
Towards Better Heuristics for Solving Bounded
Model Checking Problems
Anissa Kheireddine !

EPITA, LRDE, Kremlin-Bicêtre, France
Sorbonne Université, UMR 7606 LIP6, Paris, France

Etienne Renault !

EPITA, LRDE, Kremlin-Bicêtre, France

Souheib Baarir !

Sorbonne Université, CNRS UMR 7606 LIP6, France
Université Paris Nanterre, France

Abstract
This paper presents a new way to improve the performance of the SAT-based bounded model
checking problem by exploiting relevant information identified through the characteristics of the
original problem. This led us to design a new way of building interesting heuristics based on the
structure of the underlying problem. The proposed methodology is generic and can be applied for
any SAT problem. This paper compares the state-of-the-art approach with two new heuristics:
Structure-based and Linear Programming heuristics and show promising results.

2012 ACM Subject Classification Hardware → Theorem proving and SAT solving; Hardware →
Model checking

Keywords and phrases Bounded model checking, SAT, Structural information, Linear Programming

Digital Object Identifier 10.4230/LIPIcs.CP.2021.12

Category Short paper

1 Introduction

Computer systems are omnipresent in our daily life. These range from the simple program
that runs a microwave to the very complex software driving a nuclear power plant, passing
by our smartphones and cars. Ensuring the reliability and robustness of these systems is an
absolute necessity. Model-Checking [10] is one of the approaches devoted to this purpose. Its
goal is to prove the absence of failure, or to show a possible one.

Model-Checking is declined into several techniques [8, 6, 19]. Among all, those called
Bounded Model Checking (BMC) [5], based on Boolean satisfiability (SAT). BMC is very
used for hardware formal verification in the context of electronic design automation1, but
is also applied to many other domains. The idea is to verify that a model, restricted to
executions bounded by some integer k, satisfies its specification, given as a set of terms in a
temporal logic. In this approach, behaviors are described as a SAT problem. The memory
usage in SAT solving does not usually suffer from the well-known space explosion problem
and can handle problems with thousands of variables and constraints. The complexity here
is shifted to the solving time: SAT problems are NP-complete problems in general [28].

These last decades, many improvements have been developed in the context of sequential
SAT solving2 [31, 2, 25, 22, 21], to name but a few. These approaches are quite generic and
are based on exploiting either dynamic information, obtained from the progress of the solving

1 http://fmv.jku.at/hwmcc20/index.html
2 Our focus here is on CDCL-like complete algorithms [34].

© Anissa Kheireddine Etienne Renault and Souheib Baarir;
licensed under Creative Commons License CC-BY 4.0

27th International Conference on Principles and Practice of Constraint Programming (CP 2021).
Editor: Laurent D. Michel; Article No. 12; pp. 12:1–12:10

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:anissa.kheireddine@lrde.epita.fr
https://orcid.org/0000-0002-5958-4069
mailto:renault@lrde.epita.fr
https://orcid.org/0000-0002-1825-0097
mailto:souheib.baarir@lip6.fr
https://doi.org/10.4230/LIPIcs.CP.2021.12
http://fmv.jku.at/hwmcc20/index.html
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

12:2 Towards Better Heuristics for Solving Bounded Model Checking Problems

algorithm itself (e.g., lbd [31]), or static information, derived from the underlying structure
of the SAT problem (e.g., community [2]). Little attention has been given to structural
information that can be extracted and exploited from the original problem (e.g., planning,
scheduling, cryptography, BMC, etc.).

Indeed, when reducing a BMC problem to SAT, crucial information is lost. As we will
highlight in this work, when reintegrated, this information can be a booster for the solving
process. To the best of our knowledge, this paper is the first one to exploit such insights:
existing approaches working on improving SAT-based BMC [14, 17, 33, 15, 32] either focus
on improving existing (generic) heuristics or on dividing efficiently the SAT problem.

This paper aims to propose a methodology (Section 4) to build new heuristics (Section 5).
This methodology is generic and can improve SAT-solvers for any problem with its specific
characterization. Here, we apply the proposed techniques to build efficient SAT-solvers
dedicated for BMC problems. Our results (Section 6) are promising and demonstrate the
interest of exploiting the information provided by the underlying problem.

2 Preliminaries

2.1 SAT problem
A propositional variable can have two possible values > (True) or ⊥ (False). A literal is a
propositional variable (x) or its negation (¬x). A clause ω is a finite disjunction of literals.
For a given clause ω, V (ω) denotes the set of variables composing ω. A clause with a
single literal is called unit clause. A conjunctive normal form (CNF) formula F is a finite
conjunction of clauses (by abuse of notation, F= {ω1, ω2, . . . }). For a given F , the set of its
variables is noted V . An assignment A of variables of F is a function A : V −→ {>,⊥}. A is
total (complete) when all elements of V have an image by A, otherwise it is partial. For a
given formula F and an assignment A, a clause of F is satisfied when it contains at least
one literal evaluating to true regarding A. The formula F is satisfied by A iff ∀ω ∈ F , ω is
satisfied. F is said to be SAT if there is at least one assignment that makes it satisfiable. It
is defined as UNSAT otherwise.

Conflict Driven Clause Learning [34]. Conflict-Driven Clause Learning algorithm
(CDCL) is one of the main methods used to solve Satisfiability problems and is an enhancement
of the DPLL algorithm [12]. CDCL algorithm performs a backtrack search; selecting at each
node of the search tree, a decision literal which is set to a Boolean value. This assignment is
followed by an inference step that deduces and propagates some forced unit literal assignments
(procedure called unit propagation). This branching process is repeated until finding a model
or reaching a conflict. In the first case, the formula is answered to be satisfiable, and the
model is reported, whereas in the second case, a learnt clause is generated (by resolution),
following a bottom-up traversal of the implication graph [30] (it is called conflict analysis).

2.2 SAT-based Bounded Model Checking
Model checking [10] aims at checking whether a model satisfies a property. The model is
usually given as a program, defined in a formal language, while the property is given as
formula expressed in temporal logic (e.g., LTL [27]). A property is said to be verified if no
execution in the model can invalidate it, otherwise it is violated. To achieve this verification
a full traversal of the state-space, representing the behaviours of the model, is required.

An LTL property refers to atomic propositions that express a relation between some
variables of the model. The model checking approach usually represents the model as a

A. Kheireddine E. Renault and S. Baarir 12:3

finite-state automaton called a Kripke structure [4]. Such a structure is defined by a 4-uple
K = 〈S, s0, T, L〉 with: S a finite set of states, s0 ∈ S an initial state, T ⊆ S ×S a transition
relation, and L a labelling function that provides, for each state s ∈ S, an interpretation of
an atomic proposition a denoted by L(a). L(a) is true iff a is satisfied in s.

Bounded Model Checking (BMC) [5, 9] refers to a model checking approach where the
verification of the property is performed using a bounded traversal, i.e., a traversal of symbolic
representation of the state-space that is bounded by some integer k. Such an approach does
not require storing state space and hence, is found to be more scalable and useful [33, 16].

In SAT-based BMC, the BMC approach is reduced to solving a SAT problem. Given a
model M , an LTL property p, and a bound k, it builds a propositional formula such that the
formula is said to be satisfiable iff there exists a violation of the property (counterexample)
of maximum length k. Otherwise, it is unsatisfiable and the property is verified up to length
k. The encoding of this formula requires multiple steps.

First, it translates the model into a Boolean formula. The set of variables of this SAT
formula can be decomposed in two disjoint subsets: M and J , where M is a Boolean
representation of the original variables of the model, while J is a set of fresh variables
(junction variables) used to finalize the conversion into a Boolean formula3. Second, the
property p is also translated into a SAT formula. This conversion involves M and J
and introduces new fresh variables F . Let us denote by Mp the set of variables of M
involved in p, Jp the set of variables of J involved in p. With these definitions we can build
P = Jp ∪Mp ∪ F , the set of the variables used to encode the property. Finally, the two
previous steps are combined in the following formula:

I(s0)
∧
T (s0, s1)

∧
· · ·

∧
T (sk−1, sk)︸ ︷︷ ︸

Model

∧
Pk︸︷︷︸

Property

(1)

It can be observed that both the transition relation of the model and the property have
been unrolled up to the bound k. The left-side denotes the model constraints while the
right-side is related to the property constraints. I(s0) are the initialization constraints that
verify if s0 is the the initial state of K, si represents the reachable states (in K) in i steps
using the transition relation T .

3 Related work

Most of the works on improving SAT solving focus on building heuristics to detect and
exploit relevant information during the solving process. Usually CDCL-like solvers maintain
a database of interesting learnt clauses in order to speedup the solving. Good performances of
these solvers are associated to their ability to preserve interesting clauses while maintaining
a reasonable size for the database. So, the issue here is to find the best trade-off between
what is considered to be a relevant information and how much of this information must be
kept. Some of the state-of-the-art heuristics that are used in the best solvers of the world4
are described below:

Size bounded learning [13]. This approach protects learnt clauses that are sized less than
a certain threshold.

3 For instance, a 32 bits variable will be represented as 32 Boolean variables, and the logical operators (∧,
∨, =⇒ ,. . .) will rely on fresh variables for their representation.

4 According to the results of the SAT competitions (https://satcompetition.github.io/2020/results.
html)

CP 2021

https://satcompetition.github.io/2020/results.html
https://satcompetition.github.io/2020/results.html

12:4 Towards Better Heuristics for Solving Bounded Model Checking Problems

Relevant bounded learning [18]. This approach discards learnt clauses when they are no
longer relevant according to some metric. For instance, a learnt clause is considered
as not relevant if the number of its literals that are assigned (w.r.t the current global
assignment) exceeds predefined threshold.

Literal block distance (LBD) [31]. LBD is a positive integer, that is used as a learnt clause
quality metric in almost all competitive sequential CDCL-like SAT-solvers. The LBD
of a clause is the number of different decision levels on which variables of the clause
have been assigned. Hence, the LBD of a clause can change overtime and it can be
(re)computed each time the clause is fully assigned. If LBD(ω)=n, then the clause ω
spans on n propagation blocks, where each block has been propagated within the same
decision level. Intuitively, variables in a block are closely related. Learnt clauses with
lower LBD score tend to have higher quality: Glue Clauses [31] have LBD score of 2 and
are the most important type of learnt clauses.

Community structure [2]. In this approach, the formula at hand is represented as a graph.
The shape of this graph is then analyzed to extract community structure: roughly
speaking, variables belonging to the same community are more densely interconnected
than variables in different communities. Existing studies [2, 3] showed that using the
community structure to detect new learnt clauses results in an improvement of the
performance of the solver.

Symmetries [11]. SAT problems often exhibit symmetries, and not taking them into account
forces solvers to needlessly explore isomorphic parts of the search space. Symmetries can
help learning interesting clauses that the classical learning approaches fail to capture [25, 1].

translates Despite the generic character of these heuristics, they have been tuned by some
research works in the case of the BMC problem. We can cite [29, 33, 17, 32] that present a
variety of optimizations such as: variable ordering heuristics, branching heuristics, studying
the symmetry structure of the BMC formula (1). Other works went for a decomposition
of the BMC formula into simpler and independent subproblems showing promising results
[14, 15].

4 Studying the characteristics of BMC problem

4.1 Intuition

 CP

 CJ

 CPJCPM

CM
 CMJ

CPMJ

Figure 1 The seven disjunct-
ive classes of clauses according to
the combination of variables they
handle: model variables (blue),
fresh/junction variables (yellow)
and property variables (red).

The notion of what is a relevant information is quite un-
clear for SAT procedures. Most of the existing techniques
are generic and try to perform well on any studied formula,
without taking a real care of its origin (see Section 3).
However, taking the structural information of the original
problem into account will eventually lead to an improve-
ment of the solving process. In this paper we explore this
idea in the particular case of the BMC problem.
The starting point is to study the characteristics of the
BMC problem. As a first insight, one can observe that the
BMC problem can be trivially divided in two parts: the
model and the property. However, when studying the learnt
clauses w.r.t. this partitioning no relevant information
could be inferred. Indeed, a learnt clause usually spans
on variables belonging to both the model and the LTL
property at the same time. So, we suggest here a sharper
classification based on the clause variables.

A. Kheireddine E. Renault and S. Baarir 12:5

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
% of learnt clauses

0

10

20

30

40

%
 u

sa
ge

 in
 p

ro
pa

ga
tio

n

1

2

3

4
5 6 7 8 91011

12
3

4
5 6 7 8 9 10 11

123456789101112
34567891011

1
2

3

4
5 6 7 8 9 10 11

12

3
4 5 6 7 8 9 10 11

12
3 4 5 6 7 8 91011

C
C

C
C

C
C
C

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
% of learnt clauses

0

10

20

30

40

%
 u

sa
ge

 in
 c

on
fli

ct
 a

na
ly

sis

1

2

3

4
5

6 7 8 91011

12
3

4
5 6 7 8 9 10 11

1234
56789101112

34567891011

1

2

3

4
5

6 7 8 9 10 11

12
3

4 5 6 7 8 9 10 11

12
3 4 5 6 7 8 91011

C
C

C
C

C
C
C

Figure 2 Measures on the training benchmark showing learnt clauses usage in propagation (left)
and conflict analysis (right) phases. Each class of clauses is colored and annotated by its LBD value.

A clause can be composed of variables belonging to M, P or J . Let us denote by
CX = {ω ∈ L | ∀v ∈ V (ω), v ∈ X} the classes highlighted in Figure 1, where X is either P
(the property), M (the model), J (the fresh variables for the model), PJ (property and
fresh variables), PM(property and model variables),MJ (model and fresh variables) or
PMJ (property, model and fresh variables). We can now study the usefulness of each of
the above classes of clauses in the solving process.

4.2 Measures
Let us first precise our setup: all experiments of the paper were conducted on a benchmark of
400 SMV instances. The instances came from the SMV hardware verification problems [7], the
BEEM [26] and the RERS Challenge benchmakrs5. The SMV instances were translated into
DIMACS format for various bound values k={20, 40, 60,. . . , 4000, 6000} [20]. Each instance
includes an LTL property provided with the model (46% of Safety property, 30% Guarantee,
14% Persistence, and 10% Recurrence according to the hierarchy of Manna&Pnueli [24]).

To perform our analysis, we developed a tool called BMC-tool6 that integrates NuSMV
tool [7] as a front-end and MapleCOMSPS [23] SAT-solver as a back-end. This solver is the
winner of the main track of the SAT competition 2016 and was used as core engine for the best
solvers in the last 5 years. The success of this solver relies on the management of the learnt
clauses with three different databases according to the LBD value of the clauses: core (LBD
≤ 3) for the really important ones (never deleted), tier-2 (LBD ≤ 6) for not-yet-decided
clauses, and local database for the remaining clauses. Clauses in tier-2 can be promoted to
the core database or downgraded to local database while those of local database can either
be promoted to tier-2 or permanently deleted.

We run our tool on 25% of the whole benchmark (100 instances), the so-called training
benchmark. For all instances, we logged the information related to each learnt clauses when
used in the unit propagation and conflict analysis. These information are the LBD of the
clause and its class (CX). The results are depicted in Figure 2.

The x-axis reports the cumulative mean percentage of learnt clauses for the training
benchmark and the y-axis corresponds to the cumulative mean usage percentage (left-side

5 https://tinyurl.com/29a4jcme
6 https://gitlab.XXX

CP 2021

https://tinyurl.com/29a4jcme
https://gitlab.XXX

12:6 Towards Better Heuristics for Solving Bounded Model Checking Problems

0 10 20 30 40 50
% of learnt clauses

20

40

60

80

100

%
 u

sa
ge

 in
 p

ro
pa

ga
tio

n

1

2

3

4
5 6 7 8 9 10

set of clauses: LBDx
Pareto front

0 10 20 30 40 50
% of learnt clauses

20

30

40

50

60

70

80

90

%
 u

sa
ge

 in
 c

on
fli

ct
 a

na
ly

sis

1

2

3

4
5

6 7 8 9 10

set of clauses: LBDx
Pareto front

Figure 3 Measures of learnt clauses usage during propagation (left) and conflict analysis (right)
phases. Blue dots denote LBD while red points depict the Pareto front of HLP strategy.

for unit propagation and right-side for conflict analysis). Each point represents the used
percentage of learnt clauses of a certain LBD (from 1 to 10) for a certain class. For example,
the purple triangle with left annotation 4 shows 2.5% of learnt clauses of class PM have an
LBD≤4 and are used in 13% of the unit propagation time (resp. 16% on conflict analysis).

We observe that CP have a significant usage (around 45%) with a total coverage of
around 5% in both propagation and conflict analysis. Therefore, these clauses seem to be
good candidates for being considered as a relevant information.

Consider now Figure 3 while ignoring momentarily the red points. This figure depicts
the same information as Figure 2 but without clause classification. Here, we observe that
the default strategy for characterizing relevant information in MapleCOMSPS, i.e., LBD
≤ 3 (identified by the blue point) covers 75% (mean value between propagation and conflict
analysis curves) of utilization for a total of 11% of the learnt clauses. It appears then that
more than half of what is considered as a relevant information came from CP .

This measure comforts our thoughts that the performances of the SAT-solver are con-
ditioned by a certain class of clauses. Our fine grained classification reveals that property
clauses seem to be the more pertinent ones.

5 Heuristics for BMC

Based on the previous study, we present our ideas for improving the solving of SAT-based
BMC problem. Our proposal is to identify and protect (from deletion) new sets of clauses
that are relevant for the solving of a BMC problem. We introduce for this, two new heuristics:
Structural heuristic (HS). The intuition behind this heuristic is to encourage the solver to

focus on CP clauses (probably these are used to falsify the property). To achieve this, we
augment the core database of MapleCOMSPS by a subset of CP : we take all clauses of
CP that have an LBD ≤ 5. Indeed, after this threshold, the curves of Figure 2 seem to
initiate an inflection that suggests that no more relevant information is captured.

Linear programming heuristic (HLP). This approach aims at predicting the usefulness of
each learnt clause mathematically. It determines the adequate LBD value for each class
of clauses by maximizing the total usage of learnt clauses while minimizing their number.
This is achieved by solving a linear programming system, that will provide multiple
solutions specifying the suitable value of LBD for each class.
The linear program is written such that the objective is an aggregation function of the
two above criteria. The constraints restrict the search-space to select at most one LBD

A. Kheireddine E. Renault and S. Baarir 12:7

value per class of clauses (input information is captured from Figure 2). The description
of the linear system needs the introduction of the following notations:
- uji : the percentage of learnt clauses (x-axis) with LBD≤ i of class j.
- vji : the percentage usage of learnt clauses (y-axis) with LBD≤ i of class j.
- xji : a Boolean variable representing the decision variable of the linear system. It takes

the value 1 if the LBD≤ i is chosen for the class of clauses j, 0 if not.
- C={P,M,J ,PM,PJ ,MJ ,PMJ} denotes the set of classes.
Hence, our modeling of the optimisation problem is as follows:

maximize fµ = −µ

O1︷ ︸︸ ︷
10∑
i=1

∑
j∈C

uji x
j
i + (1− µ)

O2︷ ︸︸ ︷
10∑
i=1

∑
j∈C

vji x
j
i

subject to


10∑
i=1

xji ≤ 1 ∀j ∈ C //At most one LBD value per class

xji ∈ {0, 1} ∀i ∈ [[1; 10]], ∀j ∈ C

fµ is the aggregation function, defined as a weighted sum7, and parameterized with µ
(0 ≤ µ ≤ 1): the term O1 represents the number of learnt clauses that should minimized
and the term O2 is the used percentage that should be maximized. Then, this bi-objective
optimization problem is converted to a single maximization problem using the parameter
µ as described above. Solving this system (using data collected on the training benchmark)
with various values for µ allows to draw a Pareto front (possibly not optimal).
The Pareto front highlighted in Figure 3 (red points) is obtained by solving this system
using an increment of 0.01 for the parameter µ: each of these points corresponds to a
configuration of the form: class CP with LBD x, class CJ with LBD y, etc.
Our first observation is that the red points dominate the blue ones (representing the
LBD-based approach of MapleCOMSPS) on both graphics of Figure 3. It appears then
that we can improve the performance of the standard approach by choosing one of this
point as a basis for detecting new relevant information: red points located between blue
points tagged 3 and 4 (i.e., those with LBD≤3 and LBD≤4, respectively) are the best
candidates. They are located at the inflection on both propagation and conflict analysis
curves. Among these points, we found that the best promising one covers 83% on unit
propagation (resp. 81% on conflict analysis) for a total of 15% of learnt clauses. This
point characterizes the clauses with the following properties: LBD≤3 for all classes but
CP and CJ . These latter have the configurations LBD≤4 and LBD≤9, respectively.
Therefore, this confirms the usefulness of clauses with LBD≤3 but also identifies new
interesting ones.

6 Experimental results

All the experiments have been executed on the full benchmark presented in Section 4 on an
Intel Xeon@2.40GHz machine with 12 processors and 64 Go of memory and a time limit of
6000 seconds8. Table 1 details the results of our experiments using MapleCOMSPS with HS
or HLP heuristics . The table displays, the number of UNSAT and SAT solved instances,

7 Other aggregation functions can be used, for example: Ordered Weighted Average, Choquet integral,. . .
8 For a description of our setup, detailed results and code, see https://akheireddine.github.io/

CP 2021

https://akheireddine.github.io/

12:8 Towards Better Heuristics for Solving Bounded Model Checking Problems

Solver UNSAT SAT TOTAL PAR-2 CTI (279) Cumulated time

MapleCOMSPS 173 116 289 423h58 44h08 238h59

MapleCOMSPS-LBD≤4 169 118 287 429h33 43h12 241h13

MapleCOMSPS-HS 174 118 292 418h10 43h24 238h10
MapleCOMSPS-HLP 177 118 295 413h53 45h02 238h53

Table 1 Comparison between state-of-the-art MapleCOMSPS solver and HS and HLP heuristics.
MapleCOMSPS-LBD≤4 uses a strategy where learnt clauses with LBD≤4 are considered as relevant.

the total number of solved instances, the PAR-2 metric9 used in SAT competitions, the
CTI metric10 and the cumulated time. HS and HLP don’t include pre-processing time (took
44h27) and the Pareto front computation in HLP doesn’t take more than one second.

We observe that MapleCOMSPS solves 289 instances with a PAR-2 of 423h58. Besides,
augmenting the core database to protect learnt clauses with LBD≤4 (MapleCOMSPS-
LBD≤4) seems to deteriorate the performances: 2 instances less with a PAR-2 of 429h33
(5 hours slower than the original solver). This result shows that increasing the number of
relevant clauses based entirely on the LBD cannot bring better performances.

The two next lines display the results of our heuristics. It appears that both of these
strategies perform better than state-of-the-art: MapleCOMSPS-HS solves 1 UNSAT and 2
SAT more while MapleCOMSPS-HLP solves 4 UNSAT and 2 SAT more. The PAR-2 of these
two heuristics shows a significant improvement with a gain of (at least) 6 hours.

Thus, the two presented heuristics demonstrate the importance of the information captured
by CP , since it is used by both of them: when performing the model-checking approach, a
synchronous product between the Kripke structure and the (automaton of the) property is
executed. Forcing the SAT procedure to consider property clauses will eliminate invalid paths
in the property automaton, leading to a smaller synchronized product, i.e the state-space
size is reduced efficiently. Also, it appears that HLP captures another important information
with CJ clauses: it is composed of fresh variables that make the connection between the
property and the model. Consequently, they also help to compute information related to the
synchronous product.

7 Conclusion and future work

Our journey towards building new heuristics for SAT procedures started with the observation
that the relevant information used by SAT-solvers can be refined. We proposed a generic
methodology to classify learnt clauses and we applied it to the special case of BMC. These
learnt clauses have been classified according to their meaning in the original problem which
helped us to suggest two heuristics (HS and HLP) based on the information carried by the LTL
property. The two heuristics improve the state-of-the-art approach, with the particularity of
HS to have a structural reasoning behind. In the other hand, the procedure used to build
HLP relies on a mathematical reasoning.

Future work aims to refine the proposed classification by exploiting the specification of the
property or the synchronicity of the model. Moreover, we would like to propagate this idea
to offer new sharing strategies on parallel SAT-solvers. And finally, building a SAT-solver to
exploit exclusively structural information of the original problem is in our perspectives.

9 PAR-k is the penalised average runtime, counting each timeout as k times the running time cutoff.
10Cumulated execution Time of the Intersection for instances solved by all solvers

A. Kheireddine E. Renault and S. Baarir 12:9

References
1 F.A. Aloul, K.A. Sakallah, and I.L. Markov. Efficient symmetry breaking for boolean satis-

fiability. IEEE Transactions on Computers, 55(5):549–558, 2006. doi:10.1109/TC.2006.75.
2 Carlos Ansótegui, Jesús Giráldez-Cru, and Jordi Levy. The community structure of sat

formulas. In Alessandro Cimatti and Roberto Sebastiani, editors, Theory and Applications of
Satisfiability Testing – SAT 2012, pages 410–423, Berlin, Heidelberg, 2012. Springer Berlin
Heidelberg.

3 Carlos Ansótegui, Maria Luisa Bonet, Jesús Giráldez-Cru, Jordi Levy, and Laurent Simon.
Community structure in industrial sat instances, 2019. arXiv:1606.03329.

4 Christel Baier and Joost-Pieter Katoen. Principles of Model Checking. The MIT Press, 2008.
5 Armin Biere, Alessandro Cimatti, Edmund M. Clarke, Ofer Strichman, and Yunshan Zhu.

Bounded model checking, 12 2003. doi:10.1016/S0065-2458(03)58003-2.
6 J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, and L.J. Hwang. Symbolic model

checking: 1020 states and beyond. Information and Computation, 98(2):142–170, 1992.
doi:https://doi.org/10.1016/0890-5401(92)90017-A.

7 A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M. Roveri, R. Sebastiani,
and A. Tacchella. NuSMV Version 2: An OpenSource Tool for Symbolic Model Checking. In
Proc. International Conference on Computer-Aided Verification (CAV 2002), volume 2404 of
LNCS, Copenhagen, Denmark, July 2002. Springer.

8 E. Clarke, K. McMillan, S. Campos, and V. Hartonas-Garmhausen. Symbolic model checking.
In Rajeev Alur and Thomas A. Henzinger, editors, Computer Aided Verification, pages 419–422,
Berlin, Heidelberg, 1996. Springer Berlin Heidelberg.

9 Edmund Clarke, Armin Biere, Richard Raimi, and Yunshan Zhu. Bounded model checking
using satisfiability solving. Form. Methods Syst. Des., 19(1):7–34, July 2001. doi:10.1023/A:
1011276507260.

10 Edmund Clarke, E. Emerson, and Joseph Sifakis. Model checking. Communications of the
ACM, 52, 11 2009. doi:10.1145/1592761.1592781.

11 James M. Crawford, Matthew L. Ginsberg, Eugene M. Luks, and Amitabha Roy. Symmetry-
breaking predicates for search problems. In Proceedings of the Fifth International Conference
on Principles of Knowledge Representation and Reasoning, KR’96, page 148–159, San Francisco,
CA, USA, 1996. Morgan Kaufmann Publishers Inc.

12 Martin Davis, George Logemann, and Donald Loveland. A machine program for theorem-
proving. Commun. ACM, 5(7):394–397, July 1962. doi:10.1145/368273.368557.

13 Daniel Frost and Rina Dechter. Dead-end driven learning. Proceedings of the National
Conference on Artificial Intelligence, 1, 08 2000.

14 Malay Ganai and Aarti Gupta. Tunneling and slicing: Towards scalable bmc. In Proceedings
of the 45th Annual Design Automation Conference, DAC ’08, page 137–142, New York, NY,
USA, 2008. Association for Computing Machinery. doi:10.1145/1391469.1391507.

15 Malay Ganai, Aarti Gupta, Zijiang Yang, and Pranav Ashar. Efficient distributed sat and
sat-based distributed bounded model checking. International Journal on Software Tools for
Technology Transfer, 8:387–396, 08 2006. doi:10.1007/s10009-005-0203-z.

16 Malay K. Ganai. Sat-based scalable formal verification solutions. In Series on Integrated
Circuits and Systems, Springer-Verlag New York, 2007.

17 Malay K. Ganai. Propelling SAT and sat-based BMC using careset. In Roderick Bloem and
Natasha Sharygina, editors, Proceedings of 10th International Conference on Formal Methods
in Computer-Aided Design, FMCAD 2010, Lugano, Switzerland, October 20-23, pages 231–238.
IEEE, 2010. URL: http://ieeexplore.ieee.org/document/5770954/.

18 Matthew L. Ginsberg and David A. McAllester. Gsat and dynamic backtracking. In Alan Born-
ing, editor, PPCP, volume 874 of Lecture Notes in Computer Science, pages 243–265. Springer,
1994. URL: http://dblp.uni-trier.de/db/conf/ppcp/ppcp94-lncs.html#GinsbergM94.

CP 2021

https://doi.org/10.1109/TC.2006.75
http://arxiv.org/abs/1606.03329
https://doi.org/10.1016/S0065-2458(03)58003-2
https://doi.org/https://doi.org/10.1016/0890-5401(92)90017-A
https://doi.org/10.1023/A:1011276507260
https://doi.org/10.1023/A:1011276507260
https://doi.org/10.1145/1592761.1592781
https://doi.org/10.1145/368273.368557
https://doi.org/10.1145/1391469.1391507
https://doi.org/10.1007/s10009-005-0203-z
http://ieeexplore.ieee.org/document/5770954/
http://dblp.uni-trier.de/db/conf/ppcp/ppcp94-lncs.html#GinsbergM94

12:10 Towards Better Heuristics for Solving Bounded Model Checking Problems

19 Gerard J. Holzmann. Explicit-state model checking. In Edmund M. Clarke, Thomas A.
Henzinger, Helmut Veith, and Roderick Bloem, editors, Handbook of Model Checking, pages
153–171, Cham, 2018. Springer International Publishing. doi:10.1007/978-3-319-10575-8_5.

20 Paul Jackson and Daniel Sheridan. Clause form conversions for boolean circuits. In Holger H.
Hoos and David G. Mitchell, editors, Theory and Applications of Satisfiability Testing, pages
183–198, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg.

21 Sima Jamali and David Mitchell. Centrality-based improvements to cdcl heuristics. In Olaf
Beyersdorff and Christoph M. Wintersteiger, editors, Theory and Applications of Satisfiability
Testing – SAT 2018, pages 122–131, Cham, 2018. Springer International Publishing.

22 George Katsirelos and Laurent Simon. Eigenvector centrality in industrial sat instances. In
Michela Milano, editor, Principles and Practice of Constraint Programming, pages 348–356,
Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

23 J. Liang, Vijay Ganesh, P. Poupart, and K. Czarnecki. Learning rate based branching heuristic
for sat solvers. In SAT, 2016.

24 Z. Manna and A. Pnueli. A hierarchy of temporal properties (invited paper, 1989). In PODC
’90, 1990.

25 Hakan Metin, Souheib Baarir, Maximilien Colange, and Fabrice Kordon. Cdclsym: Introducing
effective symmetry breaking in sat solving. In Proceedings of the 24th International Conference
on Tools and Algorithms for the Construction and Analysis of Systems (TACAS’18), volume
10805 of Lecture Notes in Computer Science, pages 99–114, Thessaloniki, Greece, April 2018.
Springer.

26 Radek Pelánek. Beem: Benchmarks for explicit model checkers. In Dragan Bošnački and
Stefan Edelkamp, editors, Model Checking Software, pages 263–267, Berlin, Heidelberg, 2007.
Springer Berlin Heidelberg.

27 Kristin Y. Rozier. Survey: Linear temporal logic symbolic model checking. Comput. Sci. Rev.,
5(2):163–203, May 2011. doi:10.1016/j.cosrev.2010.06.002.

28 Thomas J. Schaefer. The complexity of satisfiability problems. In Proceedings of the Tenth
Annual ACM Symposium on Theory of Computing, STOC ’78, page 216–226, New York, NY,
USA, 1978. Association for Computing Machinery. doi:10.1145/800133.804350.

29 Ofer Shtrichman. Tuning sat checkers for bounded model checking. In E. Allen Emerson
and Aravinda Prasad Sistla, editors, Computer Aided Verification, pages 480–494, Berlin,
Heidelberg, 2000. Springer Berlin Heidelberg.

30 João P. Marques Silva and Karem A. Sakallah. Grasp—a new search algorithm for satisfiability.
In Proceedings of the 1996 IEEE/ACM International Conference on Computer-Aided Design,
ICCAD ’96, page 220–227, USA, 1997. IEEE Computer Society.

31 Laurent Simon and Gilles Audemard. Predicting Learnt Clauses Quality in Modern SAT
Solver. In Twenty-first International Joint Conference on Artificial Intelligence (IJCAI’09),
Pasadena, United States, July 2009. URL: https://hal.inria.fr/inria-00433805.

32 Chao Wang, HoonSang Jin, Gary D. Hachtel, and Fabio Somenzi. Refining the sat decision
ordering for bounded model checking. In Proceedings of the 41st Annual Design Automation
Conference, DAC ’04, page 535–538, New York, NY, USA, 2004. Association for Computing
Machinery. doi:10.1145/996566.996713.

33 Emmanuel Zarpas. Simple yet efficient improvements of sat based bounded model checking.
In Alan J. Hu and Andrew K. Martin, editors, Formal Methods in Computer-Aided Design,
pages 174–185, Berlin, Heidelberg, 2004. Springer Berlin Heidelberg.

34 Lintao Zhang, Conor F. Madigan, Matthew H. Moskewicz, and Sharad Malik. Efficient conflict
driven learning in a boolean satisfiability solver. In Proceedings of the 2001 IEEE/ACM
International Conference on Computer-Aided Design, ICCAD ’01, page 279–285. IEEE Press,
2001.

https://doi.org/10.1007/978-3-319-10575-8_5
https://doi.org/10.1016/j.cosrev.2010.06.002
https://doi.org/10.1145/800133.804350
https://hal.inria.fr/inria-00433805
https://doi.org/10.1145/996566.996713

	1 Introduction
	2 Preliminaries
	2.1 SAT problem
	2.2 SAT-based Bounded Model Checking

	3 Related work
	4 Studying the characteristics of BMC problem
	4.1 Intuition
	4.2 Measures

	5 Heuristics for BMC
	6 Experimental results
	7 Conclusion and future work

