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Abstract

Most state-of-the-art self-supervised speaker verification
systems rely on a contrastive-based objective function to
learn speaker representations from unlabeled speech data. We
explore different ways to improve the performance of these
methods by: (1) revisiting how positive and negative pairs are
sampled through a “symmetric” formulation of the contrastive
loss; (2) introducing margins similar to AM-Softmax and
AAM-Softmax that have been widely adopted in the supervised
setting. We demonstrate the effectiveness of the symmetric
contrastive loss which provides more supervision for the
self-supervised task. Moreover, we show that Additive Margin
and Additive Angular Margin allow reducing the overall
number of false negatives and false positives by improving
speaker separability. Finally, by combining both techniques
and training a larger model we achieve 7.50% EER and 0.5804
minDCF on the VoxCelebl test set, which outperforms other
contrastive self supervised methods on speaker verification.

Index Terms: Speaker Recognition, Contrastive Self-
Supervised Learning, Additive Margin Loss, Speaker Embed-
dings.

1. Introduction

Speaker Recognition (SR) aims to recognize the identity of
the person speaking on an input speech audio. It is a funda-
mental task of speech processing and finds its wide applications
in real-world voice-based authentication of persons. Different
speech feature extraction methods and machine learning frame-
works were proposed for this task. Learning speaker embed-
ding space [1] is the trend of speaker recognition, which has
been widely developed in several aspects. The i-vectors [2], the
d-vector [3], and the x-vectors [4, 5, 6] were proposed to repre-
sent the speaker variability. The i-vector is a generative method
trained in an unsupervised manner. The other approaches dis-
criminatively embed speakers into a vector space using deep
neural networks that require large labeled datasets. Although
impressive progress has been made with supervised learning,
this paradigm is now considered a bottleneck for building more
intelligent systems. Manually annotating data is complex, ex-
pensive, and tedious, especially when dealing with signals such
as images, text, and speech. Moreover, the risk is creating bi-
ased models that do not work well in real life, notably in difficult
acoustic conditions.

Recently, motivated by the surge of self-supervised learn-
ing concepts, many deep embedding methods [7, 8, 9, 10, 11]

The code associated with this article is publicly available at
https://github.com/theolepage/sslsv.

have proven to be very effective in benefiting from the massive
amount of unlabeled data. Like classical approaches, most self-
supervised learning methods aim to learn an embedding space
that maximizes the similarity between embeddings of similar
inputs and minimizes the similarity between embedding of dif-
ferent inputs without human supervision. When dealing with
audio samples, the assumption is that segments extracted from
the same utterance belong to the same speaker, but those from
different utterances belong to distinct speakers. This assump-
tion does not always hold (class collision issue), but the impact
on the training convergence is negligible. Segments extracted
from the same utterance share different information, such as
channel, language, speaker, and sentiment information [12].
Speech augmentation is necessary in this case to help the algo-
rithm ignore channel characteristics and focus only on speaker-
related information.

In Speaker Verification (SV), different self-supervised
methods have been proposed. Methods based on a contrastive
loss, such as SimCLR [10], MoCo [9] and VICReg [13], have
been successfully applied to this field of research. These meth-
ods are based on the Normalized Temperature-scaled Cross En-
tropy (NT-Xent) loss, making distances between positive pairs
small and between negative pairs large in a latent space. The
majority of these approaches have focused on how to define the
model architecture and sample negative pairs for the training.

Different objective functions were proposed in supervised
speaker recognition, and an effort has been made to improve
softmax-based classification losses to learn better representa-
tions. Angular-based losses have become popular and compute
the cosine similarity by normalizing embedding vectors and
the output layer. Inspired by face recognition, angular margin-
based losses have also been successfully applied to supervised
speaker recognition [14, 15, 16] to improve the angular softmax
loss. Introducing a margin in the angular softmax loss achieves
promising results when selecting an appropriate margin scale,
as it increases the separability between speakers.

In this paper, we propose to introduce Additive Margin and
Additive Angular Margin into the SimCLR training framework
[10]. We adopt the NT-Xent loss used in the literature and define
SNT-Xent-AM and SNT-Xent-AAM to experiment with vary-
ing values of margin. Moreover, we show that using a “sym-
metric” formulation of the contrastive loss, by using all possi-
ble positive and negative pairs, improves the downstream per-
formance. Our training framework is further described in Sec-
tion 2. In Section 3, we present our experimental setup. We
report our results and assess the effect of margins in Section 4.
Furthermore, we show that we can achieve competitive results
compared to state-of-the-art contrastive methods while using a
simple framework and relying only on the VoxCelebl [17] dev
set. Finally, we conclude in Section 5.
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Figure 1: Diagram of our contrastive self-supervised training
framework to learn speaker representations.

Our self-supervised training framework is depicted in Fig-
ure 1. The architecture uses a simple siamese neural network to
produce a pair of embeddings for a given unlabeled utterance.

For each training step, we randomly sample N utterances
from the dataset. Leti € I = {1...N} be the index of
a random sample from the mini-batch. We extract two non-
overlapping frames, denoted as «; and «}, from each utterance.
Then, we apply random augmentations to both copies and use
their mel-scaled spectrogram as features for the neural network.
Using different frames and applying data augmentation is fun-
damental to avoid collapse and to produce channel invariant rep-
resentations that only depend on speaker identity. An encoder
transforms @; and ¢ to their respective representations y; and
y;. Then, the representations are fed to a projector to compute
the embeddings z; and z,. During training, mini-batches are
created by stacking z; samples into Z and z; samples into Z’.

Representations are used to perform speaker verification,
while the embeddings are used to calculate the loss and optimize
the model.

2.1. Contrastive-based self-supervised learning

Contrastive learning aims at maximizing the similarity within
positive pairs while maximizing the distance between negative
pairs. In self-supervised learning, supervision is provided by as-
suming that each utterance in the mini-batch belongs to a unique
speaker. Positive pairs are constructed with embeddings derived
from the same utterances, while negative pairs are sampled from
other elements in the mini-batch.

We start by defining the similarity between two embed-

dings w and v as {(u,v) = e«©5(%w)/™ where 0.,. is the an-
gle between two vectors and T is a temperature scaling hyper-
parameter. cos(f..) corresponds to the cosine similarity and is
obtained by computing the dot product between two /> normal-
ized embeddings.

Then, the Normalized Temperature-scaled Cross Entropy
loss (NT-Xent) is defined as

/
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We refer to z; as the anchor, z, as the positive, and z|, as
the negatives. Thus, a total of IV positive pairs are created, and
each is compared to N — 1 negatives.

2.2. Maximizing the supervisory signal provided to the self-
supervised learning task

The previous formulation of the contrastive loss, used in [10],
does not consider all possible positive and negative pairs. Fol-
lowing SimCLR [18], we used the “symmetric” formulation of

the NT-Xent loss to increase the number of comparisons and
maximize the supervisory signal provided to the self-supervised
objective function.

We now consider z; to be the i-th element of a set oﬁ all
embeddings created by concatenating Z and Z'. Leti € [ =
{1...2N} be the index of a random augmented sample, j()
be the index of the other augmented sample originating from
the same mini-batch and A(7) = I \ {i}. The SNT-Xent loss is
defined as

(2i,2j)
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Note that this framework generates 2NV positives pairs (each
utterance and its other augmented version), and each one of
them is compared to a set of 2(/N — 1) negatives (the other utter-
ances except the positive and the anchor). This is interesting as
having more contrastive examples has been shown to produce a
better performance on the downstream task.

Finally, we propose to compute the similarity of positive
pairs and negative pairs differently, making it easier to intro-
duce future improvements (Margin in the next section) to the
objective function such that

Z 1og (z“ i) 3)
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where ¢ (u,v) = £~ (u,v) = «(%wv)/T and A(i) = '\
{i. (i)}

This loss and its variants are at the core of all self-
supervised contrastive learning frameworks. However, it aims
to penalize classification errors instead of producing discrimi-
native representations which would be relevant in the context of
speaker verification.

2.3. Introducing margins to improve speaker separability

We explore two ways to improve the discriminative capacity
of a contrastive-based objective function using the SNT-Xent
loss as our baseline. Inspired by state-of-the-art techniques for
face recognition, we introduce margins to increase the similar-
ity of same-speaker embeddings further. These methods were
successfully applied for training end-to-end speaker verification
models in a supervised way [14, 15, 16] which justifies our mo-
tivation to adapt these concepts for self-supervised learning.

2.3.1. Additive Margin

Following CosFace [19], we introduce an extra margin in cosine
space to force the cosine similarity of positive pairs to be above
a specific threshold and thus improve speaker separability.

To illustrate the effect of this technique, we consider a sce-
nario using the non-symmetric version of NT-Xent and set-
ting N = 2. Therefore, in this example, we consider a to-
tal of 2 classes based on the self-supervised contrastive as-
sumption. In the case of the first speaker, the NT-Xent loss

forces cos (021,2/1) > cos (021;5) By introducing a margin,

we further require cos (ezl,z’l ) — m > cos (Qzl,zg> where

m > 0 is a fixed scalar introduced to control the magnitude of
the cosine margin. Intuitively, this could help the contrastive ob-
jective since the constraint is more stringent, as well as improve



downstream performance by maximizing inter-speaker distance
and eventually minimizing intra-speaker variance.

We refer to this loss as Lsnrxen-am Which is identical to
SNT-Xent except that we set £7(u,v) = eleos(8uv)=m) /7
while ¢~ (u, v) remains unchanged.

2.3.2. Additive Angular Margin

Inspired by ArcFace [20], the second method is referred to as
additive angular margin and consists in introducing the margin
directly in angle space. As opposed to the previous technique,
it provides the exact correspondence to the geodesic distance.
Following the case scenario presented in the previous sec-
tion, the angular margin will translate to a decision bound-

ary for the first speaker of the form cos (Hzl,le + m) >

cos (9z1 ,zé)v where m > 0 is a fixed scalar introduced to con-

trol the magnitude of the angular margin.
To train the model with additive angular margin we rely
on the loss Lsnt-xent-aam Which is identical to SNT-Xent except

that we use {7 (u,v) = 08 (Ou,v+m)/T

unchanged.

We observed training instability when optimizing SNT-
Xent-AAM from random initialization, especially with large
values of m. We hypothesize that reducing the difficulty of the
self-supervised task early in the training is fundamental for al-
lowing the loss to converge. Thus, we gradually increase the
margin for our experiments from O to its final value during the
first half of the training with a cosine scheduler. This strategy
could be referred to as a kind of curriculum learning, and similar
techniques have already been employed to solve this issue.

and keep ¢~ (u,v)

3. Experimental setup
3.1. Datasets and feature extraction

Considering the training time', we train our model on the Vox-
Celebl dev set, which contains 148, 642 utterances from 1,211
speakers. The evaluation is performed on the VoxCelebl ‘orig-
inal’ test set composed of 4,874 utterances from 40 speak-
ers. Speaker labels are discarded during self-supervised train-
ing. From audio chunks of 2 seconds per sample, we extract
40-dimensional log-mel spectrogram features with a Hamming
window of 25ms length with a 10ms frame-shift. We do not
apply Voice Activity Detection (VAD) as training data consists
mostly of continuous speech segments. The network input fea-
tures are normalized using instance normalization.

3.2. Data-augmentation

To produce representations robust against extrinsic variabilities,
self-supervised learning frameworks commonly rely on exten-
sive data-augmentation techniques. In the context of speaker
verification, we aim to learn embeddings invariant to channel
information, such as noise from the environment or recording
device. Therefore, providing different views of the same utter-
ance is crucial to avoid encoding channel characteristics, allow-
ing speaker identity to be the only distinguishing factor between
two representations. During training, we randomly apply a
range of transformations to the input signal at each training step.
We add background noise, overlapping music tracks, or speech
segments using the MUSAN corpus. To simulate various real-

ILimited by our computing power, we had to restrict our experi-
ments to the VoxCelebl training set.

world scenarios to augment the utterances, we randomly sam-
ple the Signal-to-Noise Ratio (SNR) between [13;20] dB for
speech, [5;15] dB for music, and [0; 15] dB for noises. To fur-
ther enhance our self-supervised model’s robustness, we apply
reverberation to the augmented utterances using the simulated
Room Impulse Response database.

3.3. Models architecture and training

First, to run more experiments, we used a Thin ResNet-34 ar-
chitecture with 512 output units for the encoder. We rely on
self-attentive pooling (SAP) to generate utterance-level repre-
sentations. The projector consists of a standard MLP, composed
of two fully-connected layers with 2048 and 256 units, respec-
tively. The intermediate layer is followed by ReLU nonlinearity.
We optimize the model using the Adam optimizer with a learn-
ing rate of 0.001, which is reduced by 5% every 10 epochs, with
no weight decay. We use a batch size of 256 and train the model
for 200 epochs. Our implementation is based on the PyTorch
framework, and we conduct our experiments using 2x NVIDIA
Titan X (Pascal) 12G' B. Regarding the loss computation, we
use 7 = 0.02 as the temperature hyper-parameter by default.
For the final results, we train for 300 epochs a larger ResNet-
34 model using channel dimension blocks twice as large as the
smaller encoder.

3.4. Evaluation protocol

To evaluate our model’s performance on speaker verification,
we extract embeddings from a fixed number of evenly spaced
frames for each test utterance before averaging them across
the temporal axis. Then, we compute the cosine similarity be-
tween two [2-normalized embeddings to determine the scoring.
Following VoxCeleb and NIST Speaker Recognition evaluation
protocols, we report the performance of our model in terms of
Equal Error Rate (EER) and minimum Detection Cost Function
(minDCF) with Piarget = 0.01, Chiss = 1 and Cp, = 1.

4. Results and discussions

4.1. The effect of the different self-supervised training com-
ponents

We conduct an ablation study to assess the role of the different
components of our self-supervised training framework and re-
port the results in Table 1. The NT-Xent loss, which is our base-
line, achieves 9.45% EER and 0.7094 minDCF. First, we ver-
ify that applying data-augmentation is fundamental for learning
relevant representations and that training the model with a pro-
jector produces better performance. Then, we show that rely-
ing on more positive pairs and negative pairs with the symmet-
ric contrastive loss results in 9.35% EER and 0.6647 minDCF.
This validates our intuition that providing more supervision is
beneficial to improve the self-supervised system’s downstream
performance. This system will be used as the baseline for the
next experiments.

4.2. Results on speaker verification when introducing mar-
gins in the self-supervised contrastive loss

The choice of the margin value has a significant impact on
speaker verification results. As shown in Table 2, the best set-
ting is m = 0.4 for Additive Margin and m = 0.1 for Addi-
tive Angular Margin, achieving 8.70% EER and 8.98% EER,
respectively. For both methods, a small margin has no effect
on the results but a very large margin prevents learning good



Table 1: The effect of data-augmentation, projecting represen-
tations during training, and the symmetric formulation of the
contrastive objective function on speaker verification results
(Thin ResNet-34 encoder).

Method EER(%) minDCF
Baseline 9.45 0.7094
Baseline w/o Data-augmentation 28.17 0.8656
Baseline w/o Projector 13.55 0.8435
Baseline w/ SNT-Xent 9.35 0.6647

speaker representations. It is noteworthy that this does not cor-
respond to the default value often used for supervised training
whichis m = 0.2. In particular, the Additive Angular Margin is
more sensitive to the margin factor and suffers from exploding
gradients with a margin greater than or equal to 0.3. This result
is understandable as the margin is applied in angle space. Note
that learning the margin value jointly with the model degrades
the performance. Finally, we observe that introducing margins
reduces the EER, resulting in fewer false positives and false
negatives overall. However, this improvement does not translate
on the minDCF. Note that standard DNN-based speaker embed-
ding extractors are not optimized to improve the minDCF dur-
ing training. Thus, margins can be incorporated into the self-
supervised contrastive training to improve results on speaker
verification. We hypothesize that other downstream tasks re-
lated to verification could benefit from this method.

Table 2: Speaker verification results when introducing mar-
gins in the self-supervised contrastive loss (Thin ResNet-34 en-
coder).

Loss Margin EER(%) minDCF
SNT-Xent - 9.35 0.6647
0.1 9.30 0.7610
0.2 9.01 0.6907
0.3 8.93 0.6909
SNT-Xent-AM 0.4 8.70  0.6873
0.5 8.87 0.7182
Learnable 9.26 0.7093
0.05 8.92 0.7006
0.1 8.98 0.6742
SNT-Xent-AAM 0.2 9.22 0.6846
0.3 Exploding gradients

Learnable 9.18 0.6717

4.3. Study of scores distribution

In Figure 2, we plot the distribution of scores computed on the
test set to assess the effect of margins on the learned represen-
tations. Visually, we can notice that the spread between the
distribution of positive and negative scores is further when us-
ing Additive Margin with a margin of 0.4. This result was ex-
pected since our method aims at separating positive from nega-
tive scores. The difference between the mean of the positives
and the mean of the negatives trials scores is 0.259 without
margins (SNT-Xent) while it reaches 0.278 with margins (SNT-
Xent-AM). This is consistent with the improvement of the EER
and shows that margins have an effect on the discriminative

Scores distribution
SNT-Xent SNT-Xent-AM (m=0.4)

1000

Count

500

0.8 102
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Figure 2: Positive (light blue) and negative (red) trials scores
distribution obtained after training with SNT-Xent and SNT-
Xent-AM (m = 0.4) losses. The mean of each distribution is
represented by a vertical dashed line.

power of self-supervised systems designed for verification.

4.4. Comparison to other self-supervised contrastive meth-
ods for speaker verification

We report the final results on speaker verification in Table 3. By
training for more epochs and using a larger encoder, we reach
7.56% EER with the symmetric contrastive loss (SNT-Xent)
and with additive angular margin (SNT-Xent-AAM) while we
achieve 7.50% EER with additive margin (SNT-Xent-AM).
This corresponds to a 13.8% relative improvement of the EER
compared to the model trained with SNT-Xent-AM during our
early experiments. Furthermore, our method outperforms other
works based on contrastive learning for self-supervised speaker
verification while using a smaller training set, i.e., VoxCelebl.
This result implies that standard contrastive methods can be
further improved by introducing several changes designed ex-
plicitly for self-supervised learning (symmetric contrastive loss)
and speaker verification (additive margin).

Table 3: Comparison of self-supervised contrastive methods for
speaker verification. Our methods are trained on VoxCelebl
while the first three systems were trained on VoxCeleb2 (~ T7x
more samples).

Method EER(%) minDCF
AP+AAT [21] 8.65 —
SimCLR [10] 8.28 0.6100
MoCo [9] 8.23 0.5900
SNT-Xent 7.56 0.5785
SNT-Xent-AM (m = 0.4) 7.50 0.5804
SNT-Xent-AAM (m = 0.01) 7.56 0.6281

5. Conclusion

In this paper, we proposed an improvement of self-supervised
contrastive frameworks to learn more robust speaker repre-
sentations. First, we demonstrated that providing more self-
supervision with additional positive and negative pairs through
the SNT-Xent loss is essential to get better performances. Next,
we showed that introducing margins in the contrastive loss func-
tion leads to a lower EER on the VoxCelebl test dataset and
a better discrepancy between scores of positive and negative
trials. The performance of our larger final model with addi-
tive margin is competitive with other self-supervised contrastive
techniques for speaker verification.
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