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Abstract
This paper presents a new way to improve the performance of the SAT-based bounded model checking
problem on sequential and parallel procedures by exploiting relevant information identified through
the characteristics of the original problem. This led us to design a new way of building interesting
heuristics based on the structure of the underlying problem. The proposed methodology is generic
and can be applied for any SAT problem. This paper compares the state-of-the-art approaches with
two new heuristics for sequential procedures: Structure-based and Linear Programming heuristics.
We extend these study and applied the above methodology on parallel approaches, especially to
refine the sharing measure which shows promising results.
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1 Introduction

Computer systems are omnipresent in our daily life. These range from the simple program
that runs a microwave to the very complex software driving a nuclear power plant, passing
by our smartphones and cars. Ensuring the reliability and robustness of these systems is an
absolute necessity. Model-Checking [14] is one of the approaches devoted to this purpose. Its
goal is to prove the absence of failure, or to show a possible one.

Model-Checking is declined into several techniques [12, 9, 30]. Among all, those called
Bounded Model Checking (BMC) [8], based on Boolean satisfiability (SAT). BMC is very
used for hardware formal verification in the context of electronic design automation1, but
is also applied to many other domains. The idea is to verify that a model, restricted to
executions bounded by some integer k, satisfies its specification, given as a set of terms
in a temporal logic. In this approach, behaviors are described as a SAT problem. The
memory usage in SAT solving does not usually suffer from the well-known space explosion

1 http://fmv.jku.at/hwmcc20/index.html
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problem [15] and can handle problems with thousands of variables and constraints. The
complexity here is shifted to the solving time: SAT problems are NP-complete problems [44].

These last decades, many improvements have been developed in the context of sequential
SAT solving2 [47, 3, 40, 34, 33], to name but a few. These approaches are quite generic and
are based on exploiting either dynamic information, obtained from the progress of the solving
algorithm itself (e.g., LBD [47]), or static information, derived from the underlying structure
of the SAT problem (e.g., community [3]). Little attention has been given to structural
information that can be extracted and exploited from the original problem (e.g., planning,
scheduling, cryptography, BMC, etc.).

Indeed, when reducing a BMC problem to SAT, crucial information is lost. As we will
highlight in this work, when reintegrated, this information can be a booster for the solving
process. This paper is the one of the first to exploit such insights: existing approaches
working on improving SAT-based BMC [21, 24, 50, 22, 48] either focus on improving existing
(generic) heuristics or on dividing efficiently the SAT problem.

This paper is an extension of our work published at CP’21 [36] where we proposed a new
methodology to build new SAT heuristics oriented for the BMC problem. The methodology
is generic and can improve SAT solvers for any problem with its specific characterization. In
the CP’21 paper, we applied the proposed techniques to build efficient SAT solvers dedicated
for BMC problems. Our results (Section 6) are promising and demonstrate the interest of
exploiting the information provided by the primary problem.

In addition to the above, we augment the benchmark and integrate our heuristics on a
newly sequential Kissat-MAB [43] SAT solver3 and applied the idea of identifying relevant
information in the context of parallel SAT procedures. We implemented our ideas on top of
the winner of the parallel SAT competition 20224, ParKissat-RS. In order to identify this
information, Section 8 first describes the classical architecture of a parallel SAT solver. Based
on this architecture, we propose in Section 9, a new heuristic tailored for solving the problem
in parallel. More precisely, this new heuristic specifies the information to communicate
between the various threads. Further, we combined these parallel heuristics to the sequential
ones presented in CP’21 paper [36].

The paper is organized as follow. Section 4 aims to propose a methodology to build new
sequential heuristics detailed in Section 5. The result of these heuristics are presented in
Section 6. Section 8 recalls parallel state-of-the-art approaches and sets our motivations.
Section 9 exposes our sharing heuristic dedicated for the BMC problem. Section 11 presents
the evaluation of the parallel heuristic as well as the evaluation of their combination with
sequential ones.

2 Preliminaries

2.1 SAT problem
A propositional variable can have two possible values ⊤ (True) or ⊥ (False). A literal is a
propositional variable (x) or its negation (¬x). A clause ω is a finite disjunction of literals.
For a given clause ω, V (ω) denotes the set of variables composing ω. A clause with a
single literal is called unit clause. A conjunctive normal form (CNF) formula F is a finite
conjunction of clauses (by abuse of notation, F= {ω1, ω2, . . . }). For a given F , the set of its

2 Our focus here is on CDCL-like complete algorithms [52].
3 Winner of the SAT competition 2021
4 https://satcompetition.github.io/2022/
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variables is noted V . An assignment A of variables of F is a function A : V −→ {⊤, ⊥}. A is
total (complete) when all elements of V have an image by A, otherwise it is partial. For a
given formula F and an assignment A, a clause of F is satisfied when it contains at least
one literal evaluating to true regarding A. The formula F is satisfied by A iff ∀ω ∈ F , ω is
satisfied. F is said to be SAT if there is at least one assignment that makes it satisfiable. It
is defined as UNSAT otherwise.

Conflict Driven Clause Learning [52]. Conflict-Driven Clause Learning algorithm (CDCL)
is one of the main methods used to solve Satisfiability problems and is an enhancement of
the DPLL algorithm [17]. CDCL algorithm performs a backtrack search; selecting at each
node of the search tree, a decision literal which is set to a Boolean value. This assignment
is followed by an inference step that deduces and propagates some forced unit literal
assignments (procedure called unit propagation). This branching process is repeated until
finding a model or reaching a conflict. In the first case, the formula is answered to be
satisfiable, and the model is reported, whereas in the second case, a learnt clause is
generated (by resolution), following a bottom-up traversal of the implication graph [46]
(a procedure called conflict-analysis).

2.2 SAT-based Bounded Model Checking
Model checking [14] aims at checking whether a model satisfies a property. The model is
usually given as a program, defined in a formal language, while the property is given as
formula expressed in temporal logic (e.g., LTL [42]). A property is said to be verified if no
execution in the model can invalidate it, otherwise it is violated. To achieve this verification
a full traversal of the state-space, representing the behaviours of the model, is required.

An LTL property refers to atomic propositions that express a relation between some
variables of the model. The model checking approach usually represents the model as a
finite-state automaton called a Kripke structure [6]. Such a structure is defined by a 4-uple
K = ⟨S, s0, T, L⟩ with: S a finite set of states, s0 ∈ S an initial state, T ⊆ S × S a transition
relation, and L a labelling function that provides, for each state s ∈ S, an interpretation of
an atomic proposition a denoted by L(a). L(a) is true iff a is satisfied in s.

Bounded Model Checking (BMC) [8, 13] refers to a model checking approach where
the verification of the property is performed using a bounded traversal, i.e., a traversal
of symbolic representation of the state-space that is bounded by some integer k. Such an
approach does not require storing state-space and hence, is found to be more scalable and
useful [50, 23].

In SAT-based BMC, the BMC approach is reduced to solving a SAT problem. Given a
model M , an LTL property p, and a bound k, it builds a propositional formula such that the
formula is said to be satisfiable iff there exists a violation of the property (counterexample)
of maximum length k. Otherwise, it is unsatisfiable and the property is verified up to length
k. The encoding of this formula requires multiple steps, Figure 1 illustrates these steps using
counter-bit alike problem.

In Figure 1, the model’s automaton (1) and the LTL specification are expressed through
an SMV language (2). The encoding starts by translating the model into a Boolean formula:
the initial states (3.1) and the transition relation (3.2). In the example, four Boolean
variables x, y, z and w are initialized with ⊥ for x and y and ⊤ for the others. The transition
relation is encoded as constraints expressing the next value each of the variables will take
up to bound k=2. The set of variables of this SAT formula can be decomposed in two
disjoint subsets: M′ and J ′, where M′ is a Boolean representation of the original variables

CONSTRAINTS 2022
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Figure 1 Two bit counter example unrolled up to bound k=2

of the model (x, y, z and w), while J ′ is a set of auxiliary variables (junction variables)
used to finalize the conversion into a Boolean formula5. Second, the property (3.3) p is
translated into a SAT formula. This conversion involves M′ and J ′ and introduces new
auxiliary variables F . Let us denote by M′

p the set of variables of M′ involved in p, J ′
p the

set of variables of J ′ involved in p. With these definitions we can build three disjoint sets:
P = J ′

p ∪ M′
p ∪ F , the set of the variables used to encode the property (i.e, x and y),

M = M′\M′
p, the set of variables that encode the model and are not involved in the

LTL specification, and
J = J ′\J ′

p, the set of auxiliary variables that are not involved in the LTL specification.

The encoding of a BMC problem is combined in the following formula:

I(s0)
∧

T (s0, s1)
∧

· · ·
∧

T (sk−1, sk)︸ ︷︷ ︸
Model

∧
Pk︸︷︷︸

P roperty

(1)

It can be observed that both the transition relation of the model and the property
have been unrolled up to the bound k (k=2 in the example 1). The left-side denotes the
model constraints while the right-side is related to the property constraints. I(s0) are the
initialization constraints that verify if s0 is the the initial state of K, si represents the
reachable states (in K) in i steps using the transition relation T .

5 For instance, a 32 bits variable will be represented as 32 Boolean variables, and the logical operators (∧,
∨, ̸=,. . . ) will rely on auxiliary variables for their representation.
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3 Related work

Most of the works on improving SAT solving focus on building heuristics to detect and
exploit relevant information during the solving process. Usually CDCL-like solvers maintain
a database of interesting learnt clauses in order to speedup the solving. Good performances of
these solvers are associated to their ability to preserve interesting clauses while maintaining
a reasonable size for the database. So, the issue here is to find the best trade-off between
what is considered to be a relevant information and how much of this information must be
kept. Some of the state-of-the-art heuristics that are used in the best solvers of the world6

are described below:
Size bounded learning [20]. This approach protects learnt clauses that are sized less than

a certain threshold.
Relevant bounded learning [25]. This approach discards learnt clauses when they are no

longer relevant according to some metric. For instance, a learnt clause is considered
as not relevant if the number of its literals that are assigned (w.r.t the current global
assignment) exceeds predefined threshold.

Literal block distance (LBD) [47]. It is a positive integer, that is used as a learnt clause
quality metric in almost all competitive sequential CDCL-like SAT solvers. The LBD
of a clause is the number of different decision levels on which variables of the clause
have been assigned. Hence, the LBD of a clause can change overtime and it can be
(re)computed each time the clause is fully assigned. If LBD(ω)=n, then the clause ω

spans on n propagation blocks, where each block has been propagated within the same
decision level. Intuitively, variables in a block are closely related. Learnt clauses with
lower LBD score tend to have higher quality: Glue Clauses [47] have LBD score of 2 and
are the most important type of learnt clauses.

Community structure [3]. In this approach, the formula at hand is represented as a graph.
The shape of this graph is then analyzed to extract community structure: roughly
speaking, variables belonging to the same community are more densely interconnected
than variables in different communities. Existing studies [3, 4] showed that using the
community structure to detect new learnt clauses results in an improvement of the
performance of the solver.

Symmetries [16]. SAT problems often exhibit symmetries, and not taking them into account
forces solvers to needlessly explore isomorphic parts of the search space. Symmetries can
help learning interesting clauses that the classical learning approaches fail to capture [40, 2].

Despite the generic character of these heuristics, they have been tuned by some research
works in the case of the BMC problem. We can cite [45, 50, 24, 48] that present a variety
of optimizations such as: variable ordering heuristics, branching heuristics, studying the
symmetry structure of the BMC formula (1). Other works went for a decomposition of the
BMC formula into simpler and independent sub-problems showing promising results [21, 22].

4 Studying the characteristics of BMC problem

4.1 Intuition
The notion of what is a relevant information is quite unclear for SAT procedures. Most of
the existing techniques are generic and try to perform well on any studied formula, without

6 According to the results of the SAT competitions (https://satcompetition.github.io/2022/)

CONSTRAINTS 2022
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taking a real care of its origin (see Section 3). However, taking the structural information
of the original problem into account will eventually lead to an improvement of the solving
process. In this paper we explore this idea in the particular case of the BMC problem.

The starting point is to study the characteristics of the BMC problem. As a first insight,
one can observe that BMC problems can be trivially divided in two parts: the model and
the property. However, when studying the learnt clauses w.r.t. this partitioning no relevant
information could be inferred. Indeed, a learnt clause usually spans on variables belonging
to both the model and the LTL property at the same time. So, we suggest here a sharper
classification based on the clause variables.

A clause can be composed of variables belonging to M, P or J . Let us denote by
CX = {ω ∈ L | ∀v ∈ V (ω), v ∈ X} the classes highlighted in Figure 2, where X is either P
(the property), M (the model), J (the auxiliary variables for the model), PJ (property
and auxiliary variables), PM (property and model variables), MJ (model and auxiliary
variables) or PMJ (property, model and auxiliary variables). The colored boxes of the
formula in Figure 1 label a clause according to the variable it handles: yellow boxes define
PJ clauses that join property P and auxiliary variables J (used to convert the ̸= operator),
brown boxes are for MJ clauses containing model M and auxiliary variables J ,...etc. We
can now study the usefulness of each of the above classes of clauses in the solving process.

         CP

               CJ

        CPJCPM

CM
 CMJ

CPMJ

Figure 2 The seven disjunct-
ive classes of clauses according to
the combination of variables they
handle: model variables (blue),
auxiliary/junction variables (yel-
low) and property variables (red).

Discussion. In this section, we proposed a classification
of the variables, and thus a classification of the clauses,
based on the underlying BMC problem. The methodology
presented here can be applied for any problem provided
that the relevant information is captured when converting
the original problem into a Boolean SAT problem. For
instance, one can consider the graph coloring problem, used
for register allocation. Basically this process assigns one
variable per register. This is achieved by translating an
interference graph into a set of constraints. During this
translation, the information about "critical" variables is lost,
i.e. which node is in conflict with most of others. One could
use this information to split the set of variables into multiple
classes. Thus, a clause could be characterized by summing

the degree of each of its variables.

4.2 Measures
Let us first precise our setup: all experiments of the paper were conducted on a benchmark of
620 SMV instances. The instances came from the SMV hardware verification problems [11],
the BEEM [41], the RERS Challenge benchmarks7 and the HWMC Competition 20208. The
SMV instances were translated into DIMACS format [32] for various bound values k={20,
40, 60,. . . , 4000, 6000}. Each instance includes an LTL property provided with the model
(50% of Safety property, 27% Guarantee, 3% Persistence and 10% Recurrence according
to the hierarchy of Manna&Pnueli [39])). Some LTL properties have been generated using
Spot [18] (1% Obligation and 9% Reactivity) and we omitted trivial instances that runs less
than 1 second on MapleCOMSPS solver.

7 https://tinyurl.com/29a4jcme
8 http://fmv.jku.at/hwmcc20/

https://tinyurl.com/29a4jcme
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Figure 3 Measures on the training benchmark
with MapleCOMSPS solver, showing learnt clauses
usage in conflict-analysis phase. Each class of
clauses is colored and annotated by its LBD value.
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Figure 4 Measures of learnt clauses usage with
MapleCOMSPS solver, during conflict-analysis
phase. Blue dots denote LBD while red points
depict the Pareto front of HLP strategy.
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Figure 5 Measures on the training benchmark
with Kissat-MAB solver, showing learnt clauses
usage in conflict-analysis phase. Each class of
clauses is colored and annotated by its LBD value.
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Figure 6 Measures of learnt clauses usage with
Kissat-MAB solver, during conflict-analysis phase.
Blue dots denote LBD while red points depict the
Pareto front of HLP strategy.
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To perform our analysis, we developed a tool called BSaLTic9 that integrates NuSMV
tool [11] as a front-end and a CDCL SAT solver (MapleCOMSPS [38] and Kissat-MAB [43])
as a back-end. These solvers are the winner of the main track of the SAT competitions
(2016 for MapleCOMSPS and 2021 for Kissat-MAB). The success of these solvers relies on
the management of the learnt clauses with three different databases according to the LBD
value of the clauses: core (LBD≤2 in Kissat-MAB and LBD≤3 in MapleCOMSPS) for the
really important ones (never deleted), tier-2 (LBD≤6) for not-yet-decided clauses, and local
database for the remaining clauses. Clauses in tier-2 can be promoted to the core database
or downgraded to local database while those of local database can either be promoted to
tier-2 or permanently deleted.

We run our tool on 23% of the whole benchmark (140 instances), the so-called training
benchmark. For all instances, we logged the information related to each learnt clauses when
used in the conflict-analysis. These information are the LBD of the clause and its class (CX).
The results are depicted in Figure 3 for conflict-analysis step using MapleCOMSPS solver
and Figure 5 when using Kissat-MAB.

The x-axis of Figure 3 and Figure 5 reports the cumulative mean percentage of learnt
clauses for the training benchmark and the y-axis corresponds to the cumulative mean usage
percentage for conflict-analysis. Each point represents the used percentage of learnt clauses
of a certain LBD (from 1 to 10) for a certain class. For example, in Figure 3, the yellow
triangle with left annotation 4 shows that 10% of learnt clauses of class PJ have an LBD≤4
and are used in 58% of the time. We observe in this figure that CPJ have a significant
usage (around 60%) with a total coverage of around 20%. Therefore, these clauses seem to
be good candidates for being considered as a relevant information. Figure 5 depicts similar
information in conflict-analysis phase when using Kissat-MAB. The same observation can be
made on the importance of CPJ clauses where their usage is around 60% for 15% of learnt
clauses.

Consider now Figure 4 while ignoring momentarily the red points. This figure depicts
the same information as Figure 3 but without clauses classification. Here, we observe that
the default strategy for characterizing relevant information in MapleCOMSPS, i.e., LBD≤3
(identified by the blue point) covers 70% of utilization for a total of 12% of the learnt
clauses. It appears then that more than half of what is considered as a relevant inform-
ation came from CPJ . In the same way, Figure 6 of Kissat-MAB (default strategy for
characterizing relevant information are those of LBD≤2), more than half (55%) of what is
considered as relevant information came from CPJ (in Figure 6 the blue point tagged with 2
covers 86% of usage for a total of 7% of involved learnt clauses).

This measure comforts our thoughts that the performances of the SAT solver are con-
ditioned by a certain class of clauses. Our fine grained classification reveals that clauses
implying the property seem to be the more pertinent ones.

5 Heuristics for BMC

Based on the previous study, we present our ideas for improving the solving of SAT-based
BMC problem. Our proposal is to identify and protect (from deletion) new sets of clauses
that are relevant for the solving of a BMC problem. We introduce for this, two new heuristics:

Structural heuristic (HS). The intuition behind this heuristic is to encourage the solver

9 https://akheireddine.github.io/

https://akheireddine.github.io/
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to focus on clauses that involve the property (P variables) such as CPJ . Indeed, a
large model-checking procedures rely on the structure of the LTL property. To integrate
this idea on a SAT-based approach, we augment the core database of the solver by a
subset of CPJ , we take all clauses of CPJ that have an LBD≤5 (resp. LBD≤4) with
MapleCOMSPS engine (resp. Kissat-MAB). Indeed, after this threshold, the curve of
Figure 3 (resp. Figure 5) seems to initiate an inflection that suggests that no more
relevant information is captured.

Linear programming heuristic (HLP). This approach aims at predicting the usefulness of
each learnt clause mathematically. It determines the adequate LBD value for each class
of clauses by maximizing the total usage of learnt clauses while minimizing their number.
This is achieved by solving a linear programming system, that will provide multiple
solutions specifying the suitable value of LBD for each class.
The linear program is written such that the objective is an aggregation function of the two
above criteria. The constraints restrict the search-space to select at most one LBD value
per class of clauses (input information is captured from Figures 3,6). The description of
the linear system needs the introduction of the following notations:
- uj

i : the percentage of learnt clauses (x-axis) with LBD≤i of class j.
- vj

i : the percentage usage of learnt clauses (y-axis) with LBD≤i of class j.
- xj

i : a Boolean variable representing the decision variable of the linear system. It takes
the value 1 if the LBD≤i is chosen for the class of clauses j, 0 if not.

- C={P, M, J , PM, PJ , MJ , PMJ } denotes the set of classes.
Hence, our modeling of the optimisation problem is as follows:

maximize fµ = −µ

O1︷ ︸︸ ︷
10∑

i=1

∑
j∈C

uj
i xj

i + (1 − µ)

O2︷ ︸︸ ︷
10∑

i=1

∑
j∈C

vj
i xj

i

subject to


10∑

i=1
xj

i ≤ 1 ∀j ∈ C //At most one LBD value per class

xj
i ∈ {0, 1} ∀i ∈ [[1; 10]], ∀j ∈ C

fµ is the aggregation function, defined as a weighted sum10, and parameterized with µ

(0 ≤ µ ≤ 1): the term O1 represents the number of learnt clauses that should minimized
and the term O2 is the used percentage that should be maximized. Then, this bi-objective
optimization problem is converted to a single maximization problem using the parameter
µ as described above. Solving this system (using data collected on the training benchmark)
with various values for µ allows to draw a Pareto front (possibly not optimal).
The Pareto front of MapleCOMSPS (resp. Kissat-MAB), highlighted with red points
in Figure 4 (resp. Figure 6) is obtained by solving this system using an increment of
0.01 for the parameter µ: each of these points corresponds to a configuration of the form:
class CP with LBD≤x, class CJ with LBD≤y, etc.
Our first observation is that the red points dominate the blue ones (representing the
LBD-based approach) on both graphics of Figures 4 and 6. It appears then that we can
improve the performance of the standard approach by choosing one of this point as a
basis for detecting new relevant information: red points located between blue points

10 Other aggregation functions can be used, for example: Ordered Weighted Average, Choquet integral,. . .

CONSTRAINTS 2022
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tagged 3 and 4 for MapleCOMSPS (i.e., those with LBD≤3 and LBD≤4, respectively)
and red points located between blue points tagged 2 and 3 for Kissat-MAB are the best
candidates. They are located at the inflection on their respective curves. Among these
points, we found that in:
MapleCOMSPS: the best promising one covers 81.8% on conflict-analysis for a total of

16.5% of learnt clauses. This point characterizes the clauses with properties on first
line of Table 1: LBD≤3 for all classes but CP , CJ and CPJ . These latter have the
configurations LBD≤4, LBD≤10 and LBD≤5, respectively.

Kissat-MAB: The promising point covers 87.3% on conflict-analysis for a total of 9.57%
of learnt clauses. It characterizes the clauses with the following configuration resumed
in Table 1: LBD≤3 for CM, CJ CPM and CPJ and LBD≤2 for remaining classes.

Therefore, this confirms the usefulness of clauses with LBD≤3 (resp. LBD≤2) on
MapleCOMSPS solver (resp. Kissat-MAB solver) but also identifies new interesting ones.

Solver CJ CM CMJ CPM CP CPMJ CPJ Default CORE

MapleCOMSPS 10 3 3 3 4 3 5 3
Kissat-MAB 3 3 2 3 3 2 3 2
Table 1 Configurations computed using HLP on MapleCOMSPS and Kissat-MAB training

information.

6 Sequential Experiments

All the experiments have been executed on the full benchmark presented in Section 4 on
an Intel Xeon@2.40GHz machine with 12 processors and 64 Go of memory and a time
limit of 6000 seconds. Table 2 details the results of our experiments using MapleCOMSPS
and Kissat-MAB with HS or HLP heuristics. The table displays, the number of UNSAT
and SAT solved instances, the total number of solved instances, the cumulated time (PAR-
1), the PAR-2 metric11 used in SAT competitions, the CTI metric12 (it consists of 357
instances for MapleCOMSPS results and 433 for Kissat-MAB). HS and HLP do not include
pre-processing time (took 68h for MapleCOMSPS and 47h for Kissat-MAB) and the Pareto
front computation in HLP does not take more than one second.

We observe that MapleCOMSPS solves 368 instances with a PAR-2 of 943h. Besides,
augmenting the core database to protect learnt clauses with LBD≤4 (MapleCOMSPS-
LBD≤4) seems equivalent to the default MapleCOMSPS version: 368 instances with a PAR-2
of 1 hour faster than MapleCOMSPS. It translates the fact that some problems were not
overwhelmed by the additional clauses (of LBD=4) but also shows that increasing the number
of relevant clauses based entirely on the LBD cannot bring better performances.

The two next lines display the results of our heuristics. It appears that both of these
strategies perform better than state-of-the-art: MapleCOMSPS-HS solves 1 additional SAT
instance while MapleCOMSPS-HLP solves 4 UNSAT and 2 SAT more. The PAR-2 of
MapleCOMSPS-HLP heuristic shows a significant improvement with a gain of 13 hours,
where MapleCOMSPS-HS heuristic gave similar PAR-2 in comparison to the classical Maple-
COMSPS even if the PAR-1 and CTI time is slower (1h40 for the PAR-1 and 3 hours for the

11 PAR-k is the penalised average run-time, counting each timeout as k times the running time cutoff.
12 Cumulated execution Time of the Intersection for instances solved by all solvers
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Solver UNSAT SAT TOTAL PAR-1 PAR-2 CTI

MapleCOMSPS 255 113 368 523h00 943h00 91h50

MapleCOMSPS-LBD≤4 254 114 368 522h00 942h00 91h50

MapleCOMSPS-HS 253 116 369 524h40 943h00 94h50
MapleCOMSPS-HLP 258 117 375 521h30 929h50 93h30

Kissat-MAB 310 144 454 384h20 661h00 86h20

Kissat-MAB-LBD≤3 302 142 444 397h00 690h20 92h30

Kissat-MAB-HS 311 142 453 386h10 664h30 84h20
Kissat-MAB-HLP 319 142 461 379h40 644h40 80h40

Table 2 Comparison between state-of-the-art MapleCOMSPS and Kissat-MAB solvers and HS

and HLP heuristics. MapleCOMSPS-LBD≤4 (resp. Kissat-MAB-LBD≤3) uses a strategy where
learnt clauses with LBD≤4 (resp. LBD≤3) are considered as relevant.

CTI). These variations are left to the user considering which constraint is to prioritize in
terms of number of solved instances or the limited time to solve them.

The remain segment displays the experiments using Kissat-MAB engine. The original
solver solves 454 instances with a PAR-2 of 661 hours. Augmenting the core database
to protect learnt clauses with LBD≤3 (Kissat-MAB-LBD≤3) seems to deteriorate the
performances: 10 instances less with a PAR-2 (resp. CTI) of 29 hours slower (resp. CTI of
6 hours slower) than the original Kissat-MAB solver. The last two lines present the tuned
versions of Kissat-MAB using HS and HLP heuristics. Kissat-MAB-HS solves 1 UNSAT
instance more but 2 instances less than state-of-the-art, whereas Kissat-MAB-HLP solves
9 UNSAT more but 2 SAT instances less and manages to decrease the PAR-2 time to 3 hours.

To sum up, both SAT solvers perform better with HLP heuristic. Kissat-MAB seems
more suitable when solving BMC problems especially UNSAT ones, known to be difficult.
Hence, the two presented heuristics highlight the importance of the information captured by
CPJ , since it is used by both of them: when performing the model-checking approach, a
synchronous product between the Kripke structure and the (automaton of the) property is
executed. Forcing the SAT procedure to consider property clauses will eliminate invalid paths
in the property automaton, leading to a smaller synchronized product. Also, it appears that
HLP captures other important information such as: CJ (and CM when using Kissat-MAB)
clauses. CJ is composed of auxiliary variables used for the conversion of the problem
into a CNF formula [32]. They make the connection between the property and the model.
Consequently, they also help to compute information related to the synchronous product.

7 Overview of parallel SAT approaches

The next sections are dedicated to the application of our previous studies in the context
of parallelism (see. Section 5). Indeed, parallel procedures have become prominent axis
to increase SAT solver efficiency due to the emergence of multi-core machines. Figure 7
describes the classical architecture of parallel SAT solver. Three main components can be
observed: the Parallel strategy specifies the split of the workload among threads, the
Sharing strategy broadcasts (relevant) information and the Solver strategy determines
the SAT algorithm to use for given thread(s). The main purpose of all existing parallel SAT
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Figure 7 Parallel architecture using MapleCOMSPS as SAT solver and an All-to-All communica-
tion

solver is therefore to find the best trade-off between these three components. For instance,
using a Sharing strategy that exchanges too much information may degrades the overall
performances by flooding the underlying solvers. On the other hand, no sharing at all could
not help to solve more UNSAT problems.

7.1 Parallel strategies
Exploiting multi-core architectures is a way to tackle the CPU time consumption when
solving SAT problems. Two standards classes of parallel techniques have been developed:
Divide-and-Conquer (cooperation-based) [51]. It aims at partitioning the problem into

disjoint sub-parts. It uses the guiding path method to decompose the search space. These
parts are solved separately by sequential solvers. Since the parts are disjoint, if one of the
partitions is proven to be SAT then the initial problem is SAT. The formula is UNSAT if
all the partitions return UNSAT. The challenging points of this method are: dividing the
search space and balancing jobs between solvers.

Portfolio (competition-based) [28]. It consists in making several solvers competing, on the
same problem and the winner will be the first that answers. This strategy aims at
increasing the probability of finding a solution using the diversification principle [26]:
several solvers with different heuristics are instantiated. They differ by their decision
strategies, learning schemes, the used random seed, etc.

In practice, Portfolio strategies are the most commonly used and showed a huge efficiency in
recent SAT competitions13.

7.2 Sharing strategies
In the aforementioned parallel approaches, the solvers can dynamically share information.
This exchange warrants a particular focus: if a solver shares his knowledge (consisting of its
learnt clauses), then this information will allow the other solvers to avoid recomputing the
same information (i.e., descending into parts of the search tree that have already been proven
to be unsatisfiable). Thus, exchanging learnt clauses is helpful in increasing the performance
of the global system. However, sharing "all" learnt clauses can have a negative impact on

13 (http://www.satcompetition.org/)

(http://www.satcompetition.org/)
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the overall behavior. Indeed, a massive exchange can either flood the solver or redirect it
towards irrelevant part of the search space. Therefore, existing approaches [5, 27, 35, 28]
raise the following question: what are the relevant clauses to share?
The literature identifies two main heuristics for an efficient sharing:
Static threshold. Many solvers rely on the standard measures defined for sequential solvers

(i.e., activity [25], size [20] or the LBD value [47]). Only clauses less than a given threshold
for these measures are shared. One simple way to get the threshold is to define it as a
constant (e.g., clauses up to size 8 are shared in ManySat [28], clauses up to LBD≤4
are shared in recent strategies using parallel MapleCOMSPS engines [37] or LBD≤2 for
parallel ParKissat-RS portfolio.

Dynamic threshold. Other approaches adapt the above thresholds dynamically in order to
control the flow of shared clauses during the solving such as Hordesat strategy [7]. It
starts by sharing clauses with a certain LBD threshold. This latter is increased when it
appears that more clauses should be exchanged (each solver has its own threshold).

Remark. In almost all parallel SAT solvers, each thread shares information with all the
other threads. Nonetheless, there exist, finer and more complex communications schemes
that let each solver to choose its emitters [31].

7.3 Solving strategies

Despite the parallel or the sharing strategies, each thread can use its own solving algorithm.
This allows to mix the strengths of multiple algorithms. Since implementing a SAT solving
algorithm requires a lot of tuning, there exist frameworks, like PaInleSS [37], that allows to
easily integrate state-of-the-art SAT solvers: Minisat [19], Glucose [47], MapleCOMSPS [38],
Kissat-MAB [43], etc.

We extend this framework by adding the solvers defined in Section 5: MapleCOMSPS-HLP
and Kissat-MAB-HLP solvers.

Remark. In the next sections, we left aside the HS heuristic since it does not provides
massive improvement in the sequential experiments (Section 6) compared to HLP.

8 A need for an efficient Parallel BMC

State-of-the-art

Most of the parallel existing solutions remain generic and do not take into account the
structure of the original problem. Nonetheless, some works on parallel SAT-based BMC
problems exploit the specificity of the BMC [1, 49]. Ábrahám et al. [1] suggest to parallelize
the search for counterexample by spawning (in parallel) multiples solvers that solve different
depth k of the same problem rather than parallelizing on the same bound k. The work of S.
Wieringa [49] shows that the information obtained from previous step k could be used to
tune upcoming one (k + 1). These approaches can exploit the work of Shtrichman [45] to the
parallel setting (constraint sharing and clause replication).

Other works [29, 22, 10] focus on a specific bound k of the problem and decompose
it into a Server-Clients scheme where each client is in charge of solving a portion of the
original problem. They must agree on a solution and the final decision is left to the master
(reconciliator). The master is also responsible of controlling the communication between
solvers.
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Figure 8 BSaLTic’s Framework. The dashed box represents the BSaLTic tool

Motivations
To the best of our knowledge, no study has focused on designing a Portfolio-based approach
that exploit the characteristics of the BMC problem with a fix bound k. In the next
section, we propose the firsts BMC-based Portfolios that uses specialized sharing strategies
for exchanging clauses. We experiment these Portfolios with state-of-the-art approaches in
Section 11.

9 BMC-based Heuristics for Sharing strategies

In Section 4, we identified seven classes of clauses. These classes have been exploited in
the context of sequential SAT solving to design two new heuristics dedicated to BMC (see.
Section 5). These heuristics protect from deletion relevant clauses. The idea defended in
this section is that a similar method could be applied in the context of parallel SAT solving.
Indeed, since we already characterize relevant clauses, we can use this information to tune
the sharing strategies.

Current procedures use generic measures to identify clauses to share, the best being the
LBD value: only learnt clauses with a fixed threshold of LBD are shared between solvers.
With this strategy, all learnt clauses, w.r.t a certain LBD and with no distinction between
classes CX , are considered as relevant.

In Section 5, we observed that some classes of clauses are more interesting for the solving
than others. To leverage these pertinent classes to be massively shared, we propose to
increase their corresponding LBD threshold.

SHLP: add clauses computed by HLP heuristic to the sharing w.r.t. to the used solver,
see Table 1. For instance, clauses of class CJ that have an LBD≤10 are allowed to be
shared between solvers.

10 Using BSaLTic

The Figure 8 shows the architecture of the BSaLTic framework which involves NuSMV [11]
and the two SAT solvers (MapleCOMSPS [38] and Kissat-MAB [43]). BSaLTic takes three
parameters as input: (1) an SMV program, (2) an LTL property (not negated), and (3) a
bound k, required for any BMC problem. NuSMV produces a file, representing the SAT
encoding of the BMC problem at hand [32]. This file is then processed by (our modified
version of) a SAT solver. Note that the SAT solver component is encapsulated inside
PaInleSs [37] which enable us to integrate other SAT solvers into the framework but also use
parallel mechanisms (sharing strategies and parallel approaches).
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SAT strat. Sharing strat. UNSAT SAT TOTAL PAR-1 PAR-2 CTI (472)

MapleCOMSPS Hordesat 357 120 477 342h50 590h35 107h20
SHLP 362 120 482 339h20 578h50 106h50

MapleCOMSPS-HLP
Hordesat 361 119 480 343h05 585h50 107h00
SHLP 362 120 482 341h20 580h40 108h00

Table 3 Comparison between state-of-the-art MapleCOMSPS Portfolio and our tuned portfolio
MapleCOMSPS-HLP for various sharing approaches.

Here, we provide the necessary commands to run the tool.
For Sequential approaches. Executing the HLP heuristic on a problem unrolled up to

bound 20, you can run the following command using MapleCOMSPS solver:
$$ bsaltic.sh -s maple -k 20 -heur hlp -ltl file.ltl file.smv
or with Kissat-MAB:
$$ bsaltic.sh -s kissat -k 20 -heur hlp -ltl file.ltl file.smv

For Parallel approaches. Executing a portfolio of 10 MapleCOMSPS-HLP engines on a
problem unrolled up to bound 20 with a hordesat sharing strategy, you can run the
following command:
$$ bsaltic.sh -s maple -c 10 -k 20 -shr hordesat -heur hlp -ltl file.ltl file.smv

or running Kissat-MAB-HLP portfolio with the SHLP sharing approach:
$$ bsaltic.sh -s kissat -c 10 -k 20 -shr hlp -heur hlp -ltl file.ltl file.smv

11 Experimental results on Parallel

This section aims at evaluating the impact of the sharing heuristics in a parallel portfolio
setting. All the experiments have been executed on the full benchmark presented in Section 4
on an Intel Xeon@2.40GHz machine with, 12 processors, a 64 Go of memory, a time limit of
6000 seconds and using Portfolios of 10 solvers (threads).

Table 3 details the results of our parallel experiments. We tested several portfolios:
a MapleCOMSPS-based portfolio and MapleCOMSPS-HLP-based portfolio (presented in
Section 5). For a given portfolio, threads only differ by their diversification strategies [26].

The Table shows the different used sharing strategies: Hordesat (a strategy that
increases dynamically the LBD threshold w.r.t. some constraints)14, and SHLP. For each
strategy, the number of solved UNSAT and SAT instances, the PAR-1, the PAR-2 and the
CTI are displayed.

The first observation goes to the used SAT solver.
MapleCOMSPS. the utilization of a BMC-based sharing strategy (SHLP) on a MapleCOM-

SPS portfolio performs better than state-of-the-art hordesat sharing: it solves 5 UNSAT
instances more and decreases the running time up to 12 hours for the PAR-2 metric and
30 min less for the CTI.

MapleCOMSPS-HLP. similarly, SHLP gives better performances than hordesat on both
SAT and UNSAT instances: 2 instances more in total with a PAR-2 of 5 hours less

14 This is the strategy used by the best parallel solver of the parallel track of the SAT competition 2021
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SAT strat. Sharing strat. UNSAT SAT TOTAL PAR-1 PAR-2 CTI (514)

ParKissat-RS LBD≤2 368 148 516 248h00 429h20 81h30
SHLP 372 149 521 246h40 416h20 79h25

ParKissat-RS-HLP

LBD≤2 373 149 522 248h40 415h40 80h10
SHLP 375 150 525 244h10 405h40 77h20

Table 4 Comparison between state-of-the-art ParKissat-RS Portfolio and our tuned portfolio
ParKissat-RS-HLP for various sharing approaches.
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computation.

The results reflect that using a BMC-based sharing strategy improves and performs better
than generic strategies.

A detailed view of this comparison is depicted in Figure 9. The scatter-plot compares the
state-of-the-art portfolio to our best one. A dot represents one solved instance (red if UNSAT
and blue if SAT). The y-axis gives the solving time (seconds) for our best Portfolio and the
x-axis is for the state-of-the-art Portfolio. It clearly appears that a MapleCOMSPS-based
portfolio using an SHLP is globally faster than generic portfolio, especially on UNSAT
problems.

The second observation goes to the sharing approach:
Hordesat. The suitable solver seems to be MapleCOMSPS-HLP with 480 solved instances.

In contrast to a generic MapleCOMSPS portfolio which solves 3 instances less. From
here, we can notice a first improvement when using our tuned solver.

SHLP. the two engines give similar results in terms of number of solved instances: 362 UNSAT
and 120 SAT solved instances. However, the original MapleCOMSPS-based portfolio
stands out with a reduction on the running time (PAR-1, PAR-2 and CTI) with at least
2 hours. This configuration seems to perform better where other configurations failed
to reach this running time score. It seems to demonstrate that information captured by
the tuned SAT solver doesn’t bring better information, so focusing on tuning the sharing
maybe sufficient when using a MapleCOMSPS engine.

Based on the above results, we go further and conduct the experiments displayed in Table 4.
These are realized using a parallel portfolio ParKissat-RS, the winner of the the Parallel
SAT Competition 2022 that uses Kissat-MAB as a back-end engine, and we compared it
when using our tuned Kissat-MAB-HLP solver, namely ParKissat-RS-HLP. ParKissat-RS
uses the PaInLeSS framework to implement the clause sharing method, and each thread
shares clauses with LBD≤2. Diversification is also used.

We observe that state-of-the-art portfolio ParKissat-RS that uses static sharing (LBD≤2)
solves 516 instances and has a PAR-2 metric of 429 hours. In contrast, our best portfolio
ParKissat-RS-HLP with a SHLP sharing solves 9 instances more with faster PAR-2 of 23 hours.
It agrees to say that ParKissat-RS-HLP portfolio with SHLP sharing is best suitable for
parallelism when using Kissat-MAB solver.

Moving on to more details, when fixing the used SAT solver, we observe that:
ParKissat-RS. the best configuration uses SHLP sharing which solves 5 instances more,

reducing the PAR-2 time (resp. CTI) up to 13 hours (resp. 2 hours).
ParKissat-RS-HLP. tuning both the SAT solver and the sharing mechanism performs better

than sharing only clauses of LBD≤2: 3 instances more and 4 hours less computation on
the PAR-2 metric.

The experiments strengthen our intuition that BMC-based sharing strategies enhance the
solving on the total number of solved instances but also the computation time.

A detailed view of this comparison is depicted in Figure 10. The scatter-plot compares
ParKissat-RS with LBD≤2 sharing to our best one (ParKissat-RS-HLP with SHLP sharing).
The next analysis goes to the used sharing approach:
LBD≤2. the tuned portfolio is more suitable than the original portfolio: ParKissat-RS-HLP

won on 5 UNSAT instances and 1 SAT instance against ParKissat-RS portfolio and
lower the computation time with 13 hours for the PAR-2 and 1 hour for the CTI and
equivalently the same on the PAR-1.
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SHLP. ParKissat-RS-HLP remains the best on this strategy with 4 more instances and
10 hours faster in PAR-2 than state-of-the-art ParKissat-RS.

To conclude, the observations derived from Tables 3,4 and Figures 9,10 support our claim
that using of components tuned for BMC (sharing heuristics, relevant clauses heuristics)
have a non-negligible impact on the performances.

12 Conclusion and future work

Our journey towards building new heuristics for SAT procedures started with the observation
that the relevant information used by SAT solvers can be refined. We proposed a generic
methodology to classify learnt clauses and we applied it to the special case of BMC. These
learnt clauses have been classified according to their meaning in the original problem which
helped us to suggest two heuristics (HS and HLP) based on the information carried by the LTL
property. The two heuristics improve the state-of-the-art approach, with the particularity of
having a structural reasoning behind HS heuristics. In the other hand, the procedure used to
build HLP relies on a mathematical reasoning.

We extended this idea to the context of parallel BMC solving by offering a new sharing
strategy, namely SHLP. This focuses on tuning two, out of the three, components of a parallel
SAT solving, i.e., the sharing strategy and the SAT strategy.

Future work aims to refine the proposed classification by exploiting the specification
of the property (using the Hierarchy of Manna&Pnueli) or the synchronicity of the model.
And finally, building a SAT solver and extensively, a Portfolio-based approach, to exploit
exclusively structural information of the original problem is in our perspectives.
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