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Abstract

We report on the last four editions of the reactive synthesis competition (SYNTCOMP 2018–
2021). We briefly describe the evaluation scheme and the experimental setup of SYNTCOMP.
Then, we introduce new benchmark classes that have been added to the SYNTCOMP library
and give an overview of the participants of SYNTCOMP. Finally, we present and analyze the
results of our experimental evaluations, including a ranking of tools with respect to quantity
and quality — that is, the total size in terms of logic and memory elements — of solutions.
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1 Introduction

Reactive systems are systems that maintain a con-
tinuous interaction with their environment. The
act of automatically constructing such a system
from a given formal specification (or determining
that no such system exists) is called reactive syn-
thesis. The current definition of reactive synthesis
is usually attributed to Alonzo Church (Church,
1957, 1964). In the last 60 years, several works
have laid the theoretical foundations that under-
pin all current synthesis algorithms for differ-
ent instantiations of reactive synthesis. Indeed,
depending on the format in which a specifica-
tion for the reactive system is formalized, different
synthesis problems arise. For instance, the com-
petition currently has three such specification
formats: one for safety specifications defined by
monitoring circuits, one for linear-temporal-logic
specifications, and one for parity-game specifica-
tions.

Reactive synthesis has the potential to revo-
lutionize the way in which reactive systems are
designed. This is due to the fact that a synthesized
system is correct by construction and therefore
does not need to be tested nor verified for correct-
ness. Despite its potential, industry has not yet
adopted it nor the prototype tools implemented
by academic researchers. This is in contrast to
other formal verification techniques such as model
checking (Baier and Katoen, 2008; Clarke et al,
2018). With an aim at increasing the impact of
reactive synthesis in industry and improve the
quality of synthesis tools, the Reactive Synthe-
sis competition (SYNTCOMP) was founded in
2014 (Jacobs et al, 2017b). In short, the com-
petition is designed to foster research into well-
engineered, scalable, and user-friendly synthesis
tools. To realize this, the competition organizers
have proposed standards for benchmark formats,
and maintain a library of benchmarks with entries
that remain challenging for state-of-the-art tools.
Most importantly, SYNTCOMP provides a dedi-
cated and independent platform for the objective
comparison of synthesis tools.

SYNTCOMP has become an annual event
associated with the International Conference on
Computer Aided Verification (CAV) and the
Workshop on Synthesis (SYNT). The organi-
zational team of the competition has changed
slightly from its inception: In 2019, Guillermo

A. Pérez joined the organization team and, since
2020, the competition has an advisory committee
that presently consists of Roderick Bloem, Armin
Biere, Salomon Sickert, Jean-François Raskin,
Bernd Finkbeiner, and Ayrat Khalimov. Every
year, the organizers publish a call for solvers and
benchmarks on the website1 and via the associated
mailing list2.

In this article we present the list of benchmark
families that have been added to the competi-
tion from 2018 to 2021 as well as the tools which
participated in the competition during the same
years. Finally, we also highlight the most interest-
ing experimental results from these editions of the
competition and discuss the progress of synthesis
tools observed in this time.

2 Setup, Rules, and Execution

We begin this section with a reminder on the foun-
dations of the synthesis problem. For more details
on reactive synthesis and (parity-)game solving,
we refer the reader to the corresponding chapters
in the books Clarke et al (2018) and Apt and
Grädel (2011).

2.1 Synthesis and realizability

To model the execution of a reactive system, we
make use of infinite sequences: An infinite word
α over an alphabet A is a function α : N>0 → A.
Thus, we write α(i) to refer to the i-th letter of α.
We write Aω to denote the set of all infinite words
over A.

Definition 1 (Infinite-word automata). An (ω-
word) automaton is a tuple N = (Q, q0, A,∆)
where Q is a finite set of states, q0 ∈ Q is the ini-
tial state, A is a finite alphabet, and ∆ ⊆ Q×A×Q
is the transition relation. We assume that for all
p ∈ Q and all a ∈ A there exists q ∈ Q such that
(p, a, q) ∈ Q.

The automaton is said to be deterministic if
for all p ∈ Q and all a ∈ A we have that
(p, a, q1), (p, a, q2) ∈ ∆ implies q1 = q2. A run
of N on a word α ∈ Aω is an infinite sequence

1http://www.syntcomp.org/
2https://lists.iaik.tugraz.at/cgi-bin/mailman/listinfo/

syntcomp

http://www.syntcomp.org/
https://lists.iaik.tugraz.at/cgi-bin/mailman/listinfo/syntcomp
https://lists.iaik.tugraz.at/cgi-bin/mailman/listinfo/syntcomp
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ρ = q0α(1)q1α(2) · · · ∈ (Q·A)ω such that (qi, α(i+
1), qi+1) ∈ ∆ for all i ∈ N.

Automata are paired with a condition that
determines which runs are accepting. For the
competition, we consider four such acceptance
conditions.

• The safety condition is defined with respect
to a set U ⊆ Q of unsafe states. A run ρ =
q0a1q1a2 . . . is accepting for this condition, or
safe, if and only if for all i ∈ N we have that
qi ̸∈ U .

• The Büchi condition is defined with respect
to a set of Büchi states B ⊆ Q. A run ρ =
q0a1q1a2 . . . is accepting for this condition if
and only if for all i ∈ N there exists j ≥ i such
that qj ∈ B. That is, the run visits Büchi
states infinitely often.

• The co-Büchi condition is also defined with
respect to a set B ⊆ Q of states, which
are in this case rejecting states. A run ρ =
q0a1q1a2 . . . is accepting for the condition if
and only if there exists i ∈ N such that for all
j ≥ i we have that qj ̸∈ B. That is, rejecting
states are visited only finitely often.

• The parity condition is defined with respect
to a priority function p : Q → N. A run ρ =
q0a1q1a2 . . . is accepting for the parity condi-
tion if and only if the value lim infi→∞ p(qi)
is even. That is, the smallest priority that
appears infinitely often along the run is even.

A word α is accepted by an automaton N if it
has a run on α that is accepting. In the sequel,
it will sometimes be useful to consider universal
automata. Such an automaton N accepts a word
α if all its runs on α are accepting.

We denote by L(N ) the language of the
automaton N , that is, the set of words that N
accepts.

2.1.1 Synthesis games and strategies

Definition 2 (Games). A (Gale-Stewart) game
on input and output alphabets I and O, respec-
tively, is a two-player perfect-information game
played by Eve and Adam in rounds: Adam chooses
an element ik ∈ I and Eve responds with an ele-
ment ok ∈ O. A play in such a game is an infinite
word ⟨i1, o1⟩⟨i2, o2⟩ · · · ∈ (I ×O)ω.

A game is paired with a payoff set P ⊆ (I×O)ω

that determines who wins a play π. If π ∈ P then

π is winning for Eve, otherwise it is winning for
Adam.

Definition 3 (Strategies). A strategy for Adam
is a function τ : (I × O)∗ → I which maps every
(possibly empty) play prefix to a choice of input
letter. Similarly, a strategy for Eve is a function
σ : (I × O)∗I → O which maps every play prefix
and input letter to a choice of output letter.

A play π = ⟨i1, o1⟩⟨i2, o2⟩ . . . is consis-
tent with a strategy τ for Adam if ik =
τ(⟨i1, o1⟩ . . . ⟨ik−1, ok−1⟩) for all k ∈ N; it is
consistent with a strategy σ for Eve if ok =
σ(⟨i1, o1⟩ . . . ⟨ik−1, ok−1⟩, ik). A pair of strategies
σ and τ for Eve and Adam, respectively, induces
a unique play πστ consistent with both σ and τ .

In a game with payoff set P , the strategy σ for
Eve is a winning strategy if for all strategies τ for
Adam it holds that πστ ∈ P ; the strategy τ for
Adam is winning if for all strategies σ for Eve we
have πστ ̸∈ P .

The realizability and synthesis problems are
defined for games whose payoff sets are given as
the language of an automaton. We sometimes refer
to these as games played on automata.

Definition 4 (Realizability and Synthesis). Con-
sider finite input and output alphabets I and O,
respectively, and an automaton N with alphabet
I×O. The realizability problem asks whether there
exists a winning strategy for Eve in the game with
payoff set L(N ). The synthesis problem further
asks to compute and output such a strategy if one
exists.

In SYNTCOMP, solvers are asked to solve the
realizability and synthesis problems. More pre-
cisely, the competition is organized into separate
tracks according to different specification formats
for games (see Section 2.2), and in each track the
participants are asked to solve these two problems.

2.1.2 Finite-memory strategies

A finite-memory strategy σ for Eve in a game
played on the automaton N = (Q, q0, I × O,∆)
with finite input and output alphabets I and O is
a strategy that can be encoded as a (determinis-
tic) Mealy machine, that is, a finite-state machine
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that outputs a letter from O when given a let-
ter from I. Formally, such a machine is a tuple
M = (S, s0, I, λu, λo) where S is a finite set of
(memory) states, s0 is the initial state, λu : S ×
(Q × I) → S is the update function and λo : S ×
(Q× I) → O is the output function. The machine
encodes σ in the following way. For all play pre-
fixes ⟨i1, o1⟩ . . . ⟨ik−1, ok−1⟩ and input letters ik ∈
I we have that σ(⟨i1, o1⟩ . . . ⟨ik−1, ok−1⟩, ik) =
λo(sk, ik) where sℓ+1 = λu(sℓ, iℓ) for all ℓ < k.
We then say the strategy σ has memory |S|. In
particular, when |S| = 1, we say the strategy is
memoryless (the term positional is also used in the
literature). For all games considered in the compe-
tition, it holds that there exists a winning strategy
for Eve in the game if and only if there exists a
memoryless winning strategy for Eve.

2.2 Safety, parity, and
linear-temporal specifications

Let I and O be finite input and output alpha-
bets. SYNTCOMP has tracks corresponding to
three different versions of the synthesis and real-
izability problems. The safety tracks correspond
to these problems for games played on determin-
istic automata with a safety acceptance condition;
the parity tracks, to the same problems for games
played on deterministic automata with a parity
acceptance condition. The remaining tracks cor-
respond to games whose payoff set is given in the
form of a linear-temporal-logic (LTL) formula. We
explain the connection between LTL formulas and
infinite-word automata in the following.

2.2.1 LTL-defined payoff sets

LTL (Pnueli, 1977) is a logic that allows one to
naturally specify time dependence among events
that make up the formal specification of a sys-
tem. Formulas in LTL are constructed from a set
P of atomic propositions, the usual Boolean con-
nectives, and temporal operators X, F, G, U which
intuitively correspond to “next”, “eventually”,
“always”, and “until” in English. Formally, LTL
formulas conform to the following syntax:

φ ::= a ∈ P | φ ∧ φ | ¬φ | Xφ | Fφ | Gφ | φ U φ

with derived operators such as implication defined
as usual. For instance, the formula G(req →

F grant), over atomic propositions req and grant ,
can be read as “it is always the case that if there is
a request then eventually it is granted”. We refer
the reader to the book by Baier and Katoen (2008)
for the formal semantics of LTL. In the context
of words over an input-output alphabet I × O,
the atomic propositions can be assumed to be an
encoding of letters in the alphabet. That is, the
truth value of the propositions is defined for each
letter.

It is well known that the set Words(φ) of
all words satisfying a given LTL formula φ can
be “compiled” into an infinite-word automaton.
For instance, one can construct (in exponential
time) a non-deterministic automaton N with a
Büchi acceptance condition such that L(N ) =
Words(φ) (Vardi and Wolper, 1984). One can also
construct (in doubly-exponential time) a deter-
ministic automaton N with a parity acceptance
condition with the same property (Safra, 1988;
Piterman, 2007).

The LTL tracks of the competition correspond
to synthesis and realizability problems that can
for example be solved by playing games on a
deterministic parity automaton compiled from a
given LTL formula, or by other solutions that
rely on different automata constructions. In par-
ticular, algorithms for both problems exist which
avoid the expensive construction of a deterministic
automaton and can work with non-deterministic
automata.

2.2.2 Specification formats

We now briefly touch on the encoding used by the
competition to represent the input for the safety,
parity, and LTL tracks.
Safety specifications. To represent (the transition

relation of a) deterministic automata with
a safety acceptance condition, we use And-
Inverter Graphs (AIGs). In turn, to encode
AIGs, we use an extended version of the
AIGER format (Biere, 2011). The latter is
the standard format in the hardware model
checking competition (Biere, 2007). The main
reason that the basic format has to be
extended is to allow for the partitioning of
the alphabet into I and O (Jacobs, 2014).

Parity specifications. For automata with a par-
ity acceptance condition, we use an extended
version of the Hanoi Omega-Automata
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(HOA) format (Babiak et al, 2015). The
HOA format is a flexible exchange format for
infinite-word automata. Just like the AIGER
format, extending it is necessary to be able
to include the partitioning of alphabet into I
and O (Pérez, 2019).

LTL specifications. Finally, to represent LTL
specifications we use the Temporal Logic Syn-
thesis Format (TLSF) (Jacobs et al, 2016).
TLSF allows to define families of LTL spec-
ifications via parameters. Additionally, it
allows to use high level constructs, such as
sets and functions, to provide a compact and
human-readable representation.

2.2.3 Output format

For the synthesis tracks, tools are expected to pro-
duce a strategy if the specification is realizable.
AIGER is the format used by the competition
to encode the Mealy machine implementing the
strategy. In this case the standard AIGER format
is sufficient.

2.3 Rules

All tracks are divided into subtracks for realizabil-
ity checking and synthesis, and into two execution
modes: sequential (using a single core of the CPU)
and parallel (using up to 4 cores). Every tool can
run in up to three configurations per subtrack and
execution mode. Before the competition, all tools
are tested on a small benchmark set, and authors
can submit bugfixes if problems are found. Tools
submitted by the organizers are not allowed to
submit bugfixes.

Disqualification

During the competition, no erroneous results
are allowed. For the realizability subtracks, this
is easy to check. For the synthesis subtracks,
we model check all synthesized strategies. In the
exceptional case that the output of a tool cannot
be model checked, e.g. because of it being too large
for it to be analyzed within reasonable time and
space, then it is assumed to be correct.3

3In practice, this only happened a handful of times.

Extraordinary comparisons

There are two cases in which an unofficial compari-
son run is launched. First, tools or bugfixes may be
submitted after the competition is over. Second,
for the purpose of including in the comparison
tools that are no longer maintained by their
authors, the organizers of SYNTCOMP some-
times modify or compile a (previous version) of
the tool themselves. When reporting the results of
a competition, we include tools that fit these two
cases but refer to their results as being hors con-
cours. That is, they did not official participate in
the competition.

2.3.1 Ranking schemes

In all tracks, there is a ranking based on the num-
ber of correctly solved problems within a 3600s
timeout per benchmark. In the synthesis tracks,
correctness of the solution additionally has to
be confirmed by a model checker. Moreover, in
synthesis tracks there is a ranking based on the
quality of the solution, measured by the number of
gates in the produced AIGER circuit. To this end,
the size of the solution is compared to the size r of
a reference solution. A circuit of the same size is
rewarded 2 points, and smaller or larger solutions
are awarded more or less points, respectively (see,
e.g. Jacobs et al (2017a), for more details).

2.3.2 Selection of benchmarks

In 2018, benchmarks were selected according to
the same scheme as in previous years, based
on a categorization into different classes (again,
see Jacobs et al (2017a)). From 2019 onward, all
available benchmarks in the SYNTCOMP library
(see Section 3) were used. In the LTL track, some
of the TLSF-encoded benchmarks represent a fam-
ily of benchmarks that can be scaled up in one
or more parameters. For these, more instances
are generated whenever all the existing ones are
considered “too easy” for more than one tool.

2.4 Execution

In 2018, SYNTCOMP was run at Saarland Uni-
versity. Benchmarking was again organized on the
EDACC platform (Balint et al, 2011). Since 2019,
the competition has been run on StarExec (Stump
et al, 2014). This has had a few consequences.
The main such consequence is that not all legacy
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tools were successfully migrated: some of them
relied on deprecated packages while others were
implemented in languages with limited compiler
support. Furthermore, such tools lacked an active
maintainer.

Our use of StarExec has significantly simpli-
fied the organizational effort, while admittedly
raising the entry threshold for participants a bit,
since they can, and must, themselves make sure
that their code runs on the competition servers.
In practice, all tools that were still actively main-
tained (more precisely, tools for which a Ph.D.
student worked on the tool) were updated and
migrated to StarExec. Any reduction in the num-
ber of participating tools from 2018 to 2019 is
instead due to a number of projects ending and
Ph.D. students graduating around the time. For
an up-to-date overview of the specifications of
the StarExec service, we refer the reader to its
website4 and wiki.5

3 Benchmarks

Since the inception of SYNTCOMP, benchmarks
in the different specification formats have been
collected in the SYNTCOMP library6. The bench-
marks in the SYNTCOMP library mainly come
from three sources: i) participants are invited
to submit benchmarks from their own research,
ii) benchmarks from the literature are translated
into our standard format, and iii) we use different
techniques to automatically generate additional
benchmarks.

In the following, we shortly comment on fami-
lies of benchmarks that were added to each one of
the tracks during the relevant years.

3.1 LTL

Between 2018 and 2019, several temporal-stream
logic (TSL) benchmarks were submitted to the
LTL tracks of SYNTCOMP. TSL is a new tem-
poral logic that allows to separate control and
data (Finkbeiner et al, 2019b). Among others, the
logic can be used to specify components of games
implemented for FPGAs (Geier et al, 2019) and to
specify functional reactive programs (Finkbeiner

4https://www.starexec.org/
5https://wiki.uiowa.edu/display/stardev/User+Guide
6https://github.com/SYNTCOMP/benchmarks

et al, 2019a). Importantly, bounded TSL specifi-
cations can be translated into LTL specifications
— this is how the benchmarks are obtained.

In addition to the TSL benchmarks, Felix
Klein also submitted LTL benchmarks based on
hardware-component specifications and an encod-
ing of an “infinite duration tic-tac-toe”. In 2020
and 2021, TLSF files encoding families of LTL
specifications were used to generate more chal-
lenging benchmarks, i.e., larger parameter values
were used to generate more difficult instances of
each family to gauge how well tools scale w.r.t. the
parameters.

In Table 1 we summarize some statistics of
interest regarding the benchmarks used for all rel-
evant editions of the LTL tracks. All data used
to generate the table was fetched from https:
//syntcomp.react.uni-saarland.de/ and https://
github.com/SYNTCOMP/benchmarks/releases.

3.2 Safety

In 2019, random benchmarks in the extended
AIGER format were systematically generated by
Mouhammad Sakr by uniformly sampling from
the set of all specifications with given values
for the number of (un)controllable inputs and
latches. The techniques used for this were sub-
sequently improved and described by Jacobs and
Sakr (2021).

3.3 Parity games

In 2020, Spot (Duret-Lutz et al, 2016) was used to
generate deterministic parity automata from some
LTL benchmarks. It is important to mention that,
perhaps because this translation is doubly expo-
nential in general, not many specifications could
be translated. Furthermore, the ones that did
yield a deterministic parity automaton resulted in
small automata. To be precise 121 benchmarks
were used for that first edition of the parity-game
track and they were all generated as previously
mentioned.

In 2021, more benchmarks were translated as
described above (for a total of 303 benchmarks
generated in that way). Also, (217) combina-
torially hard benchmarks were generated using
the PGSolver parity-game suite (Friedmann and
Lange, 2009) and then translated to the extended
HOA format.

https://www.starexec.org/
https://wiki.uiowa.edu/display/stardev/User+Guide
https://github.com/SYNTCOMP/benchmarks
https://syntcomp.react.uni-saarland.de/
https://syntcomp.react.uni-saarland.de/
https://github.com/SYNTCOMP/benchmarks/releases
https://github.com/SYNTCOMP/benchmarks/releases
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Table 1 Statistics regarding the LTL benchmarks: all generated formulas are fully parenthesized. Thus, by formula
length we mean the number of characters; by formula depth, the maximal nesting of temporal operators (obtained using
Spot’s ltlfilt utility). Finally, all values are presented in the format “min ≤ median,mean ≤ max”.

Year No. of bench. Length of LTL formula Formula depth No. of inputs No. of outputs Solved by winner

2018 286 28 ≤ 349, 682 ≤ 9358 1 ≤ 2, 3 ≤ 19 1 ≤ 4, 5 ≤ 25 1 ≤ 2, 3 ≤ 14 93%
2019 346 28 ≤ 464, 1031 ≤ 12843 1 ≤ 2, 3 ≤ 37 1 ≤ 4, 5 ≤ 25 1 ≤ 2, 4 ≤ 37 94%
2020 346 28 ≤ 464, 1031 ≤ 12843 1 ≤ 2, 3 ≤ 37 1 ≤ 4, 5 ≤ 25 1 ≤ 2, 4 ≤ 37 98%
2021 942 23 ≤ 896, 2031 ≤ 330512 0 ≤ 3, 4 ≤ 37 1 ≤ 4, 7 ≤ 70 1 ≤ 3, 5 ≤ 64 90%

4 Updated participating tools

In this section we give an overview of the partic-
ipants of the 2018–2021 editions of SYNTCOMP.
We mostly focus on the participants of the par-
ity and LTL tracks. The safety track had minimal
active participation: in 2018, the only tool that
received an update was Simple BDD Solver, and
the only new tool was LazySynt, which partici-
pated hors concours. No updates or new tools were
submitted to the safety track after 2018.

Some of the tool descriptions below may refer
to specialized techniques. We refer the interested
reader to the publications cited in the text for fur-
ther details on such techniques. After the overview
of the participants we conclude this section with a
classification of the LTL-synthesis tools based on
techniques, data structures, and algorithms.

4.1 Acacia bonsai

Acacia bonsai, the spiritual successor of Aca-
cia+ (Bohy et al, 2012), participated hors con-
cours in the 2021 edition of the LTL-realizability
track. It implements downset-based algorithms
(i.e. algorithms that manipulate downward closed
sets) that avoid constructing a deterministic
automaton for the given LTL specification.
Instead, the downsets are used to efficiently store
sets of states in an on-the-fly determinization pro-
cess. These algorithms were introduced by Filiot
et al. in the 2010s and implemented in the tools
Acacia and Acacia+ in C and Python (Bohy,
2014). Acacia bonsai is a complete rewrite of Aca-
cia in C++20, articulated around genericity (that
is, a library of downset functions with generic type
parameters) and leveraging modern techniques
for better performance. These techniques include
compile-time specialization of the algorithms, the
use of SIMD registers to store vectors, and sev-
eral preprocessing steps, some relying on effi-
cient Binary Decision Diagram (BDD) libraries.
It also includes different data structures to store

downsets such as k-d trees, a useful data structure
for organizing points in a k-dimensional space (see,
e.g. de Berg et al (2008)).

It is worth mentioning that, to compile the
input LTL formula into an automaton, Acacia
bonsai uses Spot (Duret-Lutz et al, 2016).

4.2 BoSy

BoSy was updated by P. Faymonville, B.
Finkbeiner and L. Tentrup in 2018 and competed
in both the realizability and the synthesis track.
To detect realizability, BoSy translates the (com-
plement of the) LTL specification into a safety
automaton by bounding the number of visits to
Büchi states. The resulting safety game is solved
by SafetySynth. For synthesis, BoSy relies on an
encoding into quantified Boolean formulas (QBF).
A full account of the algorithms implemented in
the tool is given by Faymonville et al (2017).
Two configurations of BoSy competed in SYNT-
COMP 2018: configuration (basic) and configura-
tion (opt), where the latter further improves the
size of the strategy by encoding the existence of an
AIGER circuit representing the strategy directly
into a QBF query. Both configurations support a
parallel mode, if more than one core is available.

4.3 BoWSer

BoWSer was updated by B. Finkbeiner and F.
Klein in 2018. It implements different extensions
of the bounded synthesis approach that solves
the LTL synthesis problem by first translating
the complement of the specification into a Büchi
automaton, and then encoding acceptance of a
transition system with bounded number of states
into a constraint system, in this case a propo-
sitional satisfiability (SAT) problem. The details
of all encodings are described in Finkbeiner and
Klein (2016).
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Table 2 Participation years, authors, and links to source code for tools mentioned in this article

Tool & participation years Developers URL Section

Acacia bonsai Cadilhac et al. https://github.com/gaperez64/acacia-bonsai Subsection 4.1
BoSy (’17, ’18) Faymonville et al. https://www.react.uni-saarland.de/tools/bosy/ Subsection 4.2
BoWSer (’17, ’18) Finkbeiner et al. https://www.react.uni-saarland.de/tools/bowser/ Subsection 4.3
Knor (’20–’21) Tom van Dijk https://github.com/trolando/knor Subsection 4.4
LazySynt Adam Walker https://github.com/mhdsakr/Lazy-Safety-Synthesis Subsection 4.5
Ltlsynt (’17–’21) Renkin et al. https://spot.lrde.epita.fr/ltlsynt.html Subsection 4.6
Otus (2021) Abraham et al. https://doi.org/10.5281/zenodo.5046346 Subsection 4.7
Party/Kid & sdf (’17, ’18, ’21) Ayrat Khalimov https://github.com/5nizza/sdf-hoa Subsection 4.8
Simple BDD Solver (’14–’21) Sakr et al. https://github.com/adamwalker/syntcomp Subsection 4.9
SPORE (2021) Bruyère et al. https://github.com/Skar0/spore Subsection 4.10
Strix (’18–’21) Meyer et al. https://github.com/meyerphi/strix Subsection 4.11

Compared to 2017, a number of small improve-
ments to speed up computations were imple-
mented, and an experimental preprocessor to sim-
plify LTL formulas has been added. The sequential
configurations of the tool spawn multiple threads
that are executed on a single CPU core. The par-
allel configurations are mostly the same as the
sequential ones, but use a slightly different strat-
egy for exploring the search space of solutions.

4.4 Knor

Knor is a BDD-based solver for parity specifi-
cations first submitted by T. van Dijk in 2020.
It leverages the Sylvan BDD package (van Dijk
and van de Pol, 2017) and the Oink parity-game
solver (van Dijk, 2018).

Knor implements a translation from HOA
to a symbolic parity automaton encoded using
BDDs. Importantly, the chosen variable ordering
encodes first source states, then uncontrollable
inputs, controllable inputs, and finally the target
states. The resulting symbolic parity automaton
can then be treated in two ways: First, it can be
solved directly using a symbolic parity game algo-
rithm (Lijzenga and van Dijk, 2020) optimized to
utilize the aforementioned variable ordering. This
solution immediately yields a controller that can
be dumped as an AIG. Alternatively, the symbolic
parity automaton can be output as an explicit par-
ity game. (Note that the previous encoding into
BDDs might have reduced the size of the automa-
ton, exponentially in some cases.) Such an explicit
parity game can then solved by any of the algo-
rithms implemented in Oink. This last option does
not yet support synthesis, only realizability.

For the first solution, synthesis is realized
using a näıve construction of an AIG realizing the
Mealy controller, based on a simple application

of the Shannon expansion of the BDD-encoded
functions.

4.5 LazySynt

The Symbolic Lazy Synthesis (LazySynt) tool was
submitted in 2018 by M. Sakr and S. Jacobs. It
participated hors concours in the safety-synthesis
track. In contrast to the classical BDD-based
algorithm and the SAT-based methods imple-
mented in Demiurge (Bloem et al, 2014; Seidl
and Könighofer, 2014), LazySynt implements a
combined forward-backward search that is embed-
ded into a refinement loop, generating candidate
solutions that are checked and refined with a com-
bination of backward model checking and forward
generation of additional constraints (Jacobs and
Sakr, 2021).

4.6 Ltlsynt

The program ltlsynt, introduced to SYNT-
COMP in 2017 (see Table 3), is part of
Spot (Duret-Lutz et al, 2016). It relies on a
translation of the LTL specification to a parity
game whose winning strategy is then encoded
as an AIGER circuit. The version submitted to
the 2021 edition features the following improve-
ments (Renkin et al, 2021):

• A decomposition of the input specification
when possible (Finkbeiner et al, 2021).

• An LTL translation to Deterministic
Emerson-Lei Automata (DELA) that han-
dles various simplifications: splitting the
input formula in a manner similar to the
delag tool (Müller and Sickert, 2017),
detecting obligation subformulas (Esparza
et al, 2018), relying on weak automata and
suspendable properties (Babiak et al, 2013).

https://github.com/gaperez64/acacia-bonsai
https://www.react.uni-saarland.de/tools/bosy/
https://www.react.uni-saarland.de/tools/bowser/
https://github.com/trolando/knor
https://github.com/mhdsakr/Lazy-Safety-Synthesis
https://spot.lrde.epita.fr/ltlsynt.html
https://doi.org/10.5281/zenodo.5046346
https://github.com/5nizza/sdf-hoa
https://github.com/adamwalker/syntcomp
https://github.com/Skar0/spore
https://github.com/meyerphi/strix
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Table 3 Versions of Spot on which ltlsynt submissions to SYNTCOMP were based.

Year Version Main changes in ltlsynt

2017 pre-2.4 first implementation
2018 2.5.3 optimizations to determinization, and game solving; incremental determinization approach
2019 2.7.4 (bugged) latest appearance record (LAR); improved LTL translation; incremental determinization removed
2020 2.9 reimplemented LAR, split, and game solving; parity minimization
2021 2.9.7 input decomposition; strategy simplification; specialized strategy construction for some LTL fragments

• An SCC-based paritization algo-
rithm (Renkin et al, 2020) for DELA that
relies on a color appearance record.

• A transition-based parity game solver
adapted from van Dijk (2018), supporting
(non-recursive) SCC decomposition and
parity compression.

• Optimization of the winning strategy through
a variant of Spot’s simulation-based reduc-
tion based on BDD signatures or an improve-
ment of a SAT-based minimization algo-
rithm for Incompletely Specified Mealy
Machines (Renkin et al, 2022).

4.7 Otus

Otus (Abraham, 2021) is a tool for LTL synthesis
using symbolically-represented parity automata
and games. It proceeds as follows: the LTL for-
mula is decomposed into a Boolean combination
of simpler formulas, these formulas are sepa-
rately translated to BDD-encoded deterministic
automata, and then recomposed by computing
the (deterministic) union and intersection on the
BDD-representation. Concretely, Otus
1. makes use of the ∆2-normalisation and

the translation to deterministic (co-)Büchi
automata found in (Sickert and Esparza,
2020) implemented by Owl (Kret́ınský et al,
2018),

2. computes the symbolic representation of a
deterministic Rabin automaton by union and
intersection, and

3. applies a symbolic implementation (Boker
et al, 2010) to obtain a parity automaton.

4. This symbolic automaton is reinterpreted as
a parity game that is then solved by a sym-
bolic implementation of the distraction fix-
point iteration (van Dijk and Rubbens, 2019;
Lijzenga and van Dijk, 2020).

In order to speed up the BDD-operations, Otus
makes use of the Sylvan BDD package (van Dijk
and van de Pol, 2017).

4.8 Party/Kid and sdf

Party/Kid and sdf, submitted by A. Khalimov,
implement variants of symbolic bounded synthesis
(Ehlers, 2011, 2010). Both tools run two tasks,
realizability and unrealizability, in parallel. Below,
we describe how the realizability check is done.
Unrealizability can be checked in a similar fashion
by adequately modifying the given LTL formula.

First, the tool translates the given LTL for-
mula into a universal co-Büchi automaton (UCW)
using the TLSF-manipulation tool syfco (Jacobs
et al, 2016) and the Spot automata library (Duret-
Lutz et al, 2016). Then, it iterates over increasing
bounds on the number of visits to final states of
the UCW: given such a bound, it translates the
UCW into a universal safety automaton. The uni-
versal safety automaton is then encoded into a
safety game in a BDD-based representation (using
the CUDD library (Somenzi, 2005)), where each
state of the universal automaton gets a sepa-
rate variable in the BDDs, thus avoiding explicit
determinization. The game is then solved using
the standard fix-point algorithm. The strategy
extraction is also standard and does not use any
third-party tools.

Over the years 2017, 2018, 2021, three versions
participated, with only technical differences. The
latest version (sdf, 2021) is written in C++.

4.9 Simple BDD Solver

An update of Simple BDD Solver, submitted
by Adam Walker, competed in the 2018 safety-
realizability track. Simple BDD Solver implements
the classical BDD-based fixpoint algorithm for
safety games (Jacobs et al, 2017b). In sequen-
tial mode, it runs in three configurations, two
of which are based on an abstraction-refinement
approach inspired by de Alfaro and Roy (2010),
and one without any abstraction. All three imple-
ment many important optimizations. These con-
figurations are the same as in 2017. Additionally,
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three new configurations were entered for the par-
allel mode. These run different portfolios of the
algorithms in the sequential mode.

4.10 SPORE

SPORE is a prototype tool designed to assess the
viability of using generalized parity games for LTL
realizability These are games played on automata
with multiple priority functions requiring all of
the corresponding parity conditions to be satisfied.
The input LTL formula is first decomposed into
a conjunction of sub-formulas, which are in turn
translated into deterministic parity automata,
composed into a synchronised (generalized parity)
product automaton, and finally translated into
a generalized parity game using the tlsf2gpg7

tool. The game is then solved using a combination
of the recursive algorithm for generalized parity
games (Chatterjee et al, 2007) and incomplete
polynomial-time algorithms, called partial solvers,
presented in Bruyère et al (2019). SPORE con-
tains an explicit and a symbolic implementation
of those algorithms, the latter relying on BDDs to
represent the game arena. The version presented
in 2021 is implemented in Python with dd8 as a
library to manipulate BDDs.

4.11 Strix

Strix is a tool for LTL synthesis using transition-
based deterministic parity automata (tDPW) and
parity games as intermediate steps. Since its incep-
tion (Meyer et al, 2018), it proceeds in four
stages: 1) Formula Rewriting and Decomposition,
2) Automaton Construction, 3) Winning Strategy
Computation, and 4) Controller Extraction. Note
that stages 2 and 3 run in parallel, are on-the-fly,
and exchange information, such that the automa-
ton construction can be focused on critical states
and early termination is possible.

The improvements applied for SYNTCOMP
2019 and 2020 are described by Luttenberger et al
(2020) and include a refined controller extrac-
tion stage and updates to the LTL-translations
based upon the work of Esparza et al (2020)
provided by Owl (Kret́ınský et al, 2018). For
SYNTCOMP 2021 the following major changes
have been applied (Meyer and Sickert, 2021):

7See https://github.com/gaperez64/tlsf2gpg
8See https://github.com/tulip-control/dd

• LTL formulas are now translated to
transition-based deterministic Emerson-Lei
automata (tDELA) by combining construc-
tions (∆2-normalisation, direct translation
to deterministic automata) from Sickert and
Esparza (2020) with a product construction
adapted from Müller and Sickert (2017).
Then either a tDELA-to-tDPW construction
based on Zielonka-trees or the Alternating
Cycle Decomposition is applied (Casares
et al (2021, 2022)).

• The strategy iteration algorithm, by Lutten-
berger (2008), for solving parity games, has
been replaced by a Rust implementation of
the distraction fixpoint iteration algorithm
(DFI) (van Dijk and Rubbens, 2019).

4.12 Classification of LTL tools

To summarize some of the tool descriptions given
above, the participants of the competition can be
classified as implementing one of two approaches.
Bounded synthesis. That is, they translate the

LTL specification into a universal co-Büchi
automaton. Then, for an increasingly larger
bound b ∈ N, either (i) the automaton is
turned into a universal safety automaton by
allowing at most b visits to rejecting states,
and then determinized, or (ii) the search is
limited to winning strategies encoded as a
Mealy machine with at most bmemory states.
The resulting problems are then either solved
by standard techniques for safety games, or
by encoding them into a constraint system
and employing a SAT-, QBF- or SMT-solver.

The Owl-Pig approach. We coin the class name
Owl-Pig to refer to solvers that first trans-
late the LTL specification into a deterministic
parity automaton using one of several algo-
rithms described in the works of S. Sickert et
al. and implemented in the Owl tool (see Sub-
section 4.11). Then, they solve the resulting
parity game using one of several algorithms
described in the works of T. van Dijk et al.
and implemented in the tools Oink and Knor
(the sound a pig makes in English and Dutch
respectively).

Tools that implement the bounded synthesis
approach mostly differ in choice of program-
ming language, (symbolic) data structure or logic
encoding, and techniques for counter reduction,

https://github.com/gaperez64/tlsf2gpg
https://github.com/tulip-control/dd


Springer Nature 2021 LATEX template

SYNTCOMP ’18–’21 11

Table 4 Differences between bounded synthesis tools.

Tool Symbolic data structures/encodings

Acacia bonsai Antichains
BoSy BDDs, SAT, QBF
BoWSer SAT
Party/Kid & sdf BDDs

that is, the detection of rejecting states for which
knowing whether they have been visited or not is
sufficient (i.e. instead of storing the exact number
of visits).

For the Owl-Pig approach, generating in full
the deterministic parity automaton is clearly
the bottleneck. Hence, optimizations, types of
automata used as intermediate steps, symbolic
encodings, and on-the-fly constructions are the
main differences among those tools. We present
our classification and summarize some notewor-
thy differences between them in Table 4 and
Table 5. We concede that our classification is
not perfect: for instance, SPORE does not really
implement the Owl-Pig approach, yet we classify
it as such since it does go through a similar 2-
stage algorithm: translate the specification to a
deterministic automaton and solve a game.

5 Rankings and experiments

In this section we elaborate on the results
of each track of the relevant editions of
SYNTCOMP. All data used for the graphs
and analyses given below was fetched from
https://syntcomp.react.uni-saarland.de/ for the
2018 edition and https://www.starexec.org/
starexec/secure/explore/spaces.jsp?id=329383
for later editions. We have also archived a copy
of all scripts and data used in Jacobs and Perez
(2023).

5.1 Safety track

Despite the update submitted for the Simple BDD
Solver tool, the tool rankings did not change in
2018 compared to 2017. We refer the interested
reader to the SYNTCOMP’17 report (Jacobs et al,
2017a). In the following years, the safety track
has seen neither new participants nor updates to
existing tools.

5.2 Parity track

In 2020 and 2021, two tools participated in the
parity tracks: Strix and Knor. The former is,
oversimplifying, the parity-game solving compo-
nent of the tool Strix that is currently dominating
the LTL track. Knor implements several classi-
cal and novel parity-game solving algorithms and
combinations thereof. In 2020, both tools com-
peted in the realizability track only. In 2021, they
competed in the synthesis track only and in a spe-
cial combinatorially hard realizability track. For
these two initial editions of the parity tracks,
no distinction was made between sequential and
parallel subtracks.

The results are summarized in Table 6 and
Table 7. Probably the most important insight from
the results of these tracks is that Knor-BDD —
which only participated hors concours in 2020
(since it was submitted after the official dead-
line), but later became the default configuration
of Knor — outperformed both Strix and Knor by
almost an order of magnitude only by switching to
a symbolic representation of the input game. Here,
participants noted that most benchmarks can be
solved easily and that the current bottleneck is
parsing the input and constructing an internal rep-
resentation of the game. This explains the initial
advantage Knor-BDD exhibited in 2020.

An additional point of interest is that Knor-
BDD solved all benchmarks in 2020; 276 out
of 303 in 2021; and 216 combinatorially hard
benchmarks out of a total of 217 in the same year.

5.3 LTL track

The LTL track has been running since 2016
and the set of actively participating (i.e. new
and updated) tools has changed a bit since. In
Figure 1, we depict the changes in the LTL-
realizability rankings every year since 2017, and in
Table 8 we give an overview of the results in both
the realizability and synthesis subtracks from 2018
to 2021.

Here, and in similar graphs shown in the rest
of this article, we have selected the best configu-
ration submitted per tool. Additionally, all tools
— regardless of whether they were parallel or
sequential — were assigned as score the number
of benchmarks solved within the same time limits.
It is noteworthy that the best tool in 2017 imple-
mented bounded synthesis algorithms, whereas

https://syntcomp.react.uni-saarland.de/
https://www.starexec.org/starexec/secure/explore/spaces.jsp?id=329383
https://www.starexec.org/starexec/secure/explore/spaces.jsp?id=329383
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Table 5 Differences between Owl-Pig tools.

Tool Automata used Game-solving algorithms

Ltlsynt Det. Emerson Lei, Parity Transition-based parity-game solver (van Dijk, 2018)
Otus BDD-encoded Büchi, Rabin, Parity Symbolic DFI (van Dijk and Rubbens, 2019; Lijzenga and van Dijk, 2020)
SPORE Generalized Parity Recursive + partial solvers (Chatterjee et al, 2007; Bruyère et al, 2019)
Strix Det. Emerson Lei, Parity Distraction fixpoint (DFI) (van Dijk and Rubbens, 2019)

Table 6 Results of Parity Realizability Track 2020-2021

2020 2021
Tool Solved/total Solving time (s) Solved/total

Strix 122/122 6.84 150/217
Knor 122/122 12.71 -
Knor-BDD (122/122) (1.57) 216/217

Table 7 Results of Parity Synthesis Track 2021

Tool Solved/total Score

Strix 260/303 374.89
Knor-BDD 276/303 252.66

in recent years the competition has been dom-
inated by parity-game-based tools which focus
on optimizing the LTL-to-automaton compilation.
Namely, Strix has remained first in all rankings
since 2018.

Regarding 2021, in Figure 2 we have plot-
ted the total amount of time it takes for each
tool to solve increasing numbers of benchmarks.
Once more, we do not distinguish between parallel
and sequential tools. For reference, we have also
included Acacia bonsai in the plot, even if it only
participated hors concours.

In what follows, we analyze the time and qual-
ity rankings of the tools in the synthesis subtrack
of the 2018 and 2021 editions of SYNTCOMP.
Note that from 2019 to 2020 only ltlsynt and
Strix participated, and they did so too in 2021,
hence our choice of representative years. Addition-
ally, we present the state of the art in terms of
scalability for different parameterized families of
benchmarks we have used for the competition.

5.3.1 Synthesis subtrack 2018, 2021

In Figure 3 we have plotted, for each tool, the
total amount of time it takes for it to solve increas-
ing numbers of benchmarks. Here, we included
configurations from previous years of tools which
were updated and Party (as legacy tool) for
reference. Additionally, both realizable and unre-
alizable benchmarks were counted for the score.
The previous results should be compared with
Figure 4, where we have plotted the total size of

the outputs generated for increasing numbers of
(realizable) benchmarks.

5.3.2 Parameterized families of
benchmarks

Presently, we focus on families of LTL specifica-
tions defined by TLSF benchmarks with parame-
ters. In 2021, LTL specifications coming from 26
such TLSF files were used in the competition. For
most of those families, the results are consistent
with the previously summarized results, i.e., the
rankings of the tools are preserved when restrict-
ing the score to solved benchmarks in that set only.
However, some exceptions do exist.

For instance, the families of combinatorial
logic specifications mux and shift, which spec-
ify transducers realizing a mutiplexer and a barrel
shifter, respectively, are solved most efficiently
by tools other than Strix. See Figure 5 for
the relevant plots. Other exceptions include the
collector v2 and detector families of bench-
marks, see Figure 6. For the former, the (total)
solving time for the best tool is more than
order of magnitude smaller than that of Strix.
Other interesting families include arbiter specifi-
cations such as the round robin arbiter and the
full arbiter families. There, Strix is still best
overall, but not consistently so, see Figure 7.

5.3.3 Solved benchmark statistics

Finally, we also give some statistics of the bench-
marks solved in the 2021 edition of the compe-
tition. We present statistics for the benchmarks
solved by all participating tools, those solved
by tools implementing the bounded synthesis
approach, and those solved by tools implement-
ing the Owl-Pig approach. The data is given in
Table 9. This should be compared with the data
presented in the last row of Table 1.

We observe that the set of benchmarks
bounded synthesis tools are able to solve are
longer. Further, benchmarks not solved by
bounded synthesis tools have deeper average
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Table 8 Results of LTL Realizability & Synthesis Track 2018-2021

2018 2019 2020 2021

Tool Solved Score Solved Score Solved Score Solved Score
(out of 286) (out of 434) (out of 434) (out of 924)

Strix 267 446 418 717 424 600 827 793
BoSy 244 402 - - - - - -
Party/Kid & sdf 242 - - - - - 730 448
ltlsynt 239 258 361 349 398 360 745 543
BoWSer 212 315 - - - - - -
Otus - - - - - - 542 249
Spore - - - - - - 499 -

Fig. 1 Bump plot of the rankings for the LTL realizability tracks for all editions of SYNTCOMP 2017–2021 (2017 is
included for reference since some tools are no longer maintained and being updated)

Fig. 2 Cactus (a.k.a. survival) plots for the participants
of the LTL realizability track of SYNTCOMP 2021; Note
that the y-axis is displayed using logarithmic scale

temporal-operator nesting than those not solved
by Owl-Pig solvers. This is in line with the intu-
ition that complicated LTL formulas may yield
complex and larger deterministic automata, thus
slowing down Owl-Pig solvers whose bottleneck is
exactly constructing the automaton. In contrast,
recall that bounded synthesis tools avoid directly
constructing a deterministic automaton. Instead,
bounded synthesis tools are mostly affected by
how large the bound b needs to grow in order

to find a solution (i.e., how long the satisfac-
tion of liveness properties has to be postponed,
or how many states the smallest possible solution
has). For instance, the developers of Acacia bonsai
report (Cadilhac and Pérez, 2023) on the bound
required for their tool to solve 667 of the bench-
marks9 from the 2021 edition of SYNTCOMP:
From those, 546/667 finish with b = 2, and 106
more with 2 < b ≤ 5, so that only 15 (of the solved
benchmarks) need a bound larger than 5 and none
required more than b = 8.

Interestingly, based on the statistics of bench-
marks not solved by Owl-Pig solvers, one could
conclude that the number of inputs also affects
these tools more than it does bounded synthesis
ones.

6 Conclusion

In this article we have reported on the last four
editions of SYNTCOMP, the reactive synthesis
competition. Furthermore, we analyzed the results
of our experimental evaluations, including a rank-
ing of the participating tools with respect to
quantity and quality of solutions. We observe a

9To be precise, their experiment also fixes a timeout of
around one minute. This means the numbers that follow corre-
spond to a subset of benchmarks that Acacia bonsai can solve
very quickly.
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Fig. 3 Cactus (a.k.a. survival) plots for the participants of the LTL synthesis track of SYNTCOMP 2018 (left) and 2021
(right); Again, the y-axis is displayed using logarithmic scale

Fig. 4 Cactus plots for the participants of the LTL synthesis track of SYNTCOMP 2018 (left) and 2021 (right) — this time,
showing total output size instead of time (counting AND-gates only); Note that the y-axis is displayed using logarithmic
scale

Fig. 5 Cactus plots for all the participants of the LTL synthesis track of SYNTCOMP 2021, restricted to the mux (left)
and shift (right) benchmark families
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Fig. 6 Cactus plots for all the participants of the LTL synthesis track of SYNTCOMP 2021, restricted to the collector v2

(left) and detector (right) benchmark families

Fig. 7 Cactus plots for all the participants of the LTL synthesis track of SYNTCOMP 2021, restricted to the
round robin arbiter (left) and full arbiter (right) benchmark families

measurable improvement in terms of the perfor-
mance of the top solvers in the LTL and parity
tracks (see Table 8 and Table 9, then Table 6
and Table 7, respectively). In particular, every
year we see more tools solving more benchmarks.
Additionally, the number of collected benchmarks
continues to grow (see Table 1 and Table 6).
Also important to note is that the SYNTCOMP
benchmarks are now being used in subfields of
computer science outside of verification: In the
field of satisfiability testing, synthesis can be
seen as an application for quantified Boolean for-
mula tools (see, e.g., Tentrup and Rabe (2019),
where the SYNTCOMP benchmarks are used as a
reference). In the field of artificial intelligence, syn-
thesis can be seen as an application for planning
tools (see, e.g., Camacho et al (2018)). Finally, in

the field of programming languages, reactive syn-
thesis tools have been found useful to generate
functional programs Finkbeiner et al (2019a).

6.1 Lessons learned in LTL synthesis

In Subsection 4.12 we describe a classification of
all LTL-synthesis tools into one of two classes.
In 2021, Strix and Ltlsynt, both in the Owl-Pig
class, dominate the LTL tracks. We present below
a list of “successful tricks” which, we believe, have
led to the current status of the ranking of the tools.
1. LTL specification rewriting and decomposi-

tion (see, e.g. Sickert and Esparza (2020) and
(Finkbeiner et al, 2021), or the descriptions
of Strix and ltlsynt in Section 4).
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Table 9 Statistics regarding all LTL benchmarks (not) solved by each solver class in 2021. The first column indicates the
subset of benchmarks under consideration. Other notational conventions are the same as in Table 1. The last row is
reproduced from Table 1 for comparison.

No. of bench. Length of LTL formula Formula depth No. of inputs No. of outputs

Solved by ≥ 1 tool 869 23 ≤ 804, 1538 ≤ 74236 0 ≤ 2, 4 ≤ 37 1 ≤ 4, 6 ≤ 70 1 ≤ 3, 5 ≤ 64
Solved with b. synth. 761 23 ≤ 720, 1499 ≤ 74236 0 ≤ 2, 4 ≤ 22 1 ≤ 4, 6 ≤ 70 1 ≤ 3, 4 ≤ 64
Solved with Owl-Pig 842 23 ≤ 786, 1276 ≤ 17416 0 ≤ 2, 4 ≤ 37 1 ≤ 4, 6 ≤ 70 1 ≤ 3, 5 ≤ 64

Not with b. synth. 181 116 ≤ 1403, 4271 ≤ 330512 2 ≤ 4, 7 ≤ 37 1 ≤ 6, 9 ≤ 65 1 ≤ 5, 7 ≤ 64
Not with Owl-Pig 100 261 ≤ 3282, 8392 ≤ 330512 2 ≤ 3, 6 ≤ 17 3 ≤ 10, 12 ≤ 37 1 ≤ 6, 8 ≤ 30

All benchs. 942 23 ≤ 896, 2031 ≤ 330512 0 ≤ 3, 4 ≤ 37 1 ≤ 4, 7 ≤ 70 1 ≤ 3, 5 ≤ 64

2. On-the-fly/incremental or iterative automa-
ton construction and game solving on partial
automata (i.e. as implemented in Strix)

3. For bounded synthesis constructing a univer-
sal safety automaton: counter reduction, to
reduce the number of states for which count-
ing up to the bound b cannot be reduced to
a Boolean flag.

4. Adaptation of state-of-the-art practical
game-solving algorithms (e.g. (van Dijk
and Rubbens, 2019; Lijzenga and van Dijk,
2020))

5. Symbolic encodings: (parallel) BDDs,
antichains, SAT or QBF

In particular, we observe that the first and second
points are (in our opinion) what allowed Strix to
take LTL-synthesis to a new level in 2018. From
then onward, they have stayed ahead of other tools
by focusing on those same points together with
the fourth one. On the other hand, bounded syn-
thesis with incremental automata constructions or
counter reduction based on rewriting or decom-
posing the LTL specification has not received as
much attention though it was mentioned as an
interesting avenue in earlier works (Ehlers, 2011).
However, since for bounded synthesis the con-
struction of the automata is not the bottleneck,
these techniques may not be as valuable. Addi-
tionally, we believe that techniques for finding the
right stratification of the search space by bound-
ing certain paramaters (not only memory used
or visits to rejecting states) offer other avenues
of potential improvements, and have only been
explored to a small extent.

Finally, successful tricks seem to be easy to
transfer between tools of the same class. As an
example, we note that from 2017 to 2018, BoSy
integrated the approach that allowed Party/Kid
to win in 2017. This allowed BoSy to overtake
Party/Kid in 2018. Admittedly, such transfers

might be harder between bounded synthesis tools
that use different symbolic data structures or
encodings.

6.2 Lessons learned in parity games

From the results of the 2020 and 2021 editions
of the competition it is clear that the parity-
game tracks require more interesting benchmarks
to attract more participants and to make the
competition more interesting. Currently, all tools
implement similar parity-game solving algorithms
and the only advantage Knor seems to have is in
terms of the representation of the game and the
use of its own (parallel) BDD engine.

For parity games derived from practical exam-
ples, purely symbolic algorithms perform very
well; for contrived artificial constructions, solving
an explicit parity game (e.g. in Oink) is superior,
though the choice of explicit algorithm makes a
big difference.

6.3 The future of SYNTCOMP

In future editions, we will try to replicate the suc-
cess of the new parity-game track. Indeed, several
teams submitting solvers to it eventually ended
up extending their tool to participate in the LTL
tracks as well. Finally, we will also update some
of the rules of the competition so that it remains
interesting to the community.

Changes to rules

Starting with the 2022 edition of the competition,
the following changes will be implemented:
Benchmark copyright. All submitted benchmarks

will be made publicly available via our repos-
itory10 under a CC-BY license.

10Currently hosted here: https://github.com/SYNTCOMP/
benchmarks

https://github.com/SYNTCOMP/benchmarks
https://github.com/SYNTCOMP/benchmarks
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Parallel tracks. To have clearer conclusions
regarding which tools are faster, we will no
longer differentiate between tool submissions
to sequential and parallel tracks. Instead,
we will make this distinction by having two
rankings: one based on wallclock time (thus
favoring parallel configurations), and one
based on user-CPU time (favoring sequential
ones). Regarding concrete time limits, all
tools will be allowed T units of wall-clock
time and 4T units of user-CPU time (to
limit parallel configurations). The factor 4
was chosen since each job ran on StarExec
has access to one 4-core CPU.

StarExec. For the next 3–5 years, at least, we will
continue using StarExec to host the competi-
tion. We will follow its evolution in terms of
hardware and will later revisit the question
of whether alternative (locally hosted) frame-
works better fit the needs of the competition
and the community.
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