referenced as anomaly detection algorithms. They are mainly based
on statistics [27,1,2], machine learning [33], deep learning [19,35,41,25], or even
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on graph neural networks [36,8,31,9](GNN). These algorithms are detailed and
categorized in the next section.

Fig. 1: IP-IP graph representation for Ton-IoT, IoT Healthcare Security, and
Bot-IoT data sets

Traffic data can be represented with a graph [7], where nodes are computers
and edges are the connections, we can thus model the traffic on a network as a
dynamic graph. Based on various observations and analyses of datasets [7], it can
be concluded that in star graphs mainly, the central node is typically regarded
as a server/hub, while the leaves are considered as devices/endpoints. The edges
connecting the hub to the clients are weighted based on the number of requests
originating from each leaf to the central node at a given time t. Our proposition
is then to use spectral graph analysis to be able to exhibit topological properties
of the traffic data using its Laplacian spectrum. The core concept is to design
metric functions that can assess the spectrum of traffic data, tracking changes
in patterns over time. These functions quantify the various characteristics of the
traffic, evaluating its impact on the overall spectrum and identifying any notable
patterns or anomalies that emerge over time. However, these spectral metrics do
not exist yet in the context of cybersecurity. That is why we propose in this
paper a study of a pattern which is recurrent in many cybersecurity data sets
(see Figure 1): the star graphs. So, we will empirically study the spectrum of a
star graph depending on its parameters; we will then observe the spectrum of
a graph made of several star graphs when they connect to each other; we will
propose several spectral metrics that we estimate relevant in this kind of context;
and we will compute these metrics in different scenarios (inspired of our data
sets) to demonstrate their relevance to detect attacks.

There are the highlights: (1) we investigated the spectrum behaviour of star
graphs and their derivatives, and (2) we developed four metrics that make sys-
tems administrators able to detect suspicious behaviors in network traffic.

2 Cybersecurity Background

Cyberspace has been experiencing an ongoing expansion as the amount of data
being introduced into it continuously grows. Over time, cyberspace has increas-
ingly become integrated into nearly every aspect of human life, including bank-
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ing, hospitals, education, emergency services, and military operations. Conse-
quently, the complexity of this digital domain has also increased. This height-
ened level of complexity has led to the emergence of cyber attacks as a significant
threat. The typical categorization of cyber attacks can be classified according to
their Purpose, Legal classification, Severity of involvement, Scope, and Network
types as mentioned in [37]. Let’s go deeper into the Purpose-based classification
of cyber attacks, which includes DoS (Denial of Service) and DDoS (Distributed
Denial of Service).

Denial of service (DoS) A DoS attack is one of the most common attack
in the literature is Denial of Service (DoS) attacks, which pose a threat to the
availability of a given service. These attacks may be targeted at individual clients
or may seek to exhaust the network’s resources, such as the Access Point (AP),
thereby rendering the service inaccessible to all clients utilizing it [29,21]. As
mentioned in [26] one type of DoS attack is characterized as Data Flooding,
where the attacker endeavors to fully utilize the available bandwidth of a net-
work, host, or device by sending a flood of massive data. This results in an
overwhelming volume of data to be processed, causing the system to become
incapacitated.

Distributed denial of service (DDoS) A DDoS attack employs numerous
computers to execute a coordinated DoS attack on one or more targets. The
perpetrator leverages client/server technology to amplify the impact of the DoS
attack by utilizing the resources of multiple unsuspecting accomplice machines,
which serve as the attack platforms. [26,22]. DDoS attacks do not aim to pene-
trate the victim’s system, rendering traditional security defenses ineffective. The
primary objective of a DDoS attack is to inflict harm on a target for personal
motives, financial gain, or to increase notoriety [34,15].

3 State-of-the-Art

For anomaly detection [2], main approaches are statistical ones [3] and ML-based
ones [5]. Among the most recent statistical approaches, we can refer to a real-time
network anomaly-detector called ReTiNA [28] and an unsupervised three-stage
framework for detecting anomalous network behaviour on-the-fly. We can also
cite [18] presenting a scalable, principled, probability-based technique for detect-
ing outlying connectivity behavior. Traditional systems use elementary statistics
techniques and are often inaccurate [17]. For this reason, a ML-based approach
called CAMLPAD has been proposed [17]. This system streamlined, holistic ap-
proach begins with retrieving a multitude of different species of cybersecurity
data in real time using ElasticSearch, then runs several ML algorithms. The
calculated anomalies are assigned an outlier score which serves as an indicator
for whether an alert should be sent to the system administrator that there are
potential anomalies in the network. The ML-based techniques are supervised
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algorithms using Logistic Regression, Decision Trees, Naive Bayes techniques,
Support Vector Machines, k-Means, k-Nearest Neighbors, and Random Forests.

In network security, there are not much labeled data to train efficient classi-
fiers [7]. Furthermore, existing labeled data are often specific to the context and
thus may not be useful for other applications. Hopefully, graph-based machine
learning techniques have the potential to make significant impact in the next-
generation cybersecurity systems. Walk-based sampling is a technique whereby
graph structured data is sampled via walks through the graph (see [32,16]). In
the simplest case, random walks are performed, which converts the unstructured
graph data into structured sequences of nodes and edges which can then be pro-
cessed by traditional ML techniques. In [8], they detect lateral intrusions thanks
to unsupervised learning of graphs. The possible tracks [7] to handle dynamicity
of networks are time series graph learning [31]. In [9], they propose StrGNN,
an end-to-end structural temporal GNN model for detecting anomalous edges in
dynamic graphs.

Deep learning [41,25] has received widespread concerns in the graph data
field. Kipf et al. [20] proposed a generalisation method of Graph Convolutional
Networks (GCN’s), currently the best choice for graph data learning tasks. Hy-
perGCN [40] generalized the simple graph convolution operation of GCN to the
hypergraph domain by using hypergraph Laplacian to capture more complex
or beyond pairwise relationships between nodes. Graph attention networks [38]
encode the hidden representations of each node in the graph by introducing the
self-attention mechanism to attend over its neighbors. Liu et al. [24] propose
a weakly supervised multi-label image classification framework based on GCN
with learning the semantic label co-occurrence in an image.

When a network is represented by a graph, we can extract topological prop-
erties thanks to spectral graph analysis [14] using their Laplacian spectrum.
Several features follow: the number of eigenvalues equal to zero (the number of
connected components of the graph), the greatest eigenvalue (bipartiteness [4]),
etc. Robustness [23] to edge rewiring of this spectrum has been shown in the sense
that a small modification of the graph weights implies a small change in the graph
spectrum. Several approaches utilizing spectral analysis have been developed for
cybersecurity applications. In [13], they detect changes in the periodicity of
Transmission Control Protocol (TCP) packet transport associated with round-
trip times: using power spectral density (PSD), they can defend against denial
of service (DoS) attacks. Another approach [39] employs graph theory, diffusion,
and spectral methods to analyze forensic evidence. This method demonstrates
the potential of graph-spectral and kernel-based methods in extracting structural
characteristics of the evidence graph. By modeling the propagation of suspicion
in the attack scene using heat diffusion, this approach extracts attack scenarios
and creates attack case profiles. A method [11] called MC-GPCA has been in-
troduced to reduce the complexity of a single graph by breaking it down into
several centrality features and reducing their correlation. In the same paper, an-
other method called MC-GDL performs dictionary learning on a group of graphs
using multiple centrality features. Both methods utilize spectral decompositions
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using singular value decomposition (SVD). In [42], a fraud detection framework
is developed to identify various cybersecurity attacks by analyzing the eigen-
values and eigenvectors of the adjacency matrix. This approach studies how to
identify attackers by characterizing their distributions in the spectral space. In
[6], they discover static graphs patterns, model dynamic graphs, cluster evolving
graphs, and detect anomalies in dynamic graphs. Last, in [12], they merge dis-
crete Fourier transform (DFT) with a hypothesis testing framework to address
shrew attacks.

4 Mathematical background

Let us recall the background necessary to handle star graphs. A (finite) graph G
is a pair (V,E) with V = {vi}i∈[1,n] the set of vertices, and E ⊆ V × V the set
of edges. We can represent G by its adjacency matrix A = (ai,j)i,j , with ai,j the
value of A at row i and column j. In the binary case, each ai,j belongs to {0, 1}
and ai,j = 1 iff (vi, vj) ∈ E. In the present paper, ai,j belongs to R+; we can
then call this term the weight of the edge (i, j) and it represents “how much” vi
is adjacent to vj . Here, we will treat only undirected graphs, that is, (vi, vj) ∈ E
is equivalent to (vj , vi) ∈ E. The direct consequence is that ai,j = aj,i for any
i, j ∈ [1, n]. The degree matrix D = (di,j)i,j is a diagonal matrix where di,i is
equal to

∑
j∈[1,n] ai,j . The Laplacian matrix [14] is then L = D − A. Since L is

a squared matrix of rank n, we can compute its set of eigenvalues {λ1, . . . , λn}.
The spectrum Λ of L is the set of eigenvalues of L sorted in the increasing order.
When G is made of several connected components (CC’s), the spectrum of G is
the sorted concatenation of the spectra of the CC’s of G.

Fig. 2: G15
∗ and its spectrum.

A star graph is a special type of tree where a “central” node is connected
to nodes of degree 1 (see Figure 2); a node which is not central is thus a leaf
of this graph. We will denote a star graph using the following notations: GD

∗ =

(V D
∗ , ED

∗ ) with V D
∗ = {c, ℓ1, . . . , ℓD}, ED

∗ =
⋃D

i=1{(c, ℓi)}. Note that D ∈ N is
the degree of the central node c.

5 Studying star graphs

Let us now introduce our results about star graphs and derivatives.
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5.1 Spectral properties of an isolated star graph

Let GD
∗ be some graph star whose central node has a degree D ≥ 0 and whose

each edge has the same weight WSG > 0. We define λ1, λ2, and λmax as the
first, second, and last eigenvalues in Λ sorted from the lowest to the greatest
eigenvalue. The second lowest value in Λ is also known as the algebraic connec-
tivity (AC). Since the exact formula of the Laplacian spectrum (see Figure 2)
of a star graph is (0,WSG, . . . ,WSG, (D + 1) ∗ WSG), λ1 = 0, λ2 = WSG and
λmax = (D+ 1) ∗WSG as soon as the size of L is 3 or more.

5.2 Spectral properties of combinations of star graphs

Fig. 3: AC as a function of the “connecting weight” Wconn in G10
∗,2. When Wconn

increases, λ2 tends to WSG, and when D or when WSG increases, this conver-
gence is slower.

Let us merge two disjoint star graphs isomorphic to GD
∗ into (V D

∗,2, E
D
∗,2)

to obtain GD
∗,2 (see Figure 3) with V D

∗,2 = {c1, ℓ11, . . . , ℓ1D} ∪ {c2, ℓ21, . . . , ℓ2D}, and
ED

∗,2 =
⋃D

i=1{(c1, ℓ1i )}∪
⋃D

i=1{(c2, ℓ2i )}∪{(c1, c2)}. The weight of the edge (c1, c2)
is set at Wconn ∈ R+ and the ones of the remaining edges are set at WSG > 0.
The goal in this section is to observe the behaviour of the spectrum of GD

∗,2 when
D, WSG, and Wconn vary. The observations following from Figure 3 are that the
bigger the ratio Wconn

WSG
is, the more the AC λ2 tends rapidly to WSG. Also, the

bigger D is, the more λ2 tends more slowly to WSG.

6 From simulations of threats to metrics

To be able to define metrics, we need to simulate threats and observe how the
spectrum behaves. So, let us generalise the star graph formula to any N ∈ N∗

as the graph made of a branch made of N nodes and where D additional edges
start from each of its nodes.

Scenario 1 (see Figure 4) is the following: we propose here to start from a
graph made of N = 8 separated star graphs, all isomorphic to G10

∗ . During this
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Fig. 4: Scenario 1: at each step, we connect two components with an edge of
weight ≫ 1 (200 in our case, when WSG = 1).

experiment, we are going to connect the different central nodes (the “servers”)
step by step, as if an intrusion were occurring. The main observation is that
the information about the traffic is mainly stored in the N first and the N last
values of the spectrum, the remaining eigenvalues staying equal to the star graph
weight WSG = 1 during all the experiment.

Observations relative to the N lowest values of the spectrum: During
this scenario, we observed that, since we start from N CC’s, we have then N
zeros in the spectrum of the total graph. Since we connect two CC’s at each
step, we loose one zero in the spectrum. The lowest eigenvalue being not equal
to 0 corresponds to the smallest non-zero CC’s AC’s. This value is placed at
position (N −M(t)+1) where M(t) is the number of connections we have made
at time t. Last, only one zero remains at the end of the scenario since the graph
is connected.

Observations relative to the N highest values of the spectrum: at the
beginning, we have a plateau at the end of the spectrum because the graph is the
concatenation of N separated subgraphs maximal eigenvalues. While connections
are occurring, the number of plateaus decreases until it vanishes. During this
same process, the maximal eigenvalue increases until it reaches a very high value
of 8000 compared to the connection value of 200.

Metric 1 For the first metric, we propose to introduce a function which increases
when interconnections occur in the network. We call it connectedness and we
define it as µ1(t) =

exp 1
Z(t)

exp(1) where Z(t) is the number of zeros in the spectrum.
Therefore, the more µ1 tends to 1, the more an intrusion may be possible. This
metric tends to exp−1 ≈ 0.367 when Z(t) tends to +∞, and it tends to 1 when
Z(t) tends to 1.

Metric 2 To be able to take into consideration at the same time interconnections
and connecting edge weights (see Figure 3), we propose to introduce our second
metric: µ2(t) =

∑p=N
p=2 (expλp(t) −1). This metric is influenced by the occurrence

of connections as well as the weight of those connections. When there are many
connections with high connecting weights, the flood value increases accordingly.
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Metric 3 Another possible way to take into consideration interconnections
and edge weights is to consider the maximal eigenvalues. For this reason, we
introduce a third metric called the wiringness: µ3(t) =

∑p=n
p=n−N+1 λp(t). It

always increases when connections occur and its slope across time depends on
the packets sizes (the weights) and on the number of connections. It generally
increases when the transmitted packets sizes are big and when the requests are
numerous.

Metric 4 The fourth and last introduced metric µ4(t) is called asymmetry, and
is equal to µ4(t) = #{k ∈ [2, n] ; Λ(t)[k] − Λ(t)[k − 1] > ε}. It corresponds
to the number of variations of Λ(t) when the index k goes from 2 to n. When
we have several identical patterns in the network, it tends to be low. At the
contrary, when connections occur, the smoothness of Λ(t) increases and thus the
asymmetry increases too, which is a sign of possible threat. The value ε = 10−12

is used to tackle the approximation errors.

Computational complexity Let us assume that n is the number of nodes in
G, and that the adjacency matrix A of G is given. Computing D needs at most
n operation n times, and computing L needs n2 operations. The spectrum of
L can be computed in O(n3 + (n log2(n)) log(b)) according to [30] with 2−b the
relative error bound. Our metrics being in O(n) when the spectrum is given, the
total complexity of our metrics is then in O(n3 + (n log2(n)) log(b)).

7 Detecting attacks

Fig. 5: Scenario 2 made of suspicious connections across all the servers.

In the sequel, we propose two new scenarios, still with a fixed number of
nodes, which will allow us to estimate the threat from traffic data. Scenario 2 is
the following: we start as usual from N = 8 disconnected star graphs. At each
time, we connect two servers with a weight equal to 10, which is much weaker
than in the previous experiment. We say that this scenario is suspicious in the
sense that we consider that it is not usual that many servers are interconnecting
in a short time, but it can happen without being an attack. Scenario 3 is the fol-
lowing: we start as usual from N = 8 disconnected star graphs. During each step
of the experiment, we will establish a connection between a client node, which
is a non-central node, and a server node, which is central in one of the initial
star graphs. The corresponding edge in the adjacency matrix will be assigned
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Fig. 6: Scenario 3 made of normal connections across all the servers.

Fig. 7: From left to right, the four dynamic metrics µ1 to µ4 in Scenarios 1 to 3.

a weight of 10 to represent this connection. Alternatively, we may establish a
connection between two server nodes, also with a weight of 10 assigned to the
corresponding edge. We say that this scenario is normal.

Let us recall that the bigger the metric, the bigger the risk of a threat. If we
observe the dynamic metrics, we understand that, compared to a normal case,
the threatening case is easily detected thanks to µ2 which goes from 3 (normal
case) to 6 (suspicious case) and 12 (threatening case). Moreover, we see that this
impression is supported by µ1 showing that we progressively interconnect the
different servers in the network (we have 0.475 in the normal case vs. 1.0 in sus-
picious and threatening cases). Furthermore, µ3 is dramatically increasing (from
200 to 25000) in the threatening case, which means that the highest eigenvalues
increase rapidly when threat is present. Last, µ4 goes from 14 in the normal case
to 18 in the suspicious and threatening cases. It is important to remark that
the more we have big values among the four dynamic metrics, the most we have
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to consider that the situation is critical (one high metric is rarely sufficient to
decide).

8 Limitations

We were not able to handle the attack called Man in the Middle (MitM) where
the attacker intercepts and listen to any communication and exchange of data
manipulated between two endpoints. This is due to the fact that spectrum varia-
tions are too low. Moreover, we assumed in this paper that the number of nodes
is a constant, which is not always true in practice.

9 Conclusion

In this paper, we show how much using the Laplacian spectrum of a graph is
promising to detect attacks: Laplacian spectrum contains a lot of information
about the network topology and makes us able to detect several threats in a
dynamic and interpretable way thanks to the proposed metrics. As future works,
we propose to develop metrics specific to the other recurrent patterns we can
find in cybersecurity traffic datasets, so that our study will be more complete.
We will also investigate directed graphs, since the direction of data traffic is
important to identify sources of requests.
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10 Supplementary Materials

In this section, we add several scenarios to show how our metrics make us able
to detect that something suspicious is happening on the network. Note that we
consider in the first four scenarios that a weight lower than 4 as “normal”, and
a weight around 30 or more as really suspicious. Also, before we indicate what
is a huge value for a metric, we have to proceed to the normal requests in the
following two network configurations.

10.1 Additional Scenario 1

Fig. 8: Additional scenario 1

Fig. 9: Behaviour of the metrics during a normal traffic

Calibration of the metrics To calibrate our metrics, we realize the following
scenario: one user or a device is already connected to the network, where there is
a connection of communication with the server (see 9). Some time later, another
user does the same. We observe that µ1 and µ2 stay flat. At the same time, µ3

and µ4 reach the values 22 and 5 respectively; this values will be considered as
our references of a normal traffic in the following scenario.
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Fig. 10: Evolution of the spectrum during additional Scenario 1

Fig. 11: Dynamic metrics during additional Scenario 1

The attack In the scenario described in Figure 8, we can see that a hacker will
be connecting to a device that is already connected to the main server, trying to
deny the access of any device on the network to the server. Observing Figure 10,
we can see that during the scenario, the spectrum is changing, but we cannot be
sure that something suspicious is happening. Looking at Figure 11 describing the
dynamic metrics evolving during the experiment, µ4 shows that we are loosing
the symmetry of the network, but it behaves just like the case of calibration, for
that it is not sufficient to confirm anything. However, we can observe that µ1

reaches the value 1 at step 2 (due to the connection of the hacker to one of the
devices). This sign shows a potential threat. Then, at step 3, µ2 increases and
µ3 reach a huge value (compared to calibration behaviour), which confirms that
someone is requesting too many packets. There is almost no doubt that there is
an attack, and that the system administrator must intervene.

10.2 Additional Scenario 2

Fig. 12: Behaviour of the metrics during a normal traffic

Calibration of the metrics To calibrate our metrics, we realize the following
scenario: some users or devices are already connected to the network, where there
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is a connection of communication with the server (see 12). On the same network
we have also some devices connected to a hub. We can observe that µ1 and µ2

stay flat (like in the previous calibration). At the same time, µ3 and µ4 reach
the values 35 and 6 respectively; this values will be considered as our references
of a normal traffic in the coming scenario.

Fig. 13: Additional scenario 2

Fig. 14: Evolution of the spectrum during additional Scenario 2

Fig. 15: Dynamic metrics during additional Scenario 2

The attack In this scenario (see Figure 13), a hacker connects directly to the
hub, where he is now able to access all devices on the network, then goes through
one of the devices to reach the server where he is able to flood many requests
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aiming to deny access to it (here we set the weight of the connection at 50,
which is considered to be very huge for this network). The spectrum apparently
progress in the same manner as before (see Figure14). However, the metrics show
that the attack is completely different (see Figure 15). It is very clear to observe
the evolution of µ2 which increases simultaneously. Also, metrics µ1 (reaching
the value 1) and µ4 (which is increasing) show suspicious behaviour. Last, µ3 is
multiplied by a factor equal to 10, which confirms the attack.

10.3 Additional Scenario 3

Fig. 16: Additional scenario 3

Fig. 17: Evolution of the spectrum during additional Scenario 3

Fig. 18: Dynamic metrics during additional Scenario 3

In this scenario (see Figure 16), a hacker connects directly to a hub, then goes
through one device in the hub-network to reach another device on the server-
network. Then, he starts flooding the pathway reaching the server to deny any
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access from any user on the network to it (this time the connection is equal
to 29). The global behaviour looks like the previous experiment (see Figure17
and Figure 18). Indeed, the difference is that the connection to the server is not
direct. However, the metrics still detect the threat.

10.4 Additional Scenario 4

Fig. 19: Additional scenario 4

Fig. 20: Evolution of the spectrum during additional Scenario 4

Fig. 21: Dynamic metrics during additional Scenario 4

In this scenario (see Figure 19), a hacker connects directly to a hub, then
he controls the three devices of this hub-network, after that he pass through
them to access the other devices of the server-network aiming to flood the server
and deny any request using different packet-requests of 99, 200, and then 200 at
each step. The global behaviour of the dynamic metrics looks like the previous
experiment but the values are bigger (see Figure 20 and Figure 21). Our metrics
are once more very useful to detect threat.
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10.5 Additional Scenario 5

Fig. 22: Additional scenario 5

Fig. 23: Dynamic metrics when the networks traffic is normal

Fig. 24: Dynamic metrics during additional Scenario 5 (Spoofing)

In this scenario (see Figure 22), a hacker spoof one of the server-network
devices which is already connected to the network (where the attacker here
is acting as if he is the user with the same IP, where he directly connects to
another device. The traffic remains “normal” in the sense that packets are of size
1, however this process creates a cycle in the graph (the topology changes). The
global behaviour of the dynamic metrics is very similar to that of the calibration,
except that µ4(t) oscillates at the beginning of the attack, which is clearly an
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alarm showing that there is changes in the topology (see Figure 24). Note that
this case is particularly subtle to detect, since only one metric shows that a
suspicious behaviour is occurring; but in all the other presented scenarios, several
metrics showed that there is a suspicious behaviour on the network.

10.6 Additional Scenario 6

Fig. 25: Additional scenario 6

Fig. 26: Dynamic metrics when the networks traffic is normal

Fig. 27: Dynamic metrics during additional Scenario 6

In this scenario (see Figure 25), there is a network comprising a central server
and three hubs, each of which is connected to a host device that is responsible
for requesting data from the server. However, the network is targeted by three
attackers who infiltrate the network and connect to each of the hubs. These
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Fig. 28: Spectra of a normal traffic (in blue) and during the attack (in orange)

attackers launch a parallel attack, flooding the network with traffic to deny access
to the server for the legitimate hosts on the network. Every metric reaches very
high values (see Figure 28 compared to Figure 26), there is no doubt about what
is happening. Note that in this scenario, we could have detect the attack even
without our metrics (see Figure 28).


	Towards attack detection in traffic data based on spectral graph analysis

