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ABSTRACT
Active Magnetic Regenerator (AMR) refrigeration based on a tem-
perature changing in Magneto Caloric Materials (MCMs) is an in-
novate technology, which can reduce energy consumption and the
depletion of the ozone layer. However, to develop a commercially
applicable design of the AMR model is still an issue, because of the
difficulty to reproduce physical properties of different MCMs and
to find a configuration of the AMR parameters, which are suitable
for various applications needs. In this work, we focus on the opti-
mization of a simulation model of AMR in two application modes:
a magnetic refrigeration system and a thermo-magnetic genera-
tor. From an optimization point of view, the AMR problems are
typical examples of black-box problems with different number of
objectives. This paper proposes a robust optimisation tool based on
a hybridisation of the Non-dominated Sorting Genetic Algorithm
III and Quantum Particle Swarm Optimisation algorithm, which
ensures the scalability with respect to the number of objectives
and allows to easily set up optimisation experiments for different
research cases. A thorough tool validation is presented. It is ex-
pected that this tool can help to make a qualitative jump in the
development of AMR refrigeration.

CCS CONCEPTS
• Computing methodologies → Artificial intelligence; Model-
ing and simulation.
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1 INTRODUCTION
Nowadays, the demand for cooling is increasing, due to the climate
change and universal problems: e.g., the current pandemic of Covid-
19. Since vaccines are roll out, they need enormous cold-storage
systems for their manufacture, distribution and storage. According
to a report by the International Energy Agency, the number of global
cooling devices is estimated to increase from 3.6 billion to 9.5 billion
by 2050.

In this context, in order to reduce worldwide electricity con-
sumption and direct greenhouse gas emissions, Active Magnetic
Regenerator (AMR) refrigeration is a promising technology, which
replaces the cycles of gas compression/expansion by the phases
of magnetization/demagnetization of solid refrigerants - Magneto
Caloric Materials (MCMs) [1], [3]. An AMR consists of a porous
matrix of MCMs, which is traversed by a fluid flow and is synchro-
nized with a magnetic field variation. Its working principle is based
on the reversible temperature change in MCMs, which occurs near
the Curie temperature under applying magnetic field for producing
cooling effect [11].

The AMR is a complex system, where multiple physical phe-
nomena coexist and define its performance. Generally, to simplify
a process of its development, a simulation model of the AMR is
used, which comprises a model of MCMs for reproducing physical
properties of several MCMs in order to provide the refrigeration
over a temperature span comparable to conventional refrigeration.

Despite the promising researches, the AMR development has two
principle problems that prevent its commercial production: (i) to
simulate physical properties of different MCMs in good qualitative
agreement with the available experimental data; (ii) to comprehen-
sively tune many control and design parameters of the AMR model,
depending on their effect on its performance.

For overcoming these difficulties, related researches apply opti-
mization algorithms to the numerical simulation models of MCMs
[13] and AMR [25], [7], [21]. However, the optimization has never
been applied to the both problems in the frame of the same research
study. Moreover, the common point of the works aiming at opti-
mizing the AMR performance is to focus on only a single problem
definition for a selected application mode. Thus, they do not allow
to explore innovative architectures of AMR, which can operate in
different application modes.

These restrictions are explained by the difficulty to set up new
optimization experiments, where different number of objectives
and decision variables are required. From an optimization point of
view:
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• the problems of the AMR design are the black-box optimiza-
tion problems, where the number of decision variables is
changing according to the number of control and design
parameters and the number of objectives depends on the
performance metrics taken into consideration;

• the problems of reproducing physical properties of MCMs
are separable or partially seaprable optimization problems,
where the number of objectives depends on the number of
studied physical properties of materials.

If an optimization problem is modified so that its number of
objectives is changed, to conduct a new experiment is a compli-
cated and time-consuming task, because an efficient algorithm for
finding the global optimum of a single-objective problem, cannot
be adequately applied to find many optimal solutions for another
optimization problem [5]. In this case, a user has to know different
algorithms specialized in solving a particular number of objectives.
Moreover, every time when the problem is reformulated/changed, a
user must merge the codes of this new problem and a new algorithm.
Thus, the scientific and practical necessity in a robust algorithm
scalable w.r.t. the number of objectives (and decision variables) is
obvious.

For improving optimization process of the AMR design, we
present an user-friendly optimization tool based on an “unified"
algorithm. The term “unified" is borrowed from [22], where it was
introduced for describing the algorithms, which ensure the scalabil-
ity w.r.t. the number of objectives: i.e., capable to solve from single-
to many-objective problems. In the presented unified algorithm, we
extend the idea proposed in [22], to scale the well-known many-
objective Non-dominated Sorting Genetic Algorithm III (NSGA-III)
down to solve single-objective problems. But comparatively with
[22], we employ a hybridization for fusing the solutions of NSGA-III
with the solutions of Quantum Particle SwarmOptimization (QPSO)
algorithm, instead of the modifications of NSGA-III structure. This
hybridization allows NSGA-III to handle very small population size
in single-objective cases, which is useful for optimizing computa-
tionally intensive problems. To our best knowledge, this work is
the first attempt to apply hybridization to unified optimization.

Applying presented optimization tool, we show in this work
that:

• the proposed unified algorithm is robust for solving a single-
objective problem in order to reproduce physical properties
of MCMs;

• it is possible to find the common configuration of control and
design parameters for the AMR, which is operating in two
modes: Magnetic Refrigeration System (MRS) and Thermo-
Magnetic Generator (TMG). To our best knowledge, there
are no researches, which simultaneously optimize the design
of the AMR model for two operating modes.

Compiling all together, we want to contribute by making a step
forward the further development of AMR refrigeration for its com-
mercial application and a new insight about hybrid method, which
is capable to be employed for constituting scalable algorithms.

This paper is organized as follows. Section 2 describes the materi-
als and methods. The experiments and results are shown in Section
3. Finally, Section 4 presents some conclusions.

2 MATERIALS AND METHODS
2.1 The Simulation Models
The simulators used for this project are presented in the two fol-
lowing subsections.

2.1.1 The model of Magneto Caloric Materials. In this work, we use
a method for studying/reproducing physical properties of MCMs
presented in [13]. It is based on the generalize Blume-Emery-Griffiths-
Ising (BIG-I) Hamiltonian model of MCMs, which is provided by
the Crismat laboratory1 and briefly described in [13]. From an op-
timization point of view, the proposed method can be considered
as:

(1) a computationally intensive problem: the average execution
time of one run of a Monte Carlo solver of the BEG-I model
is 4h on AMD EPYC 7371 16-Core Processor;

(2) a continuous optimization problem;
(3) a separable/partially separable problem, because its Hamil-

tonian presents the sum of three parts, where each of these
part is calculated with one or two independent decision vari-
ables;

(4) from single- to multi-objective problems.

2.1.2 The model of Active Magnetic Regenerator. The AMR model
is provided by Ubiblue Company and is under active development
since 2013. The AMR model takes into account the five following
components: the regenerator (the matrix of MCMs), the hot and
cold heat exchangers, the pump and the magnet. Thus, this model is
a multi-physic and multi-scale model, where: (i) a magnetic model is
represented at micro scale by the electron’s spins alignment under
an applied magnetic field; (ii) a fluid flow is represented at mini scale
by the heat transfer fluid and (iii) a heat transfer is represented at
macro scale by the thermal exchange via the heat transfer fluid [19].
Figure 1 presents a basic scheme of this magnetic device [19]. More
details about the AMR model can be found in the publicly available
description in [19] and in [15]. In this work, we deal with extended
version of the AMR model, which can operate in two modes: as the
Magnetic Refrigeration System (MRS) and the Thermo-Magnetic
energy Generator (TMG).

Figure 1: The basic scheme of a magneto caloric device. The
illustration is adapted from [19].

Table 1 reports the common AMR configuration for the MRS
and the TMG modes, which is used for all simulations in this
1https://crismat.cnrs.fr/

https://crismat.cnrs.fr/
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Table 1: Default parameters of AMR model configuration for
both operating modes

Parameter Value Unit

Geometry type parallel plates [-]
MCMs data set 𝐹𝑒𝑆𝑖𝐿𝑎𝑀𝑛𝐻 -based [-]
Plate thickness 0.4 [mm]

Fluid channel thickness 0.15 [mm]
Magnetic field change value 0 - 0.8 [T]

Temperature span 0 − 65 [◦𝐶]
𝑇𝑐 segment layering length 1 [cm]

work. These configuration parameters were chosen according to
the feedback from previous Ubiblue prototypes and corresponds to
a technical-economical optimum.

From an optimization point of view, the AMR model of Ubiblue
is considered as:

(1) a computationally intensive problem: the execution time of
one simulation run of a single-mode operating AMR model
has high variance and takes 15h max. on AMD EPYC 7371
16-Core Processor;

(2) a continuous optimization problem;
(3) a black-box optimization problem;
(4) a small, medium and large scale problem, where the number

of decision variables depends on the number control and
design parameters, which are taken under consideration;

(5) from single- to many-objective problems.

2.2 Hybrid Unified Optimization Algorithm
Aiming at ensuring the scalability w.r.t. the number of objectives for
time-consuming problems, we develop further the idea of unified
algorithm presented in [22], by employing a hybridization method
for scaling down a many-objective algorithm to single-objective
optimization.

Non-dominated Sorting Genetic Algorithm III (NSGA-III) orig-
inally presented in [4], is selected as a baseline many-objective
algorithm in this work, because of the following reasons: (i) it has
a small number of turning parameters; (ii) it has an ability to ef-
ficiently solve different many-objective problems and (iii) it was
already used for the unified optimization in [22].

However, as it was explained in [22], NSGA-III can not efficiently
solve single-objective problems, because of the following features
of NSGA-III:

(1) The recommended population size for single objective opti-
mization equals 4 solutions (defined as the smallest multiple
of 4 greater than the number of reference directions, where
only one reference direction is considered in case of single
objective optimization), which is too small for NSGA-III’s
recombination operator to find useful child solutions.

(2) The solutions are picked randomly for recombination/mutation
operators, which means that with growing population size,
without selection pressure, NSGA-III will work as a random
walk algorithm on single-objective problems. Consequently,

the algorithm will require larger number of calls of evalua-
tion functions, which is an issue for computationally inten-
sive problems.

Instead of increasing the population size and adding the selection
pressure, as it was proposed in [22], we employ a hybridisation
method by fusing the solutions from different algorithms. In gen-
eral, a hybridisation method combines the solutions from two or
more algorithms such that the resulting algorithm extracts the
best solutions by exploiting the different features of all integrated
algorithms for solving larger number of problems [26], [10].

For single-objective optimization, in order to maintain the diver-
sity in the NSGA-III population with only 4 solutions, we propose
to fuse the solutions of NSGA-III with the solutions of Quantum-
inspired Particle Swarm Optimization algorithm (QPSO). For the
sake of avoiding redundancy, we do not provide the description of
the original NSGA-III and QPSO algorithms.

The QPSO algorithm presented in [24], uses the concept of quan-
tum particle motion in the Delta potential well for reaching the
optimal solution. QPSO is selected as an auxiliary algorithm in
this hybrid method, because of the following reasons: (i) it is theo-
retically guaranteed that QPSO converges to the global optimum
and (ii) QPSO has been successfully applied to a vast variety of
engineering problems [6], [29], [12] and [14]. However, QPSO has
several limitations:

• the minimal recommended population size is 20 solutions
[24], which is a critical condition, since QPSO and NSGA-III
have to work with the same population size of 4 solutions in
the hybrid algorithm;

• an impact of the contraction expansion parameter (𝛼) on the
performance, which has to be somehow adjusted.

In order to overcome these limitations, we propose the modified
version of QPSO presented in the following subsection.

2.2.1 The Modified QPSO Algorithm. In fact, the both presented
above limitations of QPSO are connected with a lack of control of
the population diversity. Indeed, according to the quantum physics,
thewidth of the Delta potential well (𝐿𝑖, 𝑗 in Algorithm 1) determines
the search space of each particle at each generation. Its value goes
to zero during the optimization process, where the ground state has
to be found. This width is depends on the value 𝛼 and the deference
between the mean coordinates of the personal best positions of
all particles and the coordinates of the current particle (see lines
15 in Algorithm 1). If the population has a small size, the value of
|p𝑚𝑒𝑎𝑛 − r| will be prematurely around zero, and consequently, the
width of the Delta potential well will be prematurely too narrow.

Is is supposed that the parameter 𝛼 can help to improve this
issue, which aims at controlling the convergence behaviour and
the diversity adjustment. However, a method to select the value
of 𝛼 is still opened topic and studied in more recent researches:
[23], [17], [18] and [27]. However, all of these methods depend
on the total number of generations and no one of them can work
efficiently with the small population size. In such cases, the total
number of generations becomes very important tuning parameter,
which determines the performance.

Instead of adjusting the parameter 𝛼 according to the total num-
ber of generations, we propose to integrate the coefficient of control
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Table 2: Notations used in Algorithm 1

Notation Explication Value

𝑡 current generation 𝑡 ∈ IN+
𝑁 population size 𝑡 ∈ IN+
𝑑 number of coordinates 𝑑 ∈ IN+
r𝑡 particle position r𝑡 ∈ IRd
𝑖 index of current particle 𝑖 ∈ IN+
𝑗 index of current coordinate 𝑗 ∈ IN+

𝑐𝑝 , 𝑐𝑔 random numbers uniformly distributed 𝑐𝑝 , 𝑐𝑔 ∈ IR
p(𝑡 )
𝑖

the local attractor for 𝑖-th particle p(𝑡 )
𝑖

∈ IRd

p (𝑡 )
𝑚𝑒𝑎𝑛 mean value of local best position p (𝑡 )

𝑚𝑒𝑎𝑛 ∈ IRd

r(𝑡 )
𝑏𝑒𝑠𝑡 (𝑖 )

the best local position of i-th particle r(𝑡 )
𝑏𝑒𝑠𝑡 (𝑖 )

∈ IRd

r(𝑡 )
𝑏𝑒𝑠𝑡 (𝑔)

the best global position r(𝑡 )
𝑏𝑒𝑠𝑡 (𝑔)

∈ IRd

𝐿
(𝑡 )
𝑖, 𝑗

width of Delta potential well 𝐿
(𝑡 )
𝑖, 𝑗

∈ IR
𝑐𝑑𝑖𝑣 diversity coefficient 𝑐𝑑𝑖𝑣 ∈ IR

𝑐𝑙𝑖𝑚𝑖𝑡 boundary value of 𝑐𝑑𝑖𝑣 𝑐𝑙𝑖𝑚𝑖𝑡 ∈ IR
𝛼 contraction-expansion coefficient 𝛼 ∈ IR+
C Cauchy distribution
U Uniform distribution

of the diversity and to directly change the width of the potential
well, without extra manipulations with value of 𝛼 .

The pseudo-code of this modified procedure is given in Algo-
rithm 1 and its notation is presented in Table 2. Comparatively to
the original version of QPSO presented [24], the following modifi-
cations are integrated:

(1) a static value of 𝛼 = 0.75 is used, which selected experimen-
tally on different classes of problems;

(2) a special coefficient 𝑐𝑑𝑖𝑣 is integrated in order to control the
diversity:

𝑐
(𝑡 )
𝑑𝑖𝑣

=
1
𝑁

𝑁∑︁
𝑖=1

𝑑∑︁
𝑗=1

|𝑟 (𝑡 )
𝑖 ( 𝑗) − 𝑝

(𝑡 )
𝑚𝑒𝑎𝑛 ( 𝑗 ) | (1)

where 𝑟 (𝑡 )
𝑖 ( 𝑗) is a 𝑗-th coordinate of 𝑖-th particle; 𝑝 (𝑡 )𝑚𝑒𝑎𝑛 ( 𝑗 ) is

a 𝑗-th coordinate of the mean value of the personal best
positions of all particles; 𝑁 is the population size; 𝑑 is the
dimension of search space; 𝑡 is the current generation.

(3) if the value of 𝑐𝑑𝑖𝑣 is smaller than the threshold value 𝑐𝑙𝑖𝑚𝑖𝑡 =

0.0001, a small Cauchy distributed random noise is intro-
duced in each coordinate of particle: the value of 𝑐𝑑𝑖𝑣 re-
places L(𝑡 )

𝑖
(line 13 in Algorithm 1). The heavy tails of Cauchy

distribution is selected, since they are more efficient compar-
atively with the exponentially decreasing tails of Gaussian
distribution, because the long jumps can lead to better so-
lutions [28], [9]. Moreover, uni-variant Cauchy distribution
is heavily coordinate-dependent and consequently, can be
efficient on separable functions, which is useful for solving
the separable problems of the model of MCMs.

Algorithm 1: The modified QPSO algorithm.
Result: returns the position vector of the global best

particle
1 begin
2 Initialize the current positions randomly
3 𝛼 = 0.75
4 for 𝑡 = 1 to 𝑇 do
5 p(𝑡 )𝑚𝑒𝑎𝑛 =(

1
𝑁

∑𝑁
𝑖=1 r

(𝑡 )
𝑏𝑒𝑠𝑡 (1)

, 1
𝑁

∑𝑁
𝑖=1 r

(𝑡 )
𝑏𝑒𝑠𝑡 (2)

, 1
𝑁

∑𝑁
𝑖=1 r

(𝑡 )
𝑏𝑒𝑠𝑡 (𝑑 )

)
6 Calculate 𝑐𝑑𝑖𝑣 using Eq. 1
7 for 𝑖 = 1 to 𝑁 do
8 Calculate fitness 𝑓

(
r(𝑡 )
𝑖

)
9 r(𝑡 )

𝑏𝑒𝑠𝑡 (𝑖 )
=


r(𝑡 )
𝑏𝑒𝑠𝑡 (𝑖 )

, 𝑓

(
r(𝑡 )
𝑖

)
≥ 𝑓

(
r(𝑡 )
𝑏𝑒𝑠𝑡 (𝑖 )

)
r(𝑡 )
𝑖
, 𝑓

(
r(𝑡 )
𝑖

)
≤ 𝑓

(
r(𝑡 )
𝑏𝑒𝑠𝑡 (𝑖 )

) 
r(𝑡 )
𝑏𝑒𝑠𝑡 (𝑔)

= arg min
r𝑏𝑒𝑠𝑡 (𝑖 )

𝑓

(
r(𝑡 )
𝑏𝑒𝑠𝑡 (𝑖 )

)
𝑐𝑝 , 𝑐𝑔 ∼ U[0, 1]

10 Compute local attractor:

p(𝑡 )
𝑖

=

(
c𝑝 ·r(𝑡 )𝑏𝑒𝑠𝑡 (𝑖 )

+c𝑔 ·r(𝑡 )𝑏𝑒𝑠𝑡 (𝑔)

)
𝑐𝑝+𝑐𝑔

11 for 𝑗 = 1 to 𝑑 do
12 if 𝑐𝑑𝑖𝑣 < 𝑐𝑙𝑖𝑚𝑖𝑡 then
13 𝐿𝑖, 𝑗 = C(0, 𝑐𝑑𝑖𝑣)
14 else
15 𝐿𝑖, 𝑗 = (2 · 𝛼) · |𝑝 (𝑡 )𝑚𝑒𝑎𝑛 (𝑖,𝑗 ) − 𝑟

(𝑡 )
𝑖, 𝑗

|

16 if (U[0, 1] < 0.5) then
17 r(𝑡+1)

𝑖, 𝑗
= 𝑝

(𝑡 )
𝑖, 𝑗

− 𝐿𝑖, 𝑗 · 𝑙𝑛 (1/𝑢)

18 else
19 r(𝑡+1)

𝑖, 𝑗
= 𝑝

(𝑡 )
𝑖, 𝑗

+ 𝐿𝑖, 𝑗 · 𝑙𝑛 (1/𝑢)

20

21 return r𝑏𝑒𝑠𝑡 (𝑔)

2.2.2 The Hybrid Algorithm. The structure of the proposed hybrid
algorithm, called QIU-NSA, is shown in Figure 2. The explanation of
this structure is provided below. It consists of three main modules:
NSGA-III, the modified QPSO and the fusion module. Note that
multi- andmany-objective problems are solved by NSGA-III, i.e., the
proposed hybridisation is active only for single-objective problems.

At generation 𝑡 = 0, the algorithm starts in the fusion mod-
ule with the definition of the following parameters: (i) the dimen-
sion of search space (𝑑); (ii) the dimension of objective space (𝑚);
(iii) the vectors of boundaries (lb, ub) for each decision variable;
(iv) the threshold of diversity (𝑐𝑙𝑖𝑚𝑖𝑡 ) and (v) the total number of
generations (𝑇𝑚𝑎𝑥 ). The diversity coefficient (𝑐𝑑𝑖𝑣 ) is set to 0. The
termination criterion is defined as the total number of generations.

In the fusion module, the initial population P𝑡=0 are created ran-
domly according to the defined boundaries (lb, ub) and evaluated.



A Hybrid Optimization Tool for Active Magnetic Regenerator GECCO ’22, July 9–13, 2022, Boston, USA

Then, the following steps are iterated until the termination criterion
is satisfied:

(1) Make Child Population: The parent population P𝑡 is sent
to NSGA-III and QPSO modules in order to produce the new
child populations. Each module, NSGA-III and QPSO, creates
new set of solutions Q𝑡+1

𝑁𝑆𝐺𝐴−𝐼 𝐼 𝐼 and Q𝑡+1
𝑄𝑃𝑆𝑂

according its
original rules and returns them into the fusion module.

(2) Uniform-based Random Selection: In the fusion module,
the populations Q𝑡+1

𝑁𝑆𝐺𝐴−𝐼 𝐼 𝐼 and Q𝑡+1
𝑄𝑃𝑆𝑂

are used to select 4
solutions to the next population Q𝑡+1 by the rule based on
the Uniform distribution:
if uniformly distributed random numberU(0, 1) > 0.5, the
solution of Q𝑡+1

𝑄𝑃𝑆𝑂
is accepted, otherwise - Q𝑡+1

𝑁𝑆𝐺𝐴−𝐼 𝐼 𝐼 .
(3) Evaluation of Q𝑡+1: The obtained populationQ𝑡+1 is eval-

uated and is sent back with their evaluated values to the
QPSO and NSGA-III modules.

(4) Selection to the Next Generation: The QPSO and
NSGA-III modules have the same candidates for the next
population P𝑡+1. Since NSGA-III is a core of the hybrid algo-
rithm, the solutions for the next parent population P𝑡+1 will
be selected according to the procedure of NSGA-III.
Independently, QPSO updates the local best solutions and
defines the global solution among the local best solutions
according to its original rules presented in [24].
At the end of the generation 𝑡 , the QPSO module returns
current global solution g𝑡+1 and theNSGA-III module returns
the new parent population P𝑡+1 to the fusion module.

At the end of the optimization process, when 𝑡 = 𝑇𝑚𝑎𝑥 :
• in the case of single-objective optimization: the best solution
is found in the current global solution g𝑡+1;

• in the case of multi-/many-objective optimization: the opti-
mal solutions are found in the optimal Pareto front provided
by NSGA-III.

Figure 2: Simplified scheme of the unified algorithm.

Figure 3 shows how the integrated diversity coefficient of the
QPSO algorithm helps to achieve the global optima of Rastrigin-
Bueche function during the evaluation process.

a) diversity coefficient b) objective function value

Figure 3: Diversity coefficient and objective function value
w.r.t. the number of evaluations on Rastrigin-Bueche func-
tion

To summarise, the hybrid method allows to scale NSGA-III down
to solve single-objective problems without any modifications in the
NSGA-III structure, which excludes a risk to loss its effectiveness
on multi-/many-objective problems. It does not need any additional
parameters. We believe that the proposed algorithm not only allows
to solve the different problems of the simulation models, but also
presents an application of a quantum-inspired algorithm inside a
hybrid method, which can be beneficial for further researches.

2.3 Optimization Software Tool
An user-friendly interface is required in order to simplify a code-
coupling process between each research problem and the proposed
unified algorithm. For this purpose, we extend the optimization
tool presented in [13], which is based on the open-source EASEA
(EAsy Specification of Evolutionary Algorithms) platform, by im-
plementing QIU-NSA as a template of the EASEA platform. The
EASEA provides a compiler for automatically merging a problem
description file ∗.𝑒𝑧, which specifies a scientific research task, with
an optimization algorithm template into a CPU parallel C++ code
[2]. It significantly simplifies to set up a new experiment and gives
a large degree of freedom for scientists, because the codes of the
problems and the simulation models can be modified independently
from the optimization algorithm. Moreover, the models can be a
source code on different programming languages or an executable
file.

In order to specify the research problems, the following problem
attributes have to be defined in the file ∗.𝑒𝑧:

(1) Configuration: (i) problem configuration - types of decision
variables and objectives, dimension of search space and of
target space, boundaries of each variable; (ii) algorithm con-
figuration - types of crossover and mutation operators and
their parameters; (iii) optional - reference values or needed
constants.

(2) Evaluator: (i) call the external model code; (ii) optional -
call a post-processing unit, which transforms the output of
the model to the input parameters of the objective functions;
(iii) the objective function(s).
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For further information, the detailed users’ guide is provided in
the EASEA online documentation 2.

Once a problem description file is done, the presented tool can
be run by doing the next three steps:

(1) to compile the file, containing the problem specification,
with the unified algorithm template into a CPU parallel C++
code;

(2) to compile the obtained C++ code into an executable code;
(3) to run the executable file with the desired number of parallel

threads.
These optimization problems of reproducing physical properties

of MCMs and the AMR model design are formulated as:
(1) minimization of one/several differences between simulated

and reference physical properties of MCMs for finding opti-
mal parameters of the Hamiltonian of the BEG-I model;

(2) maximization of efficiency and/or power density for the MRS
and/or the TMG operating modes for finding optimal control
and design parameters of the AMR model.

3 EXPERIMENTS AND RESULTS
The validation of the proposed optimization tool consists of the
following experiments:

• Confirm an ability of the proposed hybrid unified algorithm,
QIU-NSA, to solve single-objective problems on different
dimensions of search space.

• Reproduce the physical properties of interest for 𝐿𝑒𝐹𝑒𝐶𝑜𝑆𝑖
alloy and to compare them versus the experimentally mea-
sured values, provided by the Crismat laboratory.

• Find the common configuration of control and design pa-
rameters of the AMR, for its application as the Magnetic
Refrigeration System (MRS) and the Thermo-Magnetic Gen-
erator (TMG).

3.1 Validation of the Hybrid Unified Algorithm
We benchmark QIU-NSA on 24 functions of the Black-Box Opti-
mization Benchmarking (BBOB) single-objective test suite and on
its large-scale extension [8] provided by the COmparing Continu-
ous Optimizers (COCO) platform3. The reported results are based
on 15 independent run of 15 instances of each function. The Em-
pirical Cumulative Distribution Functions (ECDF) presented in [8]
and aggregated by the functions groups and by dimensions is used
as a performance metrics. The parameter settings of the algorithms
are presented in Table 3.

Table 3: Parameter settings of peer algorithms

Parameter NSGA-III QPSO QIU-NSA

SBX 𝑝𝑐 1.0 - 1.0
SBX 𝜂𝑐 30 - 30

Poly. mut. 𝑝𝑚 1/𝑑 - 1/𝑑
Poly. mut. 𝜂𝑚 20 - 20

𝛼 - linearly decreasing 0.75

2http://easea.unistra.fr
3https://github.com/numbbo/coco

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

NSGA-III

QPSO

QIU-NSA

best 2009bbob f1-f24, 20-D
51 targets: 100..1e-08
1, 4, 15 instances

v0.0.0

0 2 4 6
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

QIU-NSA-6

sepCMA

LMCMA14bbob-largescale f1-f24, 640-D
51 targets: 100..1e-08
1, 15 instances

v2.4

a) 20-dim. space b) 640-dim. space

Figure 4: The ECDF summarized by function groups
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Figure 5: The ECDF summarized by separable and multi-
modal functions on 640-dimensional search space

The comparative results of QIU-NSA versus the original NSGA-
III and QPSO are presented in Figure 4 a), where each graph depicts
the ECDF summarized by all 24 functions on 20-dimensional search
space. As seen from Figure 4 a), QIU-NSA solves 60% of problem,
followed by QPSO with 42% and NSGA-III with only 20% of solved
functions. The obtained results confirm the workability of the pro-
posed hybrid unified algorithm.

Taking into account that the AMR design problems can be large
scale, we compare the performance of QIU-NSA on 640-dimensional
search spacewith the reference results of separable CMA-ES (sepSMA)
[20] and Limited Memory CMA-ES (LMCMA-ES) [16] provided by
COCO platform. Looking at the aggregated ECDFs of all functions
in Figure 4 b), we observe that QIU-NSA and sepCMA-ES solve
around 30% of all problems, whereas LMCMA-ES is the best one,
which solves 40%. However, QIU-NSA demonstrates the best per-
formance on the separable functions and multi-modal problems
with adequate global structure (see Figure 5). We can conclude that
QIU-NSA efficiently scales NSGA-III down. Moreover, it is very effi-
cient to solve the separable problems and shows a good scalability
w.r.t. the dimensions of the search space. The main limitation of
QIU-NSA is its non-invariance w.r.t. the function rotations.

3.2 Reproducing Physical Properties of MCMs
The objective of this experiment is to validate an efficiency of
the proposed hybrid unified algorithm to solve a single-objective
problem of the model of MCMs: i.e., to find a set of the parameters
of the BEG-I model, which corresponds to the physical properties
of the given MCM - 𝐿𝑎𝐹𝑒𝐶𝑜𝑆𝑖 (𝐿𝑎𝐹𝑒𝑆𝑖 (𝐵)).

http://easea.unistra.fr
https://github.com/numbbo/coco
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3.2.1 Input Parameters, Reference Parameters and Values of Interest.
The input parameters and their boundary values are presented
in Table 4 and the reference values of the output parameters are
provided in Table 5. More details about the input parameters of the
Hamiltonian of the BEG-I model and the optimization method for
studying physical properties of MCMs can be found in [13].

Table 4: Input parameters and their boundary values (the
Hamiltonian parameters for 𝐿𝑎𝐹𝑒𝑆𝑖𝐶𝑜 material)

Parameter 𝐻𝑓 𝑖𝑒𝑙𝑑 𝐾 𝑈1 𝑈2 𝐴𝐴 𝐴𝑡𝑒𝑚𝑝

Value 0.1 - 2.5 0.1 - 2.5 0.1 - 2.5 = 𝑈1 - 0.0-2.5

Table 5: Reference properties of 𝐿𝑎𝐹𝑒𝐶𝑜𝑆𝑖 material for objec-
tive functions provided by Crismat laboratory

Parameter [K] 𝑇𝑐𝑐𝑜𝑜𝑙𝑅 𝑇𝑐𝑤𝑎𝑟𝑚𝑅 Δ𝑇𝑐𝑣𝑐𝑜𝑜𝑙𝑅 Δ𝑇𝑐𝑣𝑤𝑎𝑟𝑚𝑅

𝐻0 = 0[𝑇 ] 238.5 239.3 6.0 6.0
𝐻1 = 2[𝑇 ] 245.5 246.0 12.0 12.0

Objective function is defined as follows:

𝐹 = 𝐹𝑐𝑜𝑜𝑙 + 𝐹𝑤𝑎𝑟𝑚 (2)

𝐹𝑐𝑜𝑜𝑙 =| (Δ𝑇𝑐𝑣𝑐𝑜𝑜𝑙𝑅 (𝐻0) − Δ𝑇𝑐𝑣𝑐𝑜𝑜𝑙 (𝐻0)) | +
| (Δ𝑇𝑐𝑣𝑐𝑜𝑜𝑙𝑅 (𝐻1) − Δ𝑇𝑐𝑣𝑐𝑜𝑜𝑙 (𝐻1)) |

(3)

𝐹𝑤𝑎𝑟𝑚 =| (Δ𝑇𝑐𝑣𝑤𝑎𝑟𝑚𝑅 (𝐻0) − Δ𝑇𝑐𝑣𝑤𝑎𝑟𝑚
(𝐻0)) | +

| (Δ𝑇𝑐𝑣𝑤𝑎𝑟𝑚𝑅 (𝐻1) − Δ𝑇𝑐𝑣𝑤𝑎𝑟𝑚
(𝐻1)) |

(4)

whereΔ𝑇𝑐𝑣𝑐𝑜𝑜𝑙 (𝐻0),Δ𝑇𝑐𝑣𝑤𝑎𝑟𝑚
(𝐻0),Δ𝑇𝑐𝑣𝑐𝑜𝑜𝑙 (𝐻1) andΔ𝑇𝑐𝑣𝑤𝑎𝑟𝑚

(𝐻1)
is the the temperature interval width of heat capacity curve peak
under different magnetic fields upon cooling and warming process.

3.2.2 Experimental Result. The values of the free parameters ob-
tained by the optimization for 𝐿𝑎𝐹𝑒𝐶𝑜𝑆𝑖 are as follows: 𝐻𝑓 𝑖𝑒𝑙𝑑 =
1 [T], 𝐾 = 0.80, 𝑈1= 0.85, 𝐴𝑡𝑒𝑚𝑝=1.00. In the Figure 6, we report
the temperature dependence of magnetic entropy change (Δ𝑆 ),
which are calculated by using the Maxwell’s equation from the
simulated (theoretical) data with obtained parameters and from the
measured data of the Crismat Laboratory. The agreement between
the theoretical and measured data is excellent: the Mean Absolute
Percentage Error (MAPE) of Δ𝑆 is 0.1%.

3.3 Optimization of the AMR Design
Aiming at achieving the best technical-economical compromise
for the industrial applications, we apply the proposed tool for de-
veloping an innovative architecture of the AMR, which will be
compact, powerful and energy efficient for the Magnetic Refriger-
ation System (MRS) and the Thermo-Magnetic energy Generator
(TMG) modes.

Figure 6: 𝐿𝑎𝐹𝑒𝐶𝑜𝑆𝑖:The simulated and experimental temper-
ature dependence of magnetic entropy change.

Table 6: The design and control parameters of the dual-mode
operating AMR model

Parameter Boundaries Unit Description

𝐿 1-30 [cm] AMR length along the direction
of fluid motion

𝑅𝑣𝑜𝑙 0.05-1.5 [-] Ratio of coolant volume
transferred at each half
AMR cycle on fluid volume

𝑓 0.1-10 [Hz] AMR operating frequency

3.3.1 Input Parameters, Reference Parameters and Values of Interest.
For this experiment, the most important input parameters of the
AMR model, which have an impact in the both modes are selected
and presented in Table 6 with their boundaries. 𝑅𝑣𝑜𝑙 and 𝑓 are
internal operating conditions that can control the thermodynamic
cycles of the AMR, where 𝐿 are the design parameters.

Since this research aims at finding the AMR configuration, which
ensuring a good performance in two different application modes, 2
conflicting performance metrics for each mode are selected as the
objective functions and presented in Table 7.

Table 7: Objective functions

Objective Unit Mode Description

𝐶𝑂𝑃/𝐶𝑂𝑃𝐶𝑎𝑟𝑛𝑜𝑡 [-] MRS Energy Efficiency
𝜂/𝜂𝐶𝑎𝑟𝑛𝑜𝑡 [-] TMG Energy Efficiency

¤𝑄𝑐𝑜𝑙𝑑/𝑉𝐴𝑀𝑅 [𝑊 /𝑐𝑚3] MRS Thermal Power Density
¤𝑊𝑟 /𝑉𝐴𝑀𝑅 [𝑊 /𝑐𝑚3] TMG Mechanical Power Density

The description of the objectives are presented below. The energy
efficiency of the MRS is 𝜂 = 𝐶𝑂𝑃/𝐶𝑂𝑃𝐶𝑎𝑟𝑛𝑜𝑡 , where 𝐶𝑂𝑃 is the
coefficient of performance and 𝐶𝑂𝑃𝐶𝑎𝑟𝑛𝑜𝑡 is the Carnot coefficient
of performance. The energy efficiency of the TMG is 𝜂/𝜂𝐶𝑎𝑟𝑛𝑜𝑡 ,
where 𝜂𝐶𝑎𝑟𝑛𝑜𝑡 is the Carnot yield. The thermal power density of
the MRS is ¤𝑄𝑐𝑜𝑙𝑑/𝑉𝐴𝑀𝑅 , where𝑉𝐴𝑀𝑅 is the AMR volume ratio and
¤𝑄𝑐𝑜𝑙𝑑 is the refrigeration power. The mechanical power density of
the TMG is ¤𝑊𝑟 /𝑉𝐴𝑀𝑅 , where ¤𝑊𝑟 is the recovery power.
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The presented experiments are conducted with the other config-
uration parameters defined in Table 1.

3.3.2 Experimental Result. Figure 7 depicts the Pareto front of non-
dominated solutions, showing in highlighted color values the MRS
and TMG operating modes respectively. The Pareto front clearly
reveals the conflict between the power densities and efficiency in
both modes.

Figure 7: Obtained Pareto Fronts

Figure 8: The distribution of Pareto optimal points solutions

A parametric study is conducted to investigate the effects of the
variable parameters on the cycle performance through the power
density and the efficiency. To make it clear, Figure 8 reports the
distribution of Pareto-optimal solutions.

From Figure 8 a) it is seen that the maximum value of the energy
efficiency of TMG is 0.56 [−], which is obtained for 𝐿 = 17.4 [𝑐𝑚],
whereas the value of 𝑅𝑣𝑜𝑙 = 0.15 [−] and 𝑓 = 0.69 [𝐻𝑧] is small.
One can notice that the TMG efficiency range is quite small 0.39 −
0.56[−]. It can be explained by the fact that the pressure drop is

directly proportional to 𝐿 and thus, a larger value of pressure drop
greater penalizes the energy efficiency in the TMG mode. Figure 8
b) shows that the maximum value of the recoverable mechanical
power density of the TMG is 0.37 [𝑊 /𝑐𝑚3] , achieved with 𝑓 = 1.45
[𝐻𝑧], 𝑅𝑣𝑜𝑙 = 0.15 [−], and 𝐿 = 17.2 [𝑐𝑚]. Thus, an increase of
𝑓 leads to increase the mechanical power density and decrease
the efficiency. The maximum value of the energy efficiency of the
MRS is 0.56 [−] obtained with 𝐿 = 13.6 [𝑐𝑚], 𝑅𝑣𝑜𝑙 = 0.11 [−] and
𝑓 = 1.18 [𝐻𝑧] (see Figure 8 c)). Figure 8 d) shows that the maximum
value of the thermal power density of the MRS is 2, 05 [−], which
is achieved with the larger value of 𝐿 = 17.8 [𝑐𝑚] and almost the
same values of 𝑓 = 1.17 [𝐻𝑧] and 𝑅𝑣𝑜𝑙 = 0.11 [−] as for the the
energy efficiency of the MRS.

We can conclude that for all criteria, 𝑅𝑣𝑜𝑙 has less impact than
the others. According to Figure 7, there are several solutions, which
ensure the balance between efficiency and power density for the
both modes. The Pareto fronts has slightly discontinuous shape that
be explained by a large number of the rejected solutions, because
of their nonexistence in the both modes simultaneously. Thus, an
evaluation of the energy conversion system is required by recon-
sidering some default parameters of the AMR model, e.g., the fluid
channel thickness, which was set to optimally match a refrigera-
tion system in this study. The further experiments are required for
taking a larger number of parameters into account.

4 CONCLUSION
Optimization of the Active Magnetic Regenerator (AMR) design
and reproducing physical properties of Magneto Caloric Materials
(MCMs) are major challenges for the magnetic cooling industry.
The tool we propose, thanks to the hybrid method and the EASEA
platform, is a robust user-friendly instrument of reducing time for
setting up different experiments. The functionality of proposed tool
is centred from single- to many-objectives problems that makes
it universal. Moreover, it can easily be adapted to different AMR
models or MCMs models.

It is validated that the proposed tool allows users to reproduce
the physical properties of MCMs and to obtain the detailed in-
formation about a relationship between the selected parameters
and performance of the AMR in different application modes. In
this work, we showed that a balance between the efficiency and
the power density can be found for the two modes: the Magnetic
Refrigeration System and the Thermo-Magnetic energy Generator.

Thanks to the proposed tool, it is now possible to accelerate the
elaboration of a commercially available device, which will corre-
spond to modern ecological and energy-saving requirements.

In addition, this work opens new research directions for an appli-
cation of hybrid methods in order to scale up/down an optimization
algorithm w.r.t. the number of objectives.
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