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Abstract
Hierarchical image representations are widely used in image processing to model
the content of an image in the multi-scale structure. A well-known hierarchical rep-
resentation is the tree of shapes (ToS) which encodes the inclusion relationship be-
tween connected components from different thresholded levels. This kind of tree
is self-dual, contrast-change invariant and popular in computer vision community.
Typically, in our work, we use this representation to compute the new distance
which belongs to the mathematical morphology domain.

Distance transforms and the saliency maps they induce are generally used in
image processing, computer vision, and pattern recognition. One of the most com-
monly used distance transforms is the geodesic one. Unfortunately, this distance
does not always achieve satisfying results on noisy or blurred images. Recently,
a new pseudo-distance, called the minimum barrier distance (MBD), more robust
to pixel fluctuation, has been introduced. Some years after, Géraud et al. have pro-
posed a good and fast-to-compute approximation of this distance: the Dahu pseudo-
distance. Since this distance was initially developed for grayscale images, we pro-
pose here an extension of this transform to multivariate images; we call it vectorial
Dahu pseudo-distance. This new distance is easily and efficiently computed thanks
to the multivariate tree of shapes (MToS). We propose an efficient way to compute
this distance and its deduced saliency map in this thesis. We also investigate the
properties of this distance in dealing with noise and blur in the image. This distance
has been proved to be robust for pixel invariant.

To validate this new distance, we provide benchmarks demonstrating how the
vectorial Dahu pseudo-distance is more robust and competitive compared to other
MB-based distances. This distance is promising for salient object detection, shortest
path finding, and object segmentation. Moreover, we apply this distance to detect
the document in videos. Our method is a region-based approach which relies on
visual saliency deduced from the Dahu pseudo-distance. We show that the perfor-
mance of our method is competitive with state-of-the-art methods on the ICDAR
Smartdoc 2015 Competition dataset.

Keywords: Tree of shapes, mathematical morphology, hierarchical representa-
tion, multivariate images, Dahu pseudo-distance, minimum barrier distance,visual
saliency, Document detection, image segmentation.
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Résumé
Les représentations hiérarchiques d’images sont largement utilisées dans le traite-

ment d’images pour modéliser le contenu d’une image par un arbre. Une hiérarchie
bien connue est l’arbre des formes (AdF) qui encode la relation d’inclusion entre
les composants connectés à partir de différents niveaux de seuil. Ce genre d’arbre
est auto-duale et invariant de changement de contraste, ce qu’il est utilisé dans de
nombreuses applications de vision par ordinateur. En raison de ses propriétés, dans
cette thèse, nous utilisons cette représentation pour calculer la nouvelle distance qui
appartient au domaine de la morphologie mathématique.

Les transformations de distance et les cartes de saillance qu’elles induisent sont
généralement utilisées dans le traitement d’images, la vision par ordinateur et la
reconnaissance de formes. L’une des transformations de distance les plus couram-
ment utilisées est celle géodésique. Malheureusement, cette distance n’obtient pas
toujours des résultats satisfaisants sur des images bruyantes ou floues. Récemment,
une nouvelle pseudo-distance, appelée distance de barrière minimale (MBD), plus
robuste aux variations de pixels, a été introduite. Quelques années plus tard, Géraud
et al. ont proposé une bonne approximation rapide de cette distance : la pseudo-
distance de Dahu. Puisque cette distance a été initialement développée pour les
images en niveaux de gris, nous proposons ici une extension de cette transformation
aux images multivariées ; nous l’appelons vectorielle Dahu pseudo-distance. Cette
nouvelle distance est facilement et efficacement calculée grâce à à l’arbre multivarié
des formes (AdFM). Nous vous proposons une méthode de calcul efficace cette dis-
tance et sa carte de saillants déduits dans cette thèse. Nous enquêtons également sur
le propriétés de cette distance dans le traitement du bruit et du flou dans l’image.
Cette distance s’est avéré robuste pour les pixels invariants.

Pour valider cette nouvelle distance, nous fournissons des repères démontrant à
quel point la pseudo-distance vectorielle de Dahu est plus robuste et compétitive par
rapport aux autres distances basées sur le MB. Cette distance est prometteuse pour la
détection des objets saillants, la recherche du chemin le plus court et la segmentation
des objets. De plus, nous appliquons cette distance pour détecter le document dans
les vidéos. Notre méthode est une approche régionale qui s’appuie sur le saillance
visuelle déduite de la pseudo-distance de Dahu. Nous montrons que la performance
de notre méthode est compétitive par rapport aux méthodes de pointe de l’ensemble
de données du concours Smartdoc 2015 ICDAR.

Mots-clés: Arbre de formes, morphologie mathématique, représentation hiérar-
chique, images multivariées, pseudo-distance de Dahu, distance de barrière mini-
male, saillance visuelle, document détection, segmentation de l’image.
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Résumé long

Résumé

Les représentations hiérarchiques des images ont été largement utilisée de ces derni-
ères années pour les tâches de segmentation et de filtrage. Elles peuvent être util-
isées pour modéliser le contenu d’une image par un arbre. Nous nous concentrons à
l’arbre des formes (AdF) qui appartiennent aux arbres basés sur la décomposition de
seuil en raison de ses propriétés. Dans cette thèse, nous nous sommes interessés à la
distance de barriere minimum. Cette distance s’est avérée robuste pour les images
bruitée et floues. Malheureusement, son calcul est coûteux. Par conséquent, nous
avons proposé un moyen efficace de la calculer grâce à l’AdF. Cette distance approx-
imative est appelée la pseudo-distance du Dahu. Cette thèse est consacrée à l’étude
des propriétés de la pseudo-distance du Dahu et à l’application de cette distance
dans plusieurs applications, telles que la détection d’objets saillants, la recherche du
plus court chemin, la segmentation des images et la détection d’objets. Nous avons
également utilisé cette distance pour détecter des documents dans des vidéos cap-
turées par des smartphones.

1 Introduction

En traitement d’images, vision par ordinateur ou reconnaissance de formes, les ob-
jets peuvent apparaître avec différentes tailles et différentes positions dans l’image.
Ainsi, pour traiter différentes applications de la vision par ordinateur, il faut tenir
compte de la représentation multi-échelle de l’image et de la façon dont les objets
sont reliés aux autres. Cela donne lieu à une hiérarchie représentation de l’image,
qui est un ensemble d’images connectées du niveau fin au niveau grossier, appelé
représentation arborescente. S’appuyer sur les propriétés des arbres, on peut les
classer en deux types : arbres de partitions hiérarchiques et représentation de la dé-
composition des seuils. Dans cette thèse, nous nous concentrons sur la deuxième
classe d’arbres.

Cette représentation encode la relation d’inclusion spatiale entre les composantes
connectées de différents niveaux de seuil. Min- et Max-tree [1, 2] et l’AdF [3] sont
trois méthodes typiques de ce type de représentation. Toute découpe dans ces représen-
tations génère une partition partielle de l’image. De plus, les feuilles de ces présenta-
tions correspondent à l’extrema local de l’image. L’AdF est auto-dual et invariant au
changement de contraste, ce qui fait de lui une structure bien adaptée au traitements
d’images.

De nombreux opérateurs basés sur l’arbre des formes sont généralement util-
isés dans le domaine du traitement de l’image. Dans cette thèse, nous prenons en
compte une autre approche, appelée transformation à distance, pour traiter de la
représentation régionale. Cette transformée de distance est utilisée pour mesurer la
dissimilarité entre les pixels de l’image, exprimant ainsi la relation entre l’objet et
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l’arrière-plan à travers la définition de la détection des points saillants, ou la relation
entre les régions dans le même objet. La fonction de distance a longtemps été étudiée
dans la communauté de la morphologie mathématique. L’idée de base de la trans-
formation de distance vient de l’image binaire pour trouver la distance minimale
entre un ensemble de chemins entre deux pixels.

Dans cette thèse, nous nous concentrons sur les distances par trajet, où les images
peuvent également être vues sous forme de graphes (les sommets sont les pixels de
l’image et les arêtes sont induites par la relation de voisinage entre ces pixels). La
distance la plus utilisée dans le traitement des images est la distance géodésique [4].
Cependant, cette distance n’est pas assez robuste pour traiter des images bruitées et
floues. Dernièrement, une nouvelle pseudo-distance, appelée distance de barriere
minimum (MBD) a été proposée dans [5].

La distance de barriere minimum est la valeur minimale de toutes les “intensités”
de la barrière (notion définie plus loin) parmi l’ensemble des chemins possibles entre
deux pixels. Cette distance est étudiée dans [6] et dans [7]. Le MBD possède de
nombreuses propriétés théoriques intéressantes et constitue un outil efficace dans les
applications de traitement d’images et de vision par ordinateur, en particulier pour
la détection d’objets saillants [8–13], segmentation interactive [14, 15] et localisation
d’objet [16].

Récemment, la pseudo-distance du Dahu a été introduite dans le carde de la
morphologie mathématique dans le but de se rapprocher de la MBD. Cette distance
est calculée en considérant une image comme un paysage (on parle aussi de sa vue
topographique). Différente de l’approche de [9] qui calcule le MBD directement dans
l’espace image, la pseudo-distance du Dahu peut être efficacement calculée sur une
représentation arborescente de l’image (l’arbre de formes). Grâce à cette approche,
le calcul de la pseudo-distance du Dahu est très rapide.

Cette distance ayant été initialement développée pour les images en niveaux de
gris, nous proposons dans cette thèse une extension de cette transformation aux
images multivariées ; nous l’appelons la pseudo-distance du Dahu vectoriel. Un
moyen efficace de la calculer est proposé dans cette thèse. En outre, nous démon-
trons la robustesse de la pseudo-distance du Dahu vectoriel par rapport à d’autres
distances sur plusieurs exemples. Cette distance est prometteuse pour la détection
d’objets saillants, la recherche du plus court chemin et la segmentation d’images
hiérarchiques. Une combinaison de ces applications déduites de la pseudo-distance
du Dahu est intégrée dans un cadre complet pour la détection de documents à partir
d’images provenant de caméras.

2 Fondements theoriques

2.1 L’arbre des formes et l’arbre des formes couleur

L’arbre de formes (AdF) est une représentation auto-duale d’une image fusionnée à
partir de min-tree et de max-tree. Les nœuds racines du Min- et Max-tree représen-
tent l’ensemble de l’image, tandis que les nœuds feuilles correspondent aux minima,
respectivement aux maxima de l’image. Ensuite, la relation d’inclusion est utilisée
pour exprimer le lien entre les nœuds et leurs parents.

Une image u est définie comme une fonction: X → N. Avec une valeur λ ∈ N,
les coupes supérieure et inférieure sont définies comme: [u ≥ λ] = {x ∈ X|u(x) ≥
λ} et [u < λ] = {x ∈ X|u(x) < λ}. Nous désignons CC comme l’ensemble des
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(a) Image (b) Max-tree. (c) Min-tree. (d) ToS.

FIGURE 1.1: Représentations arborescentes basées sur le principe de
décomposition.

composantes connectées correspondantes aux coupes inférieure et supérieure de u.
Les Max-tree T≥(u) et Min-tree T<(u) sont ensuite déduits respectivement de ces
ensembles de composantes connectées en tant que T≥(u) = {Γ ∈ CC([u ≥ λ])}λ

and T<(u) = {Γ ∈ CC([u < λ])}λ.
L’arbre des formes est une décomposition d’images en niveaux de gris en com-

posantes connectées, appelées formes, qui peuvent être disposées en un arbre sous
la relation d’inclusion. Une forme est une composante connectée (remplissage de
cavité) sans trou à l’intérieur. Avec l’opérateur de remplissage de cavité (ou de satu-
ration) indiqué par Sat, nous avons l’ensemble de toutes les formes (arbre de formes)
: S(u) = {Sat(Γ); Γ ∈ CC([u < λ]) ∪ CC([u ≥ λ])}λ. Deux lignes de niveau (à des
niveaux différents ou non) ne peuvent pas se croiser. Des exemples des Min/Max-
tree et de l’AdF sont illustrés dans la Fig. 1.1.

Comme nous l’avons mentionné précédemment, l’arbre des formes est défini
dans les images en niveaux de gris. Pour calculer l’arbre des formes des images mul-
tivariées, c’est plus difficile. La relation d’ordre des valeurs dans l’arbre des formes
doit être totale, sinon les composantes connectés peuvent se chevauchées, et la con-
dition d’inclusion ne tient pas. Dans [17], les auteurs proposent une nouvelle ap-
proche pour traiter les images multivariées. Au lieu de construire un ordre total, ils
s’appuient sur la relation d’inclusion entre les composantes de l’arbre marginal des
formes. Leur algorithme est une procédure en 5 étapes basée sur deux parties prin-
cipales. La première partie est la construction d’un graphe de formes (GdF) à partir
de l’ensemble des AdFs qui est calculé à partir de chaque canal d’image marginal.
La seconde est la déduction d’un seul arbre des formes multivariées (AdFM) du GdF
basé sur le calcul des attributs sur le GdF.

2.2 La distance de barriere minimum

Dans les applications de traitement d’images, un domaine d’image est associé à un
graphique dans lequel les sommets représentent des pixels discrets sur l’image. Un
chemin dans un graphe X est une séquence π = 〈..., pi, pi+1...〉 (où chaque pi est
un sommet de la valeur). De plus, l’ensemble des chemins allant du sommet x au
sommet x′ est indiqué par Π(x, x′). L’intensité de la barrière (aussi appelé distance de la
barrière ou coût) τ d’un chemin π dans l’image en niveaux de gris u est défini comme
:

τu(π) = max
pi∈π

u(pi) − min
pi∈π

u(pi). (1.1)
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(a) Une image u.
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(b) u sous forme de
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(c) Version 3D de ũ donnée en (e). (d) u en surface.
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(e) Image à valeur d’intervalle ũ.

0 0 0

1 4 2
1 11 1

4

0 0

1 1

1

0 00 0 00 0

0 0 0 0

2 2

2

1

2

41

4

(f) Un chemin minimal dans un u<− ũ.

FIGURE 1.2: Représentation d’images pour le calcul des distances de
barrière.

La minimum barrier distance d MB (MBD) entre deux sommets x et x′ est alors défini
par :

d MB
u (x, x′) = min

π∈Π(x, x′)
τu(π), (1.2)

La MBD est donc le minimum des intensités de barrière de tous les chemins
entre deux sommets donnés. Une illustration de cet opérateur est donnée dans la
Fig. 1.2(b). Le chemin bleu, qui correspond à une séquence 〈1, 0, 0, 0, 2〉, est considéré
comme le plus court chemin entre ces deux points rouges. La MBD correspondante
est alors égal à 2.

2.3 La pseudo-distance Dahu

Une nouvelle version discrète du MBD, appelée la pseudo-distance Dahu, est définie
dans [18] et considère une image comme une surface continue (voir Fig. 1.2(d)). Le
chemin bleu optimal entre les deux points rouges a une distance égale à un.

Une image en niveau de gris peut être vue comme une fonction u : Z2 → N.
Lorsque nous représentons une image à l’aide d’une surface, nous ne pouvons pas
utiliser de fonctions scalaires. Plus exactement, dans [19], les auteurs proposent
de remplacer le domaine Z2 par l’espace topologique discret H2 de Khalimsky 2D
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(aussi appelées complexes cubiques), et le codomaine N par l’ensemble IN des inter-
valles des nombres naturels. Le complexe cubique 2D, qui est illustré dans Fig. 1.2(e)
est un ensemble d’éléments 2D, 1D et 0D, dans lesquels les éléments 2D sont les pix-
els originaux, 1D et 0D sont les inter-pixels qui prennent la valeur d’intervalle à ses
voisins 2D. Par exemple, l’élément 1D jaune dans Fig. 1.2(e), qui est délimité par une
bordure violette, correspond à la partie verticale violette dans Fig. 1.2(c). A partir
d’une image scalaire u, on construit une image à valeur d’intervalle ũ, qui représente
réellement la surface correspondant à u.

La relation d’inclusion entre une image scalaire et une image à valeur d’intervalle
est indiquée par <− . Le Fig. 1.2(f) représente une image scalaire u qui est “incluse”
dans l’image à valeur intervalle ũ représentée dans la Fig. 1.2(e) ; alors on peut écrire
u<− ũ. L’adaptation du MBD sur l’image à valeur d’intervalle, appelée la pseudo-
distance du Dahu (voir [19]), est notée d DAHU. Ensuite, la pseudo-distance du Dahu
entre deux pixels x et x′ sur l’image originale u est défini comme :

d DAHU
u (x, x′) = min

u<− ũ
d MB

u (hx, hx′) (1.3)

= min
u<− ũ

min
π∈Π(hx , hx′ )

τu(π), (1.4)

où hx et hx′ sont les éléments 2D du complexe cubique correspondant respectivement
à x et x′. Cela signifie que nous cherchons un chemin minimal dans le complexe
cubique, avec la définition classique du MBD, et considérons toutes les fonctions
scalaires possibles u qui sont “incluse” dans la carte à valeurs par intervalles ũ.

2.4 Calcul efficace de la pseudo-distance Dahu à l’aide de l’arbre de formes

D

E
B

A
C

F

O

(a) Image u.

3
2

0
1

(b) Échelle de gris.

A

O

F

C

1

2

1

B

D E2 2

0

3

(c) L’arbre S(u).

FIGURE 1.3: L’arbre des formes d’une image permet d’exprimer
et de calculer facilement les cartes de la pseudo-distance du

Dahu(voir [19]).

La pseudo-distance du Dahu peut être calculée facilement et efficacement grâce
à la représentation arborescente de l’image (l’arbre de formes). Le chemin minimal
entre deux points de l’image correspond à un chemin entre deux nœuds de l’arbre.
Sur Fig. 1.3(a), le trajet entre deux points (x, x’) indiqués par des balle rouges est
représenté par une ligne bleue, qui part de la région B, passe par A et C, puis se
termine dans la région F. Un tel chemin est minimal parce que chaque chemin dans
Π(x, x′) devrait au moins traverser ce même ensemble de lignes de niveau pour
passer de x à x′. En fait, ce chemin dans l’espace image est exactement le même
que le chemin (le plus court en nombre de noeuds) dans l’arbre des formes entre les
noeuds tx et tx′ :
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•
π(tx, tx′) := 〈tx, . . . , lca(tx, tx′), . . . , tx′〉,

où lca(tx, tx′) est l’ancêtre commun le plus bas de la paire (tx, tx′) (voir le chemin
bleu sur l’arbre représenté dans Fig. 1.3(c)). Notez qu’un chemin dans un arbre est
indiqué par

•
π pour le distinguer des chemins dans l’espace image.

La pseudo-distance du Dahu dans l’espace image entre deux points x et x′ peut
être écrit comme la distance de barrière minimale entre les deux noeuds tx et tx′

représentant les composantes dans l’arbre des formes contenant respectivement x et
x′ :

d DAHU
u (x, x′) = d MB

S(u)(tx, tx′) (1.5)

= max
t∈ •π(tx , tx′ )

µu(t) − min
t∈ •π(tx , tx′ )

µu(t), (1.6)

où µu(t) désigne le niveau de gris associé au noeud t. de l’arbre des formes S(u)
de l’image u. Par exemple, dans Fig. 1.3(c), le chemin bleu donne la séquence des
valeurs de noeud 〈0, 1, 2, 1〉, donc le Dahu pseudo-distance est 2. Il n’y a pas besoin
de trouver la meilleure image scalaire u<− ũ, ni de trouver le meilleur chemin π ∈
Π(x, x′) dans l’espace image.

3 Aller plus loin avec la pseudo-distance Dahu

3.1 Extension de la pseudo-distance Dahu à des images multivariées

Dans [20], la distance de barriere minimum vectorielle (VMBD) est proposée pour
calculer la MBD sur une image multivariée. Cependant, ce VMBD n’est pas facile à
calculer directement sur l’image. De plus, le VMBD n’est pas efficace pour calculer
les distances entre plusieurs points dans les images. Pour résoudre ce problème,
dans cette section, nous présentons la pseudo-distance du Dahu étendue aux images
multivariées en utilisant l’arbre des formes.

Considérons que u est une image multivariée, t est un noeud du MToS de u, et
µu(t) est la valeur vectorielle associée au noeud t, i est l’index du canal. On peut
alors étendre le Dahu :

d DAHU
u (x, x′) := ∑i∈{1..N} αi τ

(i)
u (

•
π(tx, tx′) ). (1.7)

avec :

τ
(i)
u (

•
π) := max

t∈ •π
µ
(i)
u (t) − min

t∈ •π
µ
(i)
u (t), (1.8)

où αi est le coefficient de chaque canal.
Pour les images en couleurs RGB, notre équation devient :

d DAHU
u (x, x′) =

1
3 ∑i∈{R,G,B} τ

(i)
u (

•
π(tx, tx′) ). (1.9)

Le MToS est calculé à partir des ToS de chaque canal d’image en fusionnant cer-
taines formes marginales. Le nœud de l’arbre final est associé à plusieurs valeurs de
l’image. Par conséquent, un nœud est affecté à une valeur unique calculée à partir
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de l’ensemble des valeurs qu’il contient. Dans notre cas, nous réglons chaque nœud
du MToS en utilisant la valeur médiane de ses pixels.

3.2 Améliorer la pseudo-distance de Dahu

FIGURE 1.4: Schéma pour l’application de recherche du plus court
chemin.

Dans cette section, nous présentons une amélioration de la pseudo-distance du
Dahu en prenant en compte l’information spatiale entre deux pixels de l’image.
Cette amélioration est en fait une procédure “deux-étapes”, qui est illustrée dans la
Fig. 1.4. Dans la première étape, considérons deux pixels donnés x et x′, nous cher-
chons le plus court chemin au sens de la pseudo-distance du Dahu dans l’espace de
l’arbre entre deux noeuds tx et tx′ , qui correspondent aux deux pixels donnés (voir
les noeuds bleus sur l’arbre représenté dans Fig. 1.4.

Notez que chaque noeud tx sur l’arbre représente une composante connectée
CC(tx) dans le domaine image. Nous désignons <∗(tx) la région qui est l’union des
composantes connectées qui correspondent aux descendants du noeud tx, et <(tx)
l’union des <∗(tx) et la composante connectée CC(tx) du noeud tx lui-même. Après
avoir calculé le chemin le plus court

•
π(tx, tx′), on trouve une région dans l’espace

image qui relie deux pixels x et x′. Nous appelons cela ROI(tx, t′x). Ce ROI est
en fait l’ensemble de tous les chemins possibles entre les deux points donnés dans
l’espace image minimisant la pseudo-distance du Dahu.

Dans la deuxième étape, nous voulons trouver le plus court chemin (dans l’espace
de l’image) entre les deux pixels x et x′, qui appartientent au ROI(tx, tx′), pour qu’il
ait la longueur la plus courte dans l’espace image. Ce chemin optimal a différentes
significations. Ce chemin n’est pas seulement le chemin le plus court dans l’espace
des couleurs mais aussi le chemin le plus court dans l’espace image. Un exemple du
chemin optimal est représenté dans Fig. 1.4. Le chemin le plus court se trouve dans
cette région en utilisant l’algorithme heuristique A∗ (voir [21]).

3.3 Détection d’objets saillants basée sur la pseudo-distance Dahu

Pour utiliser la pseudo-distance du Dahu dans la détection des objets saillants, nous
adoptons deux hypothèses sur le fond des images naturelles, bordure et connectiv-
ité, qui sont proposés dans [22]. La première hypothèse indique que la bordure du
domaine de l’image est principalement du fond. Dans la deuxième hypothèse, les
auteurs supposent que les régions d’arrière-plan sont grandes et homogènes, et que
les éléments d’arrière-plan ont tendance à se connecter avec la bordure de l’image.

Nous pouvons définir la carte de saillance sur la base de la pseudo-distance du
Dahu de la manière suivante :

S DAHU
u (x, X′) := min

x′∈X′
d DAHU

u (x, x′),
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où X′ est un ensemble de points du domaine de l’image u.
Définissons l’ensemble correspondant des noeuds sur S(u) de X′ :

TX′ := { tx′ ; x′ ∈ X′ }. (1.10)

Ensuite, nous obtenons la carte des saillants:

S DAHU
u (x, X′) = S MBD

S(u)(tx, TX′), (1.11)

3.4 Segmentation interactive basée sur la pseudo-distance de Dahu

Dans cette section, nous proposons un modèle amélioré de segmentation interactive
utilisant la pseudo-distance de Dahu. Nous appliquons une approche statistique
pour obtenir plus d’informations sur les régions d’avant-plan et d’arrière-plan à par-
tir de marqueurs. Le schéma de notre méthode est le suivant présenté dans Fig. 1.5.

FIGURE 1.5: Segmentation interactive basée sur la pseudo-distance
de Dahu.

Après avoir ajusté les modèles GMM, nous estimons une probabilité de chaque
pixel. Dans l’étape suivante, nous construisons deux AdFs pour représenter ces
deux cartes de probabilité. Nous marquons le nœud de l’arbre qui correspond aux
marqueurs. Ensuite, la pseudo-distance de Dahu est utilisée pour calculer la carte
des saillances à partir des nœuds marqués. Ces deux cartes de distance sont com-
parées l’une à l’autre pour déterminer l’étiquette du pixel de l’image. Ensuite, l’image
avec les étiquettes est reconstruite.

Nous présentons quelques résultats qualitatifs de notre méthode par rapport à
la méthode Grabcut [23] dans la Fig. 1.6. Les résultats de notre méthode comparé à
Grabcut sont illustrés respectivement in Fig. 1.6(c) and Fig. 1.6(d).

TABLE 1.1: Les résultats de la segmentation interactive

Distance metrics Geodesic MBD MSD16 MSD32 Grabcut Our
Weighted F 0.6469 0.6166 0.6821 0.6807 0.6392 0.7143

Table 1.1 présente quelques résultats quantitatifs de notre méthode par rapport
aux approches les plus récentes. Pour évaluer la qualité des méthodes de segmenta-
tion interactive, nous utilisons le F-score . Notez que, les résultats de la géodésique,
la MBD et la MSD sont extraites de [24]. Notre méthode permet d’obtenir de meilleurs
résultats que la méthode Grabcut, qui est habituellement utilisée dans le cadre de
nombreuses applications interactives de segmentation.
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(a) Ori (b) GT (c) GMM-Dahu (d) Grabcut

FIGURE 1.6: Comparaison de la segmentation interactive entre la
méthode proposée et la méthode Grabcut [23].

3.5 Détection de documents basée sur la pseudo-distance Dahu

Dans cette section, nous nous concentrons sur la segmentation automatique des doc-
uments dans les photos ou les vidéos issues de smartphones à l’aide de la saillance
visuelle. Notre méthode est une méthode basée sur la saillance, qui se compose de
quatre étapes principales.

Au début, nous supposons que nous avons un contraste élevé entre le document
et l’arrière-plan. Ainsi, nous considérons les pixels le long de la bordure de l’image
comme des nœuds de graine pour calculer la carte de saillance visuelle [22]. Nous
calculons la carte de saillance de la même manière que la section précédente en util-
isant la Eq. (1.11). Cette méthode nous permet de connaître la position du document
dans l’image.

Pour segmenter la région du document, nous proposons d’utiliser une segmen-
tation hiérarchique de l’image en parallèle avec le calcul de la carte de saillance.
Notre méthode commence avec l’algorithme SLIC [25] pour partitionner une image
en plusieurs régions appelées super-pixels. La segmentation hiérarchique d’image
segmente une image en plusieurs partitions, ce qui réduit le nombre d’éléments de
l’image ce qui reduit l’espace de rechercher. Nous utilisons une méthode de simpli-
fication et de segmentation de l’image basée sur la distance de Dahu.

Ensuite, nous combinons le résultat de la carte de saillance de Dahu et la segmen-
tation hiérarchique de l’image pour obtenir une carte finale de saillance. La valeur
finale de chaque région Ri est la moyenne de la carte de saillance de chaque pixel de
la région. Dans cette carte de saillance finale, les pixels de la région du document
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FIGURE 1.7: Schéma efficace pour la détection de documents.

sont plus clairs que les autres pixels. En d’autres termes, la région du document est
mise en surbrillance dans l’image. Par conséquent, nous construisons un max-tree
de cette carte de saillance.

Method Bg 1 Bg 2 Bg 3 Bg 4 Bg 5 Overall Runtime
A2iA-1 0.972 0.801 0.912 0.635 0.189 0.779 ?
A2iA-2 0.960 0.806 0.912 0.826 0.189 0.809 ?

ISPL-CVML 0.987 0.965 0.985 0.977 0.856 0.966 ?
LRDE [26] 0.987 0.978 0.989 0.984 0.861 0.972 1min
NetEase 0.962 0.955 0.962 0.951 0.222 0.882 ?

SEECS-NUST 0.888 0.826 0.783 0.781 0.011 0.739 ?
RPPDI-UPE 0.827 0.910 0.970 0.365 0.216 0.741 ?

SmartEngines [27] 0.989 0.983 0.990 0.979 0.688 0.955 ?
L. R. S. Leal [28] 0.961 0.944 0.965 0.930 0.412 0.895 0.43s

LRDE-2 [29] 0.905 0.936 0.859 0.903 ? ? 0.04s
Ours 0.985 0.982 0.987 0.980 0.848 0.97 3.7s

Smartdoc ave. [30] 0.9465 0.9031 0.9377 0.8122 0.4041 0.8552 ?

TABLE 1.2: Résultats quantitatifs sur les données des concours Smart-
doc 2015. La couleur rouge (resp. bleue) indique le meilleur (resp. le
second) résultat dans chaque cas. Notre méthode obtient la deuxième
meilleure note globale. Elle est au même niveau que avec la méthode

LRDE [26], mais environ 16 fois plus rapide que leur méthode.

Finalement, supposons que le document candidat soit représenté dans le max-
tree, le problème de segmentation du document est alors de trouver le document
dans l’espace arborescent. Pour ce faire, nous attribuons un attribut à chacun d’eux
qui correspond à un nœud de max-tree. Ici, nous utilisons une hypothèse préalable
qui est le document a une forme quadrilatérale. Pour calculer notre attribut, nous
calculons séquentiellement l’attribut sur chaque noeud de l’arbre et nous observons
dans quelle mesure ces attributs correspondent aux critères du document. L’idée est
de considérer les maxima locaux de la carte d’energy comme des candidats pour la
détection de documents. Nos critères sont les suivants :

1. À quel point la bordure de la forme correspond à un quadrilatère:

E f (A) =
|A ∩Quad(A)|
|A ∪Quad(A)| (1.12)
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2. Les angles entre les lignes du haut (resp. du bas), indiqués par TL (resp. BL),
et entre les lignes de gauche (resp. la droite), notées LL (resp. RL) :

Ea(A) =
cos(TL, BL) + cos(LL, RL)

2
(1.13)

3. La valeur de la carte de saillance de chaque nœud de l’arbre :

Es(A) = S DAHU
u (A) (1.14)

L’attribut final est calculé par cette équation :

E(A) = E f (A)× Ea(A)× Es(A) (1.15)

Une fois que l’attribut E(A) est disponible, nous pouvons rechercher le nœud "le
plus probable" de l’arbre qui maximise cette fonction d’attribut.

Pour étendre la détection de documents dans un flux vidéo, une méthode simple
de suivi compare les positions des formes dans des images consécutives.

FIGURE 1.8: Quelques résultats qualitatifs de notre méthode. Ces
images montrent la robustesse de notre méthode au flou ou au docu-

ment partiellement courbé.

Pour évaluer, nous utilisons l’index de Jaccard entre le document et la vérité
de terrain. Dans la Table 1.2, notre méthode obtient la deuxième meilleure note
globale sur 12 méthodes. La différence avec la méthode du premier rang (LRDE) est
négligeable (0,972 vs 0,97), mais nous sommes environ 16 fois plus rapides (1 min vs
3,7s).

Dans la Fig. 1.8, nous montrons les résultats de notre méthode sur quelques im-
ages difficiles.

La Fig. 1.9 démontre le compromis entre le temps d’exécution du processus et le
score global. Si nous augmentons le paramètre de mise à l’échelle et diminuons le
nombre de super-pixels, le temps d’exécution est beaucoup plus court, tandis que la
précision reste acceptable.
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FIGURE 1.9: Le compromis entre le temps d’exécution (résolution de
l’image, i.e. l’échelle de l’image) et la précision globale. Même à faible
résolution, notre méthode permet d’obtenir une note globale de 0,962

pour un temps de fonctionnement égal à 0.65s.

4 Conclusions

Dans cette thèse, la représentation hiérarchique de l’image, en particulier la représen-
tation arborescente basée sur la décomposition par seuil, a été présentée comme un
domaine de recherche très prometteur. De nombreuses méthodes de traitement ont
été appliquées à la hiérarchie pour prouver l’efficacité de ce type de représentation
d’images. Dans cette thèse, nous prenons en compte une autre approche basée sur
la transformation de la distance pour enrichir les capacités applicables de représen-
tation hiérarchique de l’image.

En outre, nous avons étudié la pseudo-distance de Dahu et nous avons introduit
de multiples améliorations de cette pseudo-distance. Tout d’abord, nous avons in-
troduit une extension vectorielle de la pseudo-distance de Dahu capable de traiter
des images multicanaux. Evidemment, cette pseudo-distance vectorielle de Dahu
peut gérer des images couleur qui sont déjà une grande amélioration, mais ne se lim-
ite pas aux images à trois canaux. Deuxièmement, nous avons amélioré la pseudo-
distance de Dahu en combinant la pseudo-distance du Dahu avec des informations
sur le domaine spatial des images. Nous avons également prouvé que notre pseudo-
distance vectorielle de Dahu est moins affectée par le bruit dans l’image que les
autres pseudo-distances basées sur MB.

Nous avons proposé une nouvelle méthode de détection des documents dans les
vidéos capturées par les smartphones, avec très peu de connaissances a priori sur les
documents et les images. Nous avons démontré l’efficacité de la pertinence visuelle
pour la détection de documents.
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Chapter 1

Introduction

Hierarchical image representations have been the major trends in recent years for
segmentation and filtering tasks. They can be used to model the content of an image
by the their structure. Because of the multi-scale representation properties, hier-
archical image representations are able to capture the object of interest at various
scales. Moreover, the topological relationship between objects in the image can be
performed through the edges of the tree. In this context, we take an interest in study-
ing such hierarchical representations as useful tools for several computer vision ap-
plications, including salient object detection and object segmentation.

In the field of Mathematical Morphology, there exist two types of hierarchical
image representations with two different semantics: partition trees and trees based
on threshold decomposition. In this thesis, we are particularly interested in the tree
of shapes which belongs to the second class because of its properties. This kind
of tree is self-dual and contrast-change invariant. Therefore, we use this structural
representation to address a new approach, called distance transform to deal with the
region-based representation.

Distance transform aims to measure the dissimilarity between pixels in an image.
In our work, we focus on the path-wise distances in general and the minimum bar-
rier distance in particular. This distance has been proved to be robust for noisy and
blurred images. Unfortunately, its computation is expensive. To overcome this limi-
tation, we proposed an efficient way to compute it thanks to the tree of shapes. This
approximated distance is called the Dahu pseudo-distance. This thesis is dedicated
to investigate the properties of the Dahu pseudo-distance and to apply this distance
in several applications, such as salient object detection, shortest path finding, image
segmentation and object detection. Specially, we employed this new distance for
document detection in the videos captured by smartphones.

1.1 Image representation

A digital image is a two-dimensional signal which captures the information from
cameras. An image can be considered to be a graph, based on the relation between
adjacent pixels, which are the smallest elements in the image. The pixel-based repre-
sentation, also called “pixel adjacent graph” (PAG), has been studied in the early stage
of image processing [31].

Despite the simplicity of a PAG, the representation relied on the pixel level is
not sufficient. It leads us to the higher level representations, region-based represen-
tations or “region adjacent graph” (RAG). In these representations, an image is mod-
eled by a set of superpixels which are group of pixels that share similar properties.
The RAG, which can be obtained by fine segmentation algorithms, takes into ac-
count the local context (regions) and global properties (spatial connection between
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objects). The relation between adjacent regions in the image is expressed by the
edge weights which represent the dissimilarity measures between them. Depending
on the application, one can choose appropriate dissimilarity measures, for example
color, texture or gradient value. The number of elements in region-based represen-
tation is less than the pixel-based one, consequently, it reduces the search space for
object detection applications.

Objects can have various sizes and different positions in the image. Therefore,
to adapt to many computer vision applications, we need to consider the multi-scale
representation of the image. That gives rise to hierarchical representation of image,
which is a set of connected components from fine to coarse level, called tree-based
representation. Relying on the properties of the trees, we can categorize two types:
hierarchical partition trees and threshold decomposition trees.

• The former representation begins with image partition algorithms. It fuses
small regions to form a bigger one, thereby generating a set of partitions go-
ing from fine to coarse. It can be represented by a tree structure, in which the
root node corresponds to an entire image while the leaf nodes represent initial
regions in the fine segmentation. This type of representation can be found on
several examples, in particular, Quadtrees [32], α-trees [33] and Binary parti-
tion trees [34]. These representations are used in various applications in com-
puter vision [34–36].

• The latter representation is based on the threshold decomposition, which en-
codes the spatial inclusion relationship between connected components from
different thresholded levels. The Min- and Max-trees [1, 2] and the Tree of
shapes [3] are three typical trees of this kind of representation. Contrary to
the partition trees, the trees based on threshold decomposition are contrast-
invariant. Any cut in these trees generates a partial partition in the image.
Additionally, the leaf nodes on these presentations correspond to the local ex-
trema of the image. Trees based on threshold decomposition have been used in
numerous applications, for instance, image filtering and segmentation [37, 38,
1, 39, 40, 26], video segmentation [41], image representation [18, 17], pattern
recognition [42, 43], image registration [44] , image compression [2] and data
visualization [45].

The above representations are application-driven and are generally used in im-
age processing domains. Their multi-scale structures are able to capture different
object regions in the image. There are many methods which have been proposed to
deal with the tree. A popular approach, the tree simplification, is used to reduce the
number of nodes in the tree which correspond to the small areas or do not contain
meaningful information. The nodes on the tree can be removed or preserved de-
pending on their attributes which are based on the size, contrast, shape or texture of
the connected component. In addition, the parenthood relationships between parent
nodes and their descendants are considered as well.

Another approach aims to search for the “best cut” that generates partitions for
image segmentation. This method is based on a global optimization model of the
energies computed on each node in the hierarchy. A partition which is generated
from the best cut is a union of different nodes from different levels in the tree. The
most well-known energy function is the Mumford-Shah function that is first pro-
posed in [46] and used on the hierarchies in many researches such as [40, 47, 48].
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Recently, many supervised-learning based methods are proposed to obtain the best
cut in the hierarchy [49–51]. These methods rely on the low-level features, for exam-
ples, color, gradient and texture cue [52], and mid-level features, which are based on
graph partition and Gestalt properties [51].

In this thesis, we address another approach, called distance transform, which
is widely used to measure the dissimilarity between pixels in the image, thereby
expressing the relations between objects and background in the image. This new
distance function will be presented in Section 1.2.

1.2 Distance transform

Distance functions have been long studied in the mathematical morphology com-
munity, typically, in fundamental morphological operators such as erosion, dilation
or skeleton application [53]. Recently, distance transform and the notion of saliency
maps, which is deduced from the distance function, are generally used in image
processing and computer vision [22, 9, 10, 8, 6]. In general, distance functions can
be classified into two categories: point-wise and path-wise. Point-wise distances are
computed relative to the domain of an image, while path-wise distances involve the
topographical view of the image.

Here, we focus on path-wise distances, where an image can also be seen as a
graph (the vertices are the pixels of the image and the edges are induced by the
neighborhood relationship between these pixels). The usual method to find the path-
wise distance between two pixels is thus to compute the length of the shortest path
in the graph that goes from one of these pixels to the other one. The most used path-
wise distance in image processing is the geodesic distance (see [4]). However, this
distance is not robust enough to deal with noisy and blurred images. Lately, a new
pseudo-distance, called minimum barrier distance (MBD) has been proposed in [5].

The minimum barrier distance is the minimum value of all the barrier “strengths”
(a notion defined later) among the set of possible paths between two given points.
This distance is first studied in [6] and in [7]. The MBD has many interesting theoret-
ical properties and is an effective tool in image processing and computer vision ap-
plications, especially in salient object detection (see [9, 10, 8, 11–13]), interactive seg-
mentation (see [14, 15]) and object localization (see [16]). Some works show that the
minimum barrier distance outperforms the geodesic distance on noisy and blurred
images (see [9, 5]).

Recently, the Dahu pseudo-distance has been introduced in a Mathematical Mor-
phology fashion (see [19]) with the aim to approximate the MBD. This Dahu pseudo-
distance is computed by considering an image as a landscape (we also speak about
its topographical view). Different from the approaches of [9] and of [8] which com-
pute the MBD directly in the image space, the Dahu pseudo-distance can be com-
puted efficiently on a tree-based representation of the image (the tree of shapes).
Thanks to this approach, the computation of the Dahu pseudo-distance is very fast.

Since this distance was initially developed for grayscale images, in this thesis,
we propose an extension of this transform to multivariate images; we call it vecto-
rial Dahu pseudo-distance. An efficient way to compute it is provided in the fol-
lowing chapters. Additionally, we demonstrate the robustness of the vectorial Dahu
pseudo-distance compared to other MB-based distances across several benchmarks.
This distance is efficient for salient object detection, and hierarchical image segmen-
tation. A combination of these two applications which are derived from the Dahu
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pseudo-distance is integrated in a full framework for document detection in videos
captured by smartphones.

1.3 Main contributions

Our main contribution in this thesis is the proposition of a framework for document
detection relying on the region-based representation, which applies the new MBD
that belongs to the domain of mathematical morphology. Additionally, we investi-
gate several interesting properties of the Dahu pseudo-distance:

• We propose an extension of the Dahu pseudo-distance to multivariate images,
and we introduce a new way to compute it faster.

• We extend the Dahu pseudo-distance to a more “clever” version which com-
bines tree-based and spatial representations to give better results (especially to
find the shortest path between two points in the image space). Then we do not
only look for the shortest path in a tree but also in the domain of the image
using the geodesic distance.

• We explore the properties of the Dahu pseudo-distance via several experi-
ments: we compare the vectorial Dahu pseudo-distance with the Dahu pseudo-
distance computed on separate channels, we analyze the noise stability of
the vectorial Dahu pseudo-distance, and we study the contrast of the Dahu
pseudo-distance when computed on the ratio between inter- and intra-distances.

• We demonstrate the robustness of the vectorial Dahu pseudo-distance in some
applications, such as salient object detection, interactive segmentation and sho-
rtest path finding. Many experiments confirm the improvement brought by
the multivariate extension of the Dahu pseudo-distance over other common
strategies using the MBD on color images.

• We introduce the multivariate Dahu pseudo-distance on multimodal/multisp-
ectral images and we provide experiments to validate the usability of this Dahu
pseudo-distance on such kind of images.

• We propose an efficient method for interactive segmentation using the Dahu
pseudo-distance through a consideration of the background and foreground
information by employing a statistical approach.

• We propose a fast method for image segmentation based on our new dis-
tance. This method demonstrates again the robustness and effiency of the
Dahu pseudo-distance in image processing application.

• We use the Dahu pseudo-distance on automatic segmentation of documents in
smartphone photos or videos using the visual saliency approach.

1.4 Manuscript organization

This thesis is divided into four main parts. The first part presents the theoretical
background that relates to our works including a review of hierarchical represen-
tations provided by the mathematical morphology community, tree simplification
and segmentation, a review of traditional image segmentation methods, distance
transformation and visual saliency detection.
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• Section 2.1 discusses the digital image and review several classical methods to
represent the image by covering some fundamental notations and definitions.
These image representations are implemented through a concept that consid-
ers an image to be a graph which can be based on the pixels or the regions in
the image.

• A review of the first type of hierarchical, namely the hierarchical partition trees
is presented in Section 2.2. We recall several well-known structures such as the
Quadtree [54], Minimum spanning tree [55], α-tree [33] and the Binary Parti-
tion Tree [34]. We also present the algorithms to build these representations
from a digital image, the properties and the applications of each hierarchical
partition tree.

• Section 2.3 introduces the other type of hierarchical representation of images,
namely tree-based on the threshold decomposition. Three classical inclusion
trees that we review in this section: the min- and max-tree [2], and the Tree
of Shape [56]. We also review an extension of Tree of Shapes to multivariate
images [17].

• In the previous sections, we discussed different types of tree-based represen-
tation. However, a tree may contain a great deal of nodes. Therefore, in Sec-
tion 2.4, tree simplification is introduced to reduce the number of nodes in the
tree. Several operators to simplify the tree are presented in [34, 57, 2, 58].

• We highlights the most popular methods for image segmentation in Section 2.5,
which is used to partition a digital image into multiple meaningful segments.
Image segmentation is used to simplify or change the image representation in
order to analyse the image easier. Generally, this method is used as an inter-
mediary step for many computer vision applications such as object detection
and recognition.

• Some well-known distances are investigated in Section 2.6. Then, a recent dis-
tance called Dahu pseudo-distance is presented, which belongs to the mathe-
matical morphology domain.

• Section 2.7 gives several visual saliency detection methods in both top-down
and bottom-up methods.

The second part presents the main contributions of our work. We propose sev-
eral approaches to enrich the properties of the Dahu pseudo-distance. This chapter
is divided into two sections: Dahu pseudo-distance improvements and applications.

• In Section 3.1, we present a method to efficiently compute the Dahu saliency
map by using a tree-based structure. Additionally, we extend the Dahu pseudo-
distance to multivariate images, and present a method to compute it efficiently
based on the tree of shapes.

• In Section 3.2, we propose several frameworks based on the Dahu pseudo-
distance to solve many problems in image processing and computer vision, for
example, the shortest path finding, salient objects detection, interactive seg-
mentation and image segmentation. These methods are integrated together
into a document detection application.
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In the third part, we explore the properties of the vectorial Dahu pseudo-distance
via several experiments in the sense of visual saliency detection. Furthermore, some
experiments are implemented to analyze the stability w.r.t noise of the vectorial
Dahu pseudo-distance and MB-based distances, and the contrast of the Dahu pseudo-
distance based on the ratio between inter-distance and intra-distance. The inter-
distance is the distance from a marker outside the object to a marker inside the object
and the intra-distance is the distance between two markers in the same object. Lastly,
we provide a comparison between the executed time of the Dahu pseudo-distance
and some MB-based distances.

• Section 4.1 demonstrates the robustness of the vectorial Dahu pseudo-distance.
In this section, we implement multiple experiments with the vectorial Dahu
pseudo-distance. Firstly, we compare the vectorial Dahu pseudo-distance with
the Dahu pseudo-distance on separate channels. Thereafter, we compare our
new distance with state-of-the-art MB-based distances.

• We investigate the contrast of the Dahu pseudo-distance based on the ratio
between inter-distance and intra-distance and analyze the stability of the vec-
torial Dahu pseudo-distance w.r.t noise in Section 4.2.

• Section 4.3 compares the speed performance of the Dahu pseudo-distance with
some state-of-the-art MB-based distances.

In the fourth part, we validate the efficiency of the Dahu pseudo-distance in
many applications. The first application is the shortest path finding between two
pixels in the image. Next, we demonstrate the great potentiality of the Dahu pseudo-
distance in multimodal medical images, consequently, confirm the usability of the
Dahu pseudo-distance in multivariate images. Another application to endorse the
ability of the Dahu pseudo-distance on multivariate images is multi-spectral imag-
ing. Finally, the Dahu pseudo-distance is exploited to detect a document in the
videos captured by smartphones.

• In Section 5.1, an application for finding the shortest path between two chosen
markers of the Dahu pseudo-distance in the image is explored. We compare
the shortest path between our distance and other MB-based distances.

• Section 5.2 presents the application of the vectorial Dahu pseudo-distance on
the multi-modality medical imagery and multispectral satellite imagery. We
use the same strategy to deal with the multimodal and multispectral images.

• We examine the stability of the Dahu pseudo-distance w.r.t marker positions
for object segmentation in Section 5.3. First, we investigate the Dahu pseudo-
distance stability, and how this stability influences the results of distance-based
image segmentation. Secondly, we study the inter-dependence of the number
of distance seeds on interactive segmentation in natural images. Thirdly, we
apply a simple method using the Dahu pseudo-distance in interactive segmen-
tation on the Gulshan dataset [59]. Finally, we evaluate our improving model
for interactive segmentation by comparing to other state-of-the-art approaches.

• In Section 5.4, we apply the proposed fast method for image segmentation
based on the Dahu pseudo-distance. Our approach belongs to the hierarchical
image segmentation class.
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• Section 5.5 validates the usability of the Dahu pseudo-distance for automatic
segmentation of documents in smartphone photos or videos using visual salie-
ncy (VS). In the first part, we compare our method with different VS methods.
We show that our saliency maps are competitive with state-of-the-art visual
saliency methods, and that such approach is very promising for use in identity
document detection and segmentation, even without taking into account prior
knowledge about document contents. In the second section, we evaluate our
extended version which is based on the hierarchical image segmentation. Our
method is able to accurately segment the document region at high speed.

Chapter 6 concludes this dissertation. We present a quick review of our method
to extend the Dahu pseudo-distance to multivariate images. We also introduce sev-
eral improvements and advantages of our proposed methods to deal with many
applications in image processing. Finally, we discuss some limitations of the Dahu
pseudo-distance and open some directions for future works.
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Chapter 2

Theoretical Background

2.1 Image Representation

In this chapter, we talk about the digital image and review several classical image
representations by covering some fundamental notations and definitions. These im-
age representations are implemented through a concept that considers an image to
be a graph. The representation can be based on the pixels or the regions in the image.
They are efficient and used widely in different applications in image processing.

2.1.1 Digital image

An image is a two-dimensional plane which is captured from the optical devices,
in particular, the cameras. The captured continuous image is then digitized to an
array of digital numbers, thereby representing the data in both coordinates (sam-
pling) and amplitude (quantization). Therefore, an image can be regarded as well a
two-dimensional function f (x, y), Z2 → N, where x and y indicate the spatial coor-
dinates, and the amplitude f at any pair of coordinates (x, y) represents the intensity
value of that point [60]. The smallest representation of the image is the pixel (picture
element), which is stored and displayed in the grid map or the matrix [61].

We present in the following several notations, which are used in this thesis in-
cluding pixel connectivity, path between pixels, connected component and regions
in the image.

Pixel p in the image is linked to its neighbors by some classical pixel adjacency
relations. For example, a pixel p at coordinates (x, y) has four horizontal and vertical
neighbors whose coordinates are given by: (x + 1, y), (x− 1, y), (x, y + 1), (x, y− 1).

A path π(p0, pn) from p0 to pn is a sequence of pixels 〈p0..., pi, pi+1...pn〉 , where
pi and pj are two adjacent neighbors.

Let call {S}, the set of all pixels in the image, and {SX}, a subset of pixels so that,
{SX} ⊆ {S}. Two pixels p and q are said to be connected in {SX} if there exists a
path of pixels in {SX} that connects p and q. For any pixel p in {SX}, the set of pixels
that are connected to p in {SX} is called a connected component of {SX}. If there is
only one connected component, then set {SX} is called a connected set [60].

We call a subset of pixels {R}, the region in the image if {R} is a connected set.
Two regions Ri and Rj are called adjacent if their union forms a connected set. Re-
gions that are not adjacent are said to be disjoint (Ri ∩Rj = ∅). A boundary of region
{R} is a set of pixels which are adjacent to pixels that belong to the complement of
region {Rc} (set of pixels that are not in {R}) [60].
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2.1.2 Classical Image Representation

In the previous section, we recalled the definition of the digital image, which can be
examined as a matrix of pixels. The matrix theory is used for many operations be-
tween images. Here, we discuss other classical image representations such as pixel-
based representation, graph-based representation and hierarchical representation.
The kind of image representation is chosen depending on the application.

2.1.2.1 Pixel-based representation

A graph is a good way to represent a set of data where some pairs of data are con-
nected to each other [62]. This representation is intuitively based on the fact that a
pixel is a unit element of the image. The pixel-based representation is also called the
“pixel adjacent graph” (PAG).

(a) Image. (b) Nodes. (c) Nodes and edges.

FIGURE 2.1: Graph of pixels, where nodes represent pixels in the im-
age and edges correspond to connectivities between adjacent pixels.

In image processing, an image domain is associated with a graph of pixels, which
is defined as G(V, E), where vertices V represent pixels in the image, and E is the set
of edges. Each edge Eij joins two pixels vi and vj. The first example of dealing with
this graph is defining the relation between neighboring pixels. 4- and 8-connectivity
in 2D are defined in [63]. Although these two connectivities are popular, their topo-
logical properties do not hold the Jordan curve theorem, which states that a closed
curve separates a 2D space into two regions (exterior and interior) [64]. The Khalim-
sky plane is proposed in [65] to solve this problem. An example of the pixel-based
representation is illustrated as Fig. 2.1.

The PAG is also used to segment an image into regions [31]. In this paper, the
authors proposed a method to measure the difference between regions, thereby pro-
ducing satisfying image segmentation results. The graph is constructed by consid-
ering the edge weights, which express the similarities between neighboring pixels.
In particular, the edge weight is the absolute intensity difference between the pixels
connected by an edge. The complexity of graph algorithms mostly depends on the
number of edges and the number of vertices in the graph.

Despite the simplicity of this representation, there is a large number of elements
to be examined. In addition, applications in image processing and computer vision
are dramatically increased in recent decades. The representation relied on the pixel
level is not sufficient. Therefore, to better analyse the scene, we need to use the
higher representation.
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2.1.2.2 Region-based representation

In region-based representation, an image is modeled by a set of regions or set of su-
perpixels, where each superpixel is a group of neighboring pixels that share some
similar characteristics. A region is more intuitive, easier for visualization, and con-
tains more information than an individual pixel. A region-based representation can
be obtained by segmentation algorithms that partition an image into different re-
gions upon specific similarity criterion. Besides, this representation also takes into
account the spatial information and the dependence of neighboring pixels.

(a) A fine partion of the image. (b) Region adjacency graph of the fine
partition

FIGURE 2.2: Region adjacency graph.

This kind of representation is called “region adjacency graph” (RAG). An exam-
ple of RAG is illustrated in Fig. 2.2. In this graph, the nodes represent regions in
the image, and edges connect adjacent regions. The regions are generated by using a
fine segmentation or unsupervised clustering methods such as superpixel segmenta-
tion [25], DBSCAN [66] or watershed transform [67, 68]. Since this fine segmentation
is an initial step of the graph-based representation, the quality of the superpixel seg-
mentation is essential. In particular, the fine segmentation has to contain meaningful
superpixels, whose boundaries should appear on the contour of the object. Besides,
the fine segmentation has to capture small objects in the image. The number of re-
gions is reduced compared to pixel-based representations, while the representation
accuracy can be kept [34]. The edge weights in this graph indicate the dissimilarities
between adjacent regions in the image. The dissimilarity can be computed as the dif-
ference between color, texture or average gradient value. In addition, it should bare
in mind both the spatial and the value sense [69]. The choice of the dissimilarity is
especially important and depends on the application.

As discussed in [52], image segmentation is still a big problem in image pro-
cessing. The objects in the image can appeared in various sizes. Therefore, a good
segmentation method should consider the multi-scale representation of the image.
To overcome this problem, we need to build a hierarchical representation, which is
a collection of segmentation from fine to coarse level. That leads us to the definition
of the hierarchical representation of image.

Based on the properties of the nodes and parenthood relationship, we can classify
them into two types of the tree-based representation: Trees based on the threshold
decomposition of the image and partition trees, which are known as hierarchies of
segmentation.

• Trees based on the threshold decomposition: In this representation, a tree
node denotes a particular connected component of the image level sets and
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parenthood between nodes maps the relationship of spatial inclusion between
components at different levels [43]. In general, any cut of this tree forms a
partial partition of the image. Specifically, Max- and Min-tree [70], and Tree of
Shapes (ToS) [18] are three typical trees of this representation.

• Partitioning trees are initialized from an image partition. They merge regions
from a finer scale to form a bigger region in coarser scale. Any cut in this repre-
sentation yields an image partition. Some typical examples of this representa-
tion are Binary Partition Trees (BPT) [34], Minimum Spanning Tree (MST) [55],
Quadtree [54], and alpha-tree [33].

Contrary to the hierarchical partition tree, the union of leaf nodes of the tree
based on the threshold decomposition does not cover the whole image. Instead,
they represent the local extrema of the image. This type of tree will be discussed
in Section 2.3, while the partition tree is the topic of Section 2.2.

2.2 Hierarchical Partition Trees

In this section, we recall several well-known hierarchical partition trees, the algo-
rithms to build them from a digital image, the properties and the applications de-
duced from hierarchical partition trees.

(a) Set of partitions. (b) Inclusion relationship. (c) Dendrogram.

FIGURE 2.3: An illustration of the hierarchy of image.

A hierarchical partition tree is a chain of image partitions from fine levels to
coarse levels. It is similar to the tree structure, in which the leaf nodes correspond to
the initial image partition, and the root node represents the whole image. The initial
image partition can be the result of any image segmentation, such as flat-zones of
the image [36] or superpixels segmentation [25].

Let H be a set of partitions Pi. An example of the chain of image partition is
illustrated in Fig. 2.3(a). We denote H being a hierarchy of partition if it satisfies the
inclusion order condition:

0 ≤ i ≤ n, ∀j, k, 0 ≤ j ≤ k ≤ n⇒ Pj ⊆ Pk (2.1)
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where P0 is the finest partition and Pn corresponds to the whole image. A partition
Pj is finer than the partition Pk if all the regions of Pj are included in the partition Pk.
This property is depicted in Fig. 2.3(b).

Besides, the intermediary node is created by merging regions from its finer level.
In other words, the hierarchy is constructed by an iterative merging algorithm un-
til they remain only one region in the image. Therefore, a dendrogram is usually
used to describe hierarchical partition trees. Fig. 2.3(c) illustrates one example of
the dendrogram of the image. One advantage of these representations is that it is
a multi-scale representation of the image. Therefore, it is able to cover variable-size
objects in the image. It leads to the fact that the hierarchy of segmentation is compat-
ible with object detection and segmentation application. Another advantage of this
hierarchy is reducing the number of elements in the image; in other words reducing
the search space for candidate regions.

There exist different hierarchies of partition to adapt to various applications.
However, fully exploiting the properties of hierarchical representation, incorporat-
ing multiple information (context, color, texture, gradient, etc ) from the regions in
the partition, and also finding a best meaningful segmentation from the hierarchy
are still big questions in the image processing community. “There is no such thing
as a free lunch”. Otherwise speaking, there is no such thing as the best hierarchy
image representation for all the applications. That is why in the following sections,
we review several famous partition trees.

2.2.1 Quadtree

This section is a review of the Quadtree, which is used in the early stage of the image
processing history [54]. It is a spatial data structure that allows representing the
image content. Leaf nodes on the Quadtree represent areas in the image. A Quadtree
is constructed in a recursive way to cut the regions in the image into quadrants relied
on a given split criterion. Therefore, a Quadtree is a hierarchical representation of
different levels of resolution [32]. Each node on the tree can be a rectangle or a
square region along with a specific color, which is the dominant color that has a
higher percentage of occurrences inside the region. A parent node always has four
descendants named respectively 1, 2, 3 and 4. The color of all sibling nodes which
have the same parent should be different.

(a) Image. (b) The Quadtree.

FIGURE 2.4: An image and a its Quadtree representation.

The constructed algorithm of the Quadtree usually begins at the root node, which
represents the whole initiate image. The next step is choosing the split criterion,
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which can be color or texture homogeneity or the number of feature points in the
quadrant. If the parent node does not satisfy the given split criterion, then four
descendant nodes are divided from the parent node. The algorithm is repeated until
every leaf node on the tree conforms the criterion.

Quadtree has been used widely in the 1990’s in various applications such as
content-based image retrieval [71–75], image compression [76–81], graphic [82], and
image segmentation [83]. Especially in the image segmentation application, several
sibling nodes may be merged to form a larger region. However, this process does
not keep Quadtree properties anymore. Fig. 2.4 presents an image and its corre-
sponding Quadtree representation. Index 0 identifies the root node that represents
the whole image. Whereas, the indices 1, 2, 3 and 4 respectively correspond with
four descendant of each parent node.

2.2.2 Minimum spanning tree

FIGURE 2.5: An image and its MST representation.

Although the minimum spanning tree does not belong to the tree-based repre-
sentation of the image, it is used in many image processing applications. Given an
edge-weighted connected graph G(V, E, w), a spanning tree is a subset of a graph G,
which contains all the vertices from G covered with the minimum possible number
of edges. Hence, a spanning tree does not have cycles, and it cannot be discon-
nected. The minimum spanning tree MST(G) is then a spanning tree whose sum of
edge weights is as small as possible.

MST(G) = argmin
T∈ST

( ∑
eij∈ET

w(eij)) (2.2)

where ST is a set of all spanning trees of G.

In general, there may exist several MSTs of a graph. In the particular case where
all edge weights are different, the MST is unique. An example of MST is given
in Fig. 2.5. The MST is illustrated by the blue lines in this figure.

Several algorithms are proposed to compute MST for undirected graph. Here,
we present three popular methods, including Boruvka’s algorithm [84], Prim’s algo-
rithm [85] and Kruskal’s algorithm [55]. All of them are greedy algorithms.
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Algorithm 1: Boruvka’s algorithm to compute MST.
Data: A graph G(V, E, w)
Result: A MST(G)

1 Initialize all vertices as individual components (or sets) ;
2 Set MST = {} ;
3 while There are more than one components do
4 Consider next component ;
5 Find the closest weight edge that connects this component to any other

component ;
6 Add this closest edge to MST if not already added;
7 end

The study on constructing an exact MST starts with Boruvka’s algorithm [84].
This algorithm begins with each vertex of a graph being a tree. Then for each tree, it
iteratively selects the shortest edge connecting the tree to the rest and combines the
edge into the forest formed by all the trees, until the forest is connected. The compu-
tational complexity of this algorithm is O(ElogV), where E is the number of edges,
and V is the number of vertices in the graph. Boruvka’s algorithm is illustrated in
Algo. 1.

Algorithm 2: Prim’s algorithm to compute MST.
Data: A graph G(V, E, w)
Result: A MST(G)

1 Choose arbitrarily a start node s ;
2 Set MST = {} , S = {s} ;
3 while S 6= V do
4 Find an edge e such that:

• e starts in S and ends out of S

• e has the minimal weight of edges

Add e to MST ;
Add the vertex at the end of e to S ;

5 end

One of the most typical examples is Prim’s algorithm, which was proposed by
[85]. It starts with an empty spanning tree. The main idea is maintaining two sets of
vertices: the first one contains vertices that have been already included in the MST,
while the second one is not. It first arbitrarily selects a vertex as a tree, and then
repeatedly adds the shortest edge that connects a new vertex to the tree, until all the
vertices are included. The time complexity of Prim’s algorithm is O(ElogV). If the
Fibonacci heap is employed for finding the shortest edge, the computational time is
reduced to O(E + VlogV) [86, 87]. Prim’s algorithm is given in Algo. 2.
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Algorithm 3: Kruskal’s algorithm to compute MST.
Data: A graph G(V, E, w)
Result: A MST(G)

1 Initially, sort edges in ascending order of weight;
2 Set MST = {} ;
3 for each edge e ∈ E do
4 if G̃ = (V, MST ∪ {e}) does not contain a cycle then then
5 Add e to the MST;
6 end
7 end

Kruskal’s algorithm is one of the most used algorithms to construct the MST [55].
In this algorithm, all the edges are sorted by their weights in non-decreasing or-
der. It starts with each vertex being a tree and iteratively combines the trees by
adding edges in the sorted order, excluding those leading to a cycle until all the trees
are combined into one tree. The running time of Kruskal’s algorithm is O(ElogV).
Algo. 2 describes the Kruskal’s algorithm to compute the MST.

The MST is a well-known problem in graph theory and has been broadly ap-
plied in many image processing and computer vision applications. For example,
the MST is adopted in image segmentation [88–92], images analysis [93, 94] clus-
ter analysis [95–98], classification [99], density estimation [100], and salient object
detection [10].

2.2.3 α-Tree

(a) 0-CC. (b) 1-CC. (c) 2-CC. (d) 3-CC.

(e) Image and the alpha-tree.

FIGURE 2.6: An example of an α-tree.

The α-tree [33] is a multiscale representation of the image, also known as quasi-
flat zone hierarchy [101]. This tree is based on the α-connectivity. To easily under-
stand the α-tree, we begin with the notion of the flat zone in the image. In a digital
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image, flat zones 0− CC are defined as connected sets of pixels sharing the same
value:

0− CC(x) = {x} ∪ {y|∃π(x, y) :
∀xi ∈ π(x, y) ∧ xi 6= y⇒ d(xi, xi+1) = 0} (2.3)

However, the flat zone definition has a problem because of its extreme over-
segmentation. To overcome this limitation, the quasi-flat zone definition is proposed
in [101]. The most widely used definition of quasi-flat zones is called α-zone, that
leads to the definition of the α-connectivity.

α− CC(x) = {x} ∪ {y|∃π(x, y) :
∀xi ∈ π(x, y) ∧ xi 6= y⇒ d(xi, xi+1) ≤ α} (2.4)

The higher the value of α is, the larger the quasi-zone α − CC(x) is. The α −
CC(x) may be merged from two lower α-zones. Therefore, we can get a hierarchy
representation from this chain or partitions.

However, the simple α-zone definition also has a drawback. In the case of a low
gradient or blur image, this quasi-flat zone may merge different regions to the same
node in the tree. To deal with this problem, an additional ω parameter is proposed
in [102] to control the growth of the quasi-flat zone. The ω parameter is defined
as the difference value between the maximum and minimum value in the quasi-flat
zone. The (α, ω)-CC(p) is defined as:

(α, ω)− CC(p) = ∨{αi − CC(p)|αi ≤ α, R(αi − CC(p)) ≤ ω} (2.5)

where R(αi − CC(p)) denotes the maximal dissimilarity within α-CC(p).

An example of the α-tree is given in Fig. 2.6. In this figure, the α-level between
two adjacent regions is defined as the minimum edge weight that connects these
two regions. Other edges connecting these regions are not important. This prop-
erty is similar to the MST construction, in particular, the Kruskal’s algorithm. For
that reason, Kruskal’s algorithm allows an effective way to compute the α-tree [103].
The α-tree is applied as well to some applications such as image simplification and
segmentation [104, 105], object detection [106], and hyperspectral images [102].

2.2.4 Binary Partition Tree

The Binary Partition Tree (BPT) [34] is a hierarchical representation of an image
based on the similarity between adjacent regions. The root node represents the entire
image. The leaf nodes in BPT are regions in the initial partitions, which are able to
capture small objects in the image, thereby describing the very local information of
the image. On the other hand, the nodes, which are closed to the root node, contain
the global description as they correspond to large regions in the image. As previ-
ously said, classical object detection methods use an exhaustive search algorithm to
scan all possible candidate objects in the image concerning positions and scales. Be-
cause of its structural properties, the BPT is a good way to reduce the search space
for object detection.
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FIGURE 2.7: Example of BPT construction using a region merging
algorithm by a priority queue.

The BPT reflects the similarity between neighboring regions [36]. The BPT con-
struction is usually based on a recursive algorithm. It starts from an initial parti-
tion of the image (pixels, flat zones or over-segmentation algorithm). At each step,
the similarity scores between all adjacent regions are calculated, and only the most
similar pair of regions will be merged (thus the hierarchy is a binary tree). A prior-
ity queue is used to track the weight between adjacent regions in the image. After
merging two regions, we renew the information of the parent node and update the
weights between the parent node and its the adjacent regions. The merging proce-
dure repeats until only one component left. The BPT is obtained by keeping track
of this merging process. Therefore, the merging criterion plays an important role to
construct this tree. It defines the similarity between regions and determines the or-
der where regions are going to be merged. The choice of merging criterion depends
on the application. An example of the BPT construction is illustrated in Fig. 2.7.

BPT is used in various applications in image segmentation [34, 35], and object
detection [36, 107]. It has been extended to remote sensing domain such as hyper-
spectral and SAR images [57, 108–112].

2.2.5 Conclusion

In this chapter, we review the first class of tree-based representation in the mathe-
matical morphology domain: hierarchical partition trees. We do not enumerate all
types of the hierarchical partition tree, but instead present several popular classical
approaches: Quadtree, Minimum Spanning Tree (MST), α-tree, and Binary Partition
Tree (BPT). Hierarchical partition trees are multi-scale representations of images. In
other words, they provide both the local and global descriptions of the images. The
constructions of the trees are based on the similarity between regions in the image.
Therefore, the merging criterion plays an important role in the process. The hierar-
chical partition trees also bare in mind the adjacency between adjacent regions. A cut
from this tree generates a partition in the segmenting image. In the next section, we
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present the second class of the tree-based representation, namely tree-based on the
threshold decomposition, which involves the spatial inclusion relationship instead
of the adjacency.

2.3 Tree based on the threshold decomposition

In this chapter, we discuss the trees based on the threshold decomposition. A node
in these representations corresponds to a connected component of the image level
sets. These connected components are arranged into the tree thanks to the inclusion
relationship. The three typical threshold decomposition trees are the Min- and Max-
tree, which are first presented in [1], and the tree of shapes, which is a self-dual
representation of an image can be seen as a “merge” of these two above trees [113].
The Min- and Max-tree are dual in the sense that the Min-tree of an image is the
Max-tree of its complementary and vice versa. They are constructed so that their
leaf nodes orient toward the extrema in the image. These trees will be presented
in Section 2.3.1. Otherwise, the tree of shape, which is also called topographic map,
will be presented in Section 2.3.2.

2.3.1 Min Tree and Max Tree

We start with the Min- and Max-tree, which are the simplest threshold decomposi-
tion trees. A connected component in the gray-level image is defined as a connected
set of pixels, which is obtained by using the notion of threshold decomposition [1].
The Min- and Max-tree are then derived from this component tree [2]. The root
nodes in the Min- and Max-tree represent for the whole image, while the leaf nodes
correspond with the minima, respectively maxima in the image. Then the inclu-
sion relationship is used to express the link between nodes and their parents. These
connected components do not create any new contour so that it is appropriate with
filtering application [2].

An image u is defined as a function: X → N. With a value λ ∈ N, the up-
per and lower level sets (cuts) are defined as [u ≥ λ] = {x ∈ X|u(x) ≥ λ} and
[u < λ] = {x ∈ X|u(x) < λ}. We denote CC as the set of connected components
corresponding with the lower and upper cuts of u. The Max-tree T≥(u) and Min-
tree T<(u) are then deduced respectively from these sets of connected components
as T≥(u) = {Γ ∈ CC([u ≥ λ])}λ and T<(u) = {Γ ∈ CC([u < λ])}λ. The Max- and
Min-tree represent the inclusion relationship between the connected components at
different levels of λ.

In [114], several algorithms to construct the Max/Min-tree have been presented,
including the flooding algorithms [2, 115–117], the immersion algorithms [70], and
the merge-based algorithms [118, 119]. In this thesis, we only focus on the sec-
ond algorithm, which is a two-step procedure based on Tarjan’s union-find algo-
rithm [120]. An example of the Min/Max tree is illustrated in Fig. 2.8.

Various applications deduced from the Max/Min-tree have been proposed, for
example image representation [2, 1, 70], image filtering and segmentation [121, 2],
pattern recognition [122, 43] and remote sensing [34].

2.3.2 Tree of shapes

The tree of shapes (ToS) [56, 123] is a self-dual representation of an image, which is
obtained by merging from the min-tree and the max-tree. It is self-dual because it
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(a) Max-tree. (b) Min-tree.

FIGURE 2.8: Tree computation of the Max- and Min-tree based on the
immersion algorithms (2-steps procedure). The result of the sorting
step is given over the arrow, and the tree is constructed in the inverse

order.

does not care about the contrast of objects (the dark object inside the light region or
vice versa), thereby eliminating the redundancy of information contained in those
trees. The tree of shapes is a decomposition of gray-level images into connected
components, called shapes, which can be arranged into a tree under the inclusion
relationship. A shape is a filled-in connected component (cavity-fill-in) without hole
inside (its boundary is then an iso-level line). A cavity of a set S ∈ X (X is the
image domain) is called a “hole”; it is a connected component of X\S which is not
the “exterior” of S [18]. With the cavity-filling (or saturation) operator denoted by
Sat, and CC, the set of connected components (the tree of shapes) is defined as:
S(u) = {Sat(Γ); Γ ∈ CC([u < λ]) ∪ CC([u ≥ λ])}λ. Two iso-level lines (at different
levels or not) can not cross each other (under some particular constraints). A very
strong consequence is that shapes are either disjoint or nested, which explains that
the tree of shapes is a tree and not a graph with cycles.

The first ToS construction algorithm has been proposed by Monasse et al. [113],
called Fast Level Line Transform (FLLT), computes and merges the Min- and Max-
tree. Its extended version, called Fast Level Set Transform (FLST) is presented in [123]
relying on a region-growing approach. In [124], Song et al. have proposed a top-
down approach by tracking the level lines starting from the border. A simple and
efficient method to compute the ToS has been proposed by Géraud et al. [18]. Their
method turns a ToS computation problem into a Max-tree computation problem. It
is based on the Union-Find algorithm that computes the ToS in quasi-linear time
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FIGURE 2.9: The computation of the tree of shapes. The result of the
sorting step is given over the arrow.

in four steps: interpolation, immersion, pixel sorting and tree construction. This
method transforms an image to an interval-valued map in Khalimsky grid. A paral-
lel version of this approach has been presented in [125]. The construction procedure
of the ToS is depicted in Fig. 2.9.

This representation which is invariant to contrast changes and to contrast inver-
sion, has been proved very useful in image processing and pattern recognition tasks
such as image segmentation [126, 39, 40, 127, 26], object detection [42], remote sens-
ing [128] and salient object detection [129].

2.3.3 Multivariate Tree of shapes

As we mentioned before, the tree of shapes is only defined in the gray-scale im-
ages [18]. To compute the tree of shapes of the multivariate images, it is getting
more complicated. In the case of partition trees, their computations are based on the
distances which define the dissimilarity between pixels or regions, so that there is
no challenge to extend those hierarchies to multivariate images. On the other hand,
the ordering relation of values in the tree of shapes has to be total, otherwise the
connected components may overlap, and the inclusion condition does not hold. To
deal with the multivariate images, two methods exist. The first one constructs the
ToS on each marginal image channel separately as considering each channel is an
independent signal. This method has a limitation because, at the end of the tree
construction, we have to handle several trees. Moreover, it does not consider the
relationship between different channels in the multivariate image [130].

In this thesis, we only focus on the second method, which is based on vectorial
processing. It defines an ordering on the vectorial value space. An advantage of this
approach is that it only has one structure to process. A survey of the computation
on the multivariate image is presented in [131]. In [17], the authors proposed a
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(a) Computation steps of MToS.

(b) An example of MToS.

FIGURE 2.10: The 5-steps process for computing the MToS. Images
are extracted from [130].

new approach to deal with multivariate images. Instead of building a total order,
they rely on the inclusion relationship between components on the marginal tree of
shapes. Their algorithm is a 5-steps procedure based on two main parts. The first
part is the construction of a graph of shapes (GoS) from the set of ToS’s, which is
computed from each marginal image channel. The second one is the deduction of a
single multivariate tree of shapes (MToS) from the GoS based on the computation of
attributes on the GoS. The whole process is illustrated in Fig. 2.10. The details of the
algorithm are presented as follows.

Contruction a GoS

The algorithm begins with computing the marginal ToS’s T1, T2, ..., Tn of each
image channel, in which each ToS Ti is associated with a set of shape Si. A set of
components S =

⋃
Si from multiple trees is defined as the initial shape set. Here, we

need to think about the relation between these marginal trees, specifically, the inclu-
sion relationship between shapes from different trees. Therefore, a GoS G is created
by merging all the components from marginal trees concerning their inclusion rela-
tion, G =

⋃
Ti. The GoS merging procedure is illustrated as the first part in Fig. 2.10.

In the GoS, two marginal shapes from different trees may overlap, in other words, a
pixel may belong to several nodes which are not in the same tree. The problem now
is to extract a unique tree from this GoS.

Deduction a MToS from a GoS
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The tree, which is deduced from the GoS, has to hold an algebraic decreasing
shape attribute ρ, so that:

∀A, B ∈ S, A ⊂ B⇒ ρ(A) > ρ(B) (2.6)

where A and B are shapes which belong the set of component S.

The chosen attribute is the depth attribute. The depth of a shape is defined as the
length of the longest path from a shape to the root. The depth image ω is computed
as:

ω(x) = max
x∈X,X∈G

ρ(X) (2.7)

where x is the pixel which belongs to the shape X. An example of the depth attribute
ρ is illustrated in Fig. 2.10(b). The depth of each shape is computed on the marginal
trees and the graph of shapes. In the end of the process, an depth map ω is recon-
structed. Note that, after computing the depth attribute, component B and D are set
to the same level and they are merged in the depth map ω.

By denoting h being the thresholded level, we can consider M(x) as the max-tree
of ω, M(x) = {Γ ∈ CC([ω(x) ≥ h])}h. However, because M may form components
with holes, the hole filled max-tree of the depth image is constructed. It is also the
final MToS Tω of the image. The tree deduction procedure is depicted in the second
part in Fig. 2.10(a).

A GoS is a complete representation of an image, whereas the MToS is not, since
it lost information while computing the depth attribute. A node in the MToS may
contain different color values. Therefore, to reconstruct an image from the tree, we
assign each node to a median or average value of all color values belonged to that
node [17].

2.3.4 Conclusion

In this section, we present the second tree-based representation of an image: tree-
based on the threshold decomposition. Typical examples are the Min- and Max-
tree [132] and the tree of shapes [18]. These trees are constructed from the connected
components thanks to the inclusion relation. Each node in the tree represents a par-
ticular connected component in the image. These trees are designed to represent
bright and dark structures in the image. Therefore, the leaf nodes in these trees
correspond with image extrema. We also introduce an extension of the ToS in the
multivariate images, called MToS. We use this tree in Chapter 3 to compute our new
distance.

2.4 Tree simplification

In the previous section, we discussed different types of tree-based representation.
However, a tree may contain a lot of nodes. Therefore, tree simplification is impor-
tant to reduce the number of nodes in the tree, thereby reducing the runtime for later
tasks. In this section, we review several simplifying operators on the tree.

2.4.1 Tree filtering approach

Tree-based representation is a good way to represent an image and provides an or-
ganization between components in a hierarchical relation. However, the tree nodes,
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which are close to the leaf nodes, usually correspond to small areas in the image and
do not contain much semantic information. That requires us to merge these nodes
to simplify the tree for later processing steps. In other words, we eliminate some
connected components and then reconstruct a new image from the remaining tree
nodes. We call these steps as tree filtering operators. Based on the strategies preserv-
ing or removing nodes in the tree, we can classify these operators into two classes:
the tree pruning and non-pruning [58]. The former cut the sub-branches of the tree.
Therefore, if a node is filtered, all its descendants are also pruned. Whereas, in the
latter case, the descendant nodes of the filtered node can be preserved. To filter out
or preserve the nodes in the tree, we rely on their criteria stated in the following sub-
sections. Nodes in the component trees can be simplified based on regional maxima,
minima, or extrema, while in the case of partition trees, we employ the same criteria
as the ones used for tree construction, such as the size, contrast, texture or shape of
the component [58].

Moreover, the criteria can be classified into two classes: increasing and non-
increasing criterion. The criterion C on the connected component R is called in-
creasing if it holds this condition, otherwise it is called non-increasing:

∀R1 ⊆ R2 ⇒ C(R1) ≤ C(R2) (2.8)

2.4.1.1 Increasing Criterion

This criterion depends on the attribute of each node in the tree. If the criterion value
of the node is lower than the threshold value, the node is filtered out, and its corre-
sponding region is merged to the parent node. The increasing criterion guarantees
that if a node is pruned, all of its descendants are also removed [58].

The increasing criterion is widely used to simplify the tree T. Several increasing
criteria of a region X in the image f are given as follows:

• Area(X) = {#p|p ∈ X} (# is the number of pixels p in X);

• Height(X) = max
p∈X

f (p)−min
p∈X

f (p) ;

• Volume(X) = ∑
p∈X

(
max
p∈X

f (p)− f (p)
)

;

• Diagonal length of the smallest bounding rectangle.

2.4.1.2 Non-increasing Criterion

Besides the increasing criterion, several non-increasing criteria are also proposed as
follows:

• Perimeter P(X)

• Compactness(X) = 4πArea(X)
P2(X)

• Elongation(X) = lmax(X)
lmin(X)

,where lmax and lmin are major and minor axes of the
minimum covering ellipse of X.

On the contrary to the increasing criterion, the descendants of the removed node
in case of non-creasing criterion A, can be preserved. Several tree filtering ap-
proaches have been proposed to deal with this situation [58]:
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• Min: A node is kept if it passes the criterion and all of its ancestors are kept.

• Max: A node is kept if it passes the criterion or any of its descendants is kept.

• Viterbi: The removal and preservation of nodes are considered as optimization
problems. For each leaf node, the path with the lowest cost to the root node is
selected.

• Direct: A node is kept if it passes the criterion. The pixels belonging to the
nodes that have been removed are merged to the node of their first ancestor
that has to be preserved.

• Subtractive: is the same as the direct rule except that the gray levels of surviv-
ing descendants of removed nodes are also lowered, so that the contrast with
the local background remains the same.

2.4.2 Hierarchical image segmentation

A major difference between the tree based on the threshold decomposition Tt re-
viewed in Section 2.3, and the hierarchy of segmentations Th reviewed in Section 2.2
is that any cut of a type Th gives a partition of the image domain, whereas any cut
(except the root) of a type Tt yields a subset of the image domain. Here, we focus on
the “cut” in a hierarchy of segmentation.

(a) Horizontal and non-horizontal cut.

(b) Left: The finest partition. Middle: Partition from the blue cut. Right: Partition
from the red cut.

FIGURE 2.11: An example of the hierarchical cut.

Hierarchical segmentation is widely used in image segmentation by providing
high quality results through multi-scale image analysis. It is able to generate a subset
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of all possible partitions πi (set of distinct regions that do not overlap) of an image
from fine to coarse.

Given a hierarchy representation of an image H, a method for obtaining any
partition πi from H is defined as a “cut” in a hierarchy. In other words, a cut of
a hierarchy H is a subset of H such that every path from the leaf node to the root
node contains one and only one node in the cut slice. This cutting condition is pre-
sented in [26]. There exist two types of cut of a hierarchy: “horizontal cut” and
“non-horizontal cut” which are illustrated in Fig. 2.11. The first one, also the sim-
plest method, is “horizontal cut”, which is a partition of a hierarchy at a fixed level.
Examples of the horizontal cut can be found in [52] as using a given threshold to the
ultrametric contour, or in [102] as applying a value of α to the α-tree.

The horizontal cut is quite simple but usually does not achieve a remarkable
performance. Alternatively, a definition of “non-horizontal cut”, which is based on
an optimization model of the energies calculated on each node of the hierarchy, is
proposed [69]. In the non-horizontal cut, a partition is generated by associating
different disjointed regions from different levels of the hierarchy that satisfies the
cutting condition. The number of nodes is finite, so is its set of cuts. The “best cut” is
the one that minimizes the energies function. It is unique so that it holds the global
property. Moreover, this optimal also satisfies the local property since the energy
of each cut node is lower than the energy of its parent or its children. Hence, the
optimal cut is both local and global [48].

In non-horizontal cut case, a hierarchy can be segmented by adopting a scale
parameter λ. A general form of the energy function Eλ of a region R is:

Eλ(R) = Eφ(R) + λE∂(R) (2.9)

where Eφ and E∂ represent respectively a fidelity term and a regularization term, λ
is a positive value. The coarse level of the segmentation depends on the value of λ.
The higher value of λ is, the coarser segmentation of hierarchy is.

FIGURE 2.12: Optimal Cuts Pyramids: Optimal cuts using Mumford-
Shah function, shown for different λs. Images are taken in [48].

The optimal cut can be calculated using the dynamic programming by climbing
up in one ascending pass on the hierarchy. The energy of each node is compared to
the energy on its parent and children node. The one that has less energies is kept for
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continuing the pass. To compare the energy between nodes, three modes of compo-
sition including addition, supremum and infimum, are defined as the following:

• Addition: ∑
Ri∈childo f (R)

Eφ(Ri) + λE∂(Ri)

• Supremum:
∨

Ri∈childo f (R)
Eφ(Ri) + λE∂(Ri)

• Infimum:
∧

Ri∈childo f (R)
Eφ(Ri) + λE∂(Ri)

If the energy of the node corresponding to region R is lower than the energy of its
children node, we remove these children nodes out of the hierarchy. On the contrary,
we remove the node corresponding to region R, and update the parent relationship
on the tree. The algorithm is stopped when the root node is reached and all the
energy conditions are satisfied.

The most popular scale parameter function is the Mumford-Shah function, which
is first proposed in [46]. The Mumford-Shah function has been studied extensively
in the last decades [40, 47, 48]. This function is defined as:

E(R) = ∑
x∈R
‖ f (x)−m(R)‖2 + λ ∑ (|∂R|) (2.10)

where the first term (fidelity term) is the variance between function f and its aver-
age m(R) in the region R. For example, the function f can be the color function of an
image, or the scalar luminance f = (r + g+ b)/3 which is presented in [48]. The sec-
ond term (regularization term) is equal to contour length |∂R| of each node R. Some
examples of the optimal cut using Mumford-Shah function are shown in Fig. 2.12.
These figures illustrate the segmenting results with respect to different value of λ.
The higher value of λ gives the coarser segmentation.

Recently, many supervised learning-based methods are proposed to achieve the
best cut in the hierarchy [49–51]. In these papers, the hierarchies are constructed
from local information, such as multiscale local brightness, color, and texture cues [52].
Besides these low-level features, several mid-level features, which are based on graph
partition, region, and Gestalt properties, are used to create a classification model for
predicting the best segmentation. In [49], they train a classifier model to predict the
probability for each clique (a set of parent node R and a union of its children node
Ri) in the hierarchy. A label li = +1 or li = −1 is assigned to a parent node to in-
dicate whether its children are merged. Hence, all the leaf nodes are assigned with
label li = +1. The set of nodes, which are labeled as +1 and their parents are labeled
as −1, are considered as the final segmentation.

In [51], they consider regions, which belong to the optimal cut, are properly-
segmented region. Regions upper (resp. lower) the optimal cut are over-segmented
(resp. under-segmented) regions. A label x = {−1, 0, 1} is assigned to each node
vi to indicate the 3 classes of node based on its scale (under-segmented, properly-
segmented and over-segmented). They employ a regression model to predict the
scale of regions using mid-level features. Then an optimize function is formulated to
select the best cut as the set of regions that better balance between over-segmentation
and under-segmentation.
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2.5 Image segmentation

Over the past several decades, image segmentation has been widely used as an in-
termediary step in computer vision, image processing, and pattern recognition. This
technique aims to partition a digital image into multiple meaningful segments (set of
superpixels). It helps to facilitate the analysis through simplifying image or chang-
ing the image representation. The segmentation algorithm assigns different labels
to pixels in the image, such that the pixels with the same label share some common
characteristics such as color, intensity or texture. In the end of the process, we obtain
a set of segments that cover the entire image. In other words, image segmentation is
a multi-classes labelling problem.

Although image segmentation has long been studied, it still poses many prob-
lems. Firstly, a segment may belong to single or multiple connected components in
the image. Secondly, image segmentation is oriented toward a specific application.
In other words, different applications require different methods and features. The
third challenge with image segmentation is that we can not achieve a reasonable
unique image segmentation. Given an image, if we ask a set of people to segment
the image, we will get multiple results of what is a good segmentation. For example,
in the Berkeley segmentation dataset [133], the ground truth image segmentation
from five different people are different.

Image segmentation attracts a deep and rich research, and various algorithms are
proposed to deal with different tasks. In many literature surveys [134, 135], image
segmentation methods are classified into unsupervised and supervised classes. The
former methods are implemented without using any knowledge about the object or
user’s inputs. On the other hand, the latter methods use the prior information in the
training datasets or user’s input in the testing datasets. Therefore, a large training
dataset may give better performance. Because of high complexity and computation,
these methods require sufficient hardware for calculation.

In this thesis, we do not try to enumerate all the image segmentation methods.
Instead, we highlight a few of the most popular unsupervised methods.

2.5.1 Superpixel segmentation

This section presents a review about superpixel segmentation, which is an over-
segmentation of an image into few tens to thousand segments. This technique aims
to generate a new representation of an image, which is much easier and faster to
process. The superpixels are split as long as they are not divided by object con-
tours. Thus, the objects can be recovered at later procedures. Moreover, superpixel
segmentation is an efficient way to get local features instead of calculating directly
from the original image. An example of the superpixel is illustrated in Fig. 2.13.
In this image, different segmentation results are provided w.r.t the number and the
compactness of superpixels.

Due to its simplicity, superpixel segmentation is used in various applications
in the image processing community. Instead of looking for all possible candidates
in the images, the object proposal methods, which are based on the superpixels,
are presented to reduce the search space. These approaches can be found in many
papers [136–139]. Furthermore, superpixel segmentation is employed for seman-
tic segmentation [139, 52, 50, 49], salient object detection [22, 140, 141], and object
tracking [142].
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FIGURE 2.13: Image segmentation using SLIC algorithm with the size
of each superpixel are respectively equal 64, 256, and 1024 pixels [25].

Several superpixel segmentation methods are proposed in the state of the art.
Specially, in this thesis, we employ the simple linear iterative clustering (SLIC) algo-
rithm [25] as an intermediary step in our method.

The basic idea of the SLIC method is similar to the k-mean algorithm [143]. This
method is also a pixels clustering approach based on calculating the color similarity
and proximity in the image domain [25]. The five-dimensional feature [labxy] is used
to measure the distance between pixels, where [lab] is the pixel color in the CIELAB
color space, and [xy] is the coordinate of the pixel in the domain. The dissimilarity
between two pixels pi and pj is computed as:

dlab = (lj − li)2 + (aj − ai)
2 + (bj − bi)

2 (2.11)

dxy = (xj − xi)
2 + (yj − yi)

2 (2.12)

Clearly, the distance dlab is limited while dxy depends on the size of the image. Thus,
a normalization of these two distances is necessary to incorporate both of them.

D =

√
dlab +

m2

S2 dxy (2.13)

where S =
√

N/k normalizes the size of superpixels, such that N is the number of
pixels and k is the number of superpixels. m is used here as a compactness parameter
between the color dissimilarity and spatial proximity. The higher the value of m is,
the more compact between the clusters [25] are.
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Algorithm 4: SLIC superpixels.

1 Initialize cluster centers ci by sampling pixels at regular grid interval S;
2 Move cluster centers to lowest gradient location within 3× 3 neighborhood;
3 Set label label(i) = −1 for each pixel i;
4 Set distance d(i) = ∞ for each pixel i;
5 repeat
6 for each cluster center Ck do
7 for each pixel i in a 2S× 2S region around Ck do
8 Compute the distance D between Ck and i ;
9 if D < d(i) then

10 Set d(i) = D ;
11 Set l(i) = k ;
12 end
13 end
14 end
15 Compute new cluster centers ;
16 Compute residual error E ;
17 until E ≤ threshold;

The SLIC algorithm is presented in Algo. 4. This algorithm iteratively associates
pixels with the nearest cluster center, then updates the new position of the center.
This process is repeated until the error converges. Finally, a post-processing step is
used to reassign pixels to nearby superpixels.

2.5.2 Contour-based segmentation

Contour detection and image segmentation have been studied since the early state of
image processing. These two methods are related, but not identical. In general, the
contour detection methods do not guarantee to have closed contours, thereby usu-
ally providing unsatisfying segmentation image. Classical contour detection meth-
ods are based on the intensity changes between adjacent pixels in the image. This
technique can be categorized into two basic local approaches: first and second-order
differentiation. In the first-order approach, the gradient image is generated by con-
volving the image with a gradient mask. Edge is considered as the local maxima
among pixels in the gradient image. Roberts [144], Sobel [145] and Canny [146]
are some well-known methods for edge detection. On the other hand, the second-
order class searches for the optimal edges where the second derivative is zero. A
well-known isotropic generalisation of the second derivative to two dimensions is
the Laplacian [147] This method searches for the zero-crossing place, where a pixel
value is positive and the others are negative (or vice versa).

Recently, the hierarchical segmentation is used to extract the soft boundary im-
age, called ultrametric contour (UCM). In [148, 149], the authors take into account
the local contour cues along the boundary regions, then integrate with region at-
tributes to achieve the ultrametric contour. In [150], the posterior probability of a
contour is computed w.r.t the coordinates of the pixel and the orientation of the
boundary. This approach is then developed in [52] by using the multiscale model.
A globalized probability of a boundary is then computed from local and spectral
information. An example of this method is illustrated in Fig. 2.14.

Another method to detection the contour is presented in [151]. It is a learning
method by using random decision forest to capture the structured information. The
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(a) Image. (b) Contour probability. (c) UCM.

(d) Finest partition. (e) Simplified UCM. (f) Segmentation.

FIGURE 2.14: Hierarchical segmentation from contours. Images are
extracted in [52]

contour detection is considered as predicting local segmentation masks given input
image patches.

2.5.3 Watershed

In this section, we present a well-known image segmentation algorithm, namely wa-
tershed, which is based on the growth of the region. The basic idea of this method is
to simulate the flooding process. Imagine that we have a surface with holes and wa-
ter is falling on it. Different labels are assigned to different regional minima (holes).
Each regional minima is gradually filled by the water, then the unlabeled pixels are
assigned to the closest basin. Some constraints are set to prevent water merging from
different holes. The basins are progressively grown until all pixels in the image are
filled. That leads to the ridges between basins, which we call the watersheds [152].

The most famous watershed algorithm is seeded watershed segmentation or also
known as marker controlled watershed. The markers are put on the image to define
different regions. The segmenting result is highly depended on the position of the
started markers. In [153], the initial seeds are the local gradient minima. The seeded
region is grown thanks to the front propagation method by using the priority queue
that involves the order of pixels which are calculated from a distance function be-
tween the current pixel and the nearest seed. As a consequence, a catchment basin
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around a seeded region is defined as a set of pixels that are closer to this region than
the others.

The watershed is firstly proposed by Digabel and al [154], and then improved
in [155]. Several watershed segmentation algorithms have been reviewed in [156],
in particular, watershed by immersion [157] or by topographical distance [158]. The
former algorithm is presented in [157], which has two steps: 1) sorting pixels in in-
creasing order of gray value, 2) flooding step starts from the regional minima. In
latter one, several shortest path algorithms are used to perform watershed segmen-
tation [67, 159].

FIGURE 2.15: Minima, catchment basins, and watersheds on the to-
pographic representation of a gray-scale image.

However, the performance of watershed segmentation highly depends on the al-
gorithm that is used to compute the gradient image. Therefore, the watershed trans-
form usually produces an over-segmented image, with many irrelevant regions. An
example of the watershed on the topographic representation of the gray-scale image
is illustrated in Fig. 2.15.

2.5.4 Graph-based segmentation

Graph-based approaches have been studied for decades. An image can be consid-
ered to be a weighted graph G = (V, E, w), where vertices V in the graph represent
pixels in the image and edges E correspond to connectivities between adjacent pix-
els. The edge weight w represents the dissimilarity between pixels. The basic idea of
graph-based image segmentation is separating a set of nodes V into different subset
nodes V1, ..., Vm such that the similarities among nodes in the same subset are higher
than those across different subsets.

2.5.4.1 Normalized cut

In [161], Shi et al. proposed an algorithm to segment an image into multiple parti-
tions, called Normalized cut. Denoting w(i, j) as a weight between two nodes vi and
vj in the image, a cut in the graph that partitions an image into two disjoint sets A
and B is formulated as the total weight of the edges that have been removed.

cut(A, B) = ∑
i∈A,j∈B

w(i, j) (2.14)
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(a) k = 5. (b) k = 15. (c) k = 30. (d) k = 45.

FIGURE 2.16: The segmenting results by using normalized cut algo-
rithm with different value of number of segmentation k. The image is

extracted from [160].

The goal of this method is minimizing the total edge weights along with the cut.
However, the segmentation based on this formulation can lead to a problem, that
is, it tends to generate small regions cause the cut function increases along with the
number of edges across the bipartition. To overcome this limitation, the normalized
cut is proposed w.r.t the number of nodes in the graph:

cut(A, B) =
cut(A, B)

assoc(A, V)
+

cut(A, B)
assoc(B, V)

(2.15)

where assoc(A, V) = ∑i∈A,j∈V w(i, j) is the total connection from the nodes belong-
ing to A to all nodes in the graph. This technique aims to optimize the cut function
while also maximizing the associativity in the graph. However, solving this prob-
lem needs an NP-complete complexity algorithm. An approximated solution is pro-
posed by Shi et al. in [161]. This method converts the cut problem into a Rayleigh
quotient to approximate the minimal normalized cut. It is shown that the second
smallest eigenvector y is a solution to the normalized cut problem. This method
can be repeated iteratively for the case of segmenting an image into multiple parti-
tions. An example is illustrated in Fig. 2.16. This is the result of the normalized cut
algorithm according to different values of the number of segments.

2.5.4.2 Graph cut

In this section, we present another graph-based method for image segmentation. In
this method, the source S and sink T node are defined for a weighted S− T graph.
The notion cut in S− T graph is described as a set of edges so that there is no path
from the source to the sink node. The graph cut algorithm aims to optimize the cost
of the S− T cut, which is introduced in Eq. (2.14).

Several approaches are proposed to solve the equation above such as max-flow
[162–164], push-relabel [165]. In this section, we discuss the method that is presented
in [164] for interactive segmentation.

The illustration of this method is shown in Fig. 2.17, where the red, blue and gray
nodes respectively represent the source S, sink T and pixel p in the image. The t-link
({p, S} (red edges) or {p, T} (blue edges)) connects each node to the terminal, in
other words, encodes the regional term between non-seed to seed pixels. Whereas,
the n-link represents the neighborhood relation N between adjacent pixels which is
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(a) A graph with source and
sink terminal.

(b) A cut on a graph.

FIGURE 2.17: A simple 2D segmentation example for a 3 × 3 image.
The cost of each edge is reflected by the edge’s thickness.

defined as connectivity term. Therefore, the set of edges E is defined as:

E = N ∪
p∈P
{{p, S}, {p, T}} (2.16)

In Fig. 2.17, the thickness of the t-link edge depends on the weight of each edge.
In [163], the authors state that the minimum weight of a cut is equal to the maximum
value of the flow from S to T. The optimal cut can be computed by adapting the new
max-flow version which is presented in [164]. This cut is illustrated as the green dash
line in Fig. 2.17.

2.5.4.3 Felzenswalb and Huttenlocher method

Another well-known graph-based segmentation is presented in [90] by Felzenszwalb
and Huttenlocher, namely FH algorithm. Again, an image is considered to be a
graph, in which the edge weight wij between two pixels pi and pj in the image I,
can be computed as: wij = I(pi) − I(pj). Based on the edge weight, a minimum
spanning tree (MST) that represents every pixel in the image is constructed using
Kruskal’s algorithm. The basic idea of the image segmentation in this case is equiv-
alent to clustering the MST.

The method to cut the MST is based on the boundary condition which decides
whether two regions should be connected. It is defined as:

D(C1 − C2) =

{
true , if Di f (C1, C2) > MInt(C1)
f alse , otherwise

(2.17)

where Di f (C1, C2) is defined as,

Di f (C1, C2) = min
vi∈C1,vj∈C2

wij (2.18)

and MInt(C1, C2)

MInt(C1, C2) = min((Int(C1) + τ(C1), Int(C2) + τ(C2))), (2.19)
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FIGURE 2.18: A baseball scene (432 × 294 grey image), and the seg-
mentation results produced by FH algorithm (σ = 0.8, k = 300). Image

extracted from [90].

where Int(C) is the maximum value of the edge weight of the connected compo-
nent C in the MST and Di f (C1, C2) is the difference between two adjacent connected
components. The value MInt(C1, C2) is the minimum internal of either C1 or C2.
The parameter τ(C) is presented to control the relative difference between inter-
and intra-component.

τ(C) =
k
|C| (2.20)

where |C| is the total pixels in C. The parameter k is set to avoid small connected
component generated from this method.

Algorithm 5: Image segmentation using FH algorithm.
Data: A graph G(V, E, w), m edges, n vertices x, parameter k
Result: A segmentation S = (C1, ..., Cr)

1 Initially, sort edges ei in ascending order of weight;
2 Set S0 = ({x1}, ..., {xn}) , each cluster contains one vertex;
3 for each t = 1, ..., m do
4 Let xi and xj be the vertices connected by et. ;
5 Let Ct−1

xi
be the connected component containing point xi on iteration

t− 1. Likewise for Ct−1
xj

. ;

6 τ(Ct−1
xi

) = k
|Ct−1

xi |
;

7 τ(Ct−1
xj

) = k∣∣∣Ct−1
xj

∣∣∣ ;

8 if |et| < min
{
(Int(Ct−1

xi
) + τ(Ct−1

xi
), Int(Ct−1

xj
) + τ(Ct−1

xj
))
}

then
9 Merge Ct−1

xi
and Ct−1

xj
;

10 end
11 S = Sm ;
12 end

The whole algorithm is a simple greedy method presented in Algo. 5. It is ac-
tually an iterative method that merges smaller regions to bigger regions such that
these regions satisfy with the boundary condition.

An image and its segmentation result based on FH method are illustrated in
Fig. 2.18. The method runs in O(mlogm) time for m graph edges.
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FIGURE 2.19: Comparison of some matting and segmentation tools.
The top row shows the user interaction required to complete the seg-
mentation or matting process. These methods are: Magic Wand [166],
Intelligent Scissors [167], Bayes matting [168], Knockout 2 [169],
Graph Cut [170], GrabCut [23]. The bottom row illustrates the re-

sulting segmentation.

2.5.5 Interactive segmentation

We have presented in previous sections several methods for automatic image seg-
mentation. In this section, we discuss another type of segmentation, called interac-
tive segmentation, which involves human intervention to supply high-level infor-
mation. Human assisted segmentation has been long studied and can be employed
into many applications to extract the object regions in the image. This application
requires users to provide additional information for the objects and background re-
gions. Generally, users can put some markers to define what is the foreground and
background. The human annotation can be chosen among scribbles, bounding box,
or even a point. Then these constraints are put to an optimized model to produce an
initial segmentation. Interactive segmentation is an iterative process where the user
is in a loop. It is a target driven task so that the users can add or remove markers to
refine the current segmentation until they get satisfying results. The goal of interac-
tive segmentation is to provide a way to extract the foreground region quickly and
accurately.

Various approaches have been proposed to solve this problem. Each method is
created with different specific domain. For instance, active contour [171] and a sim-
ilar approach [172], are generally used in medical images. Other methods such as
Graphcut [170], Grabcut [23] are used for photo editing in natural image. Depend-
ing on the application, we can choose the appropriate method to obtain satisfying
results.

Here, we highlight several well-known approaches in the interactive segmenta-
tion domain. These methods are presented in Table 2.1.

TABLE 2.1: Algorithmic approaches to interactive segmentation.

Method Example Algorithm
Region Growing Seeded Region Growing [173]
Classifiers Simple Interactive Object Extraction [174]
Graph and MRF Models Interactive Graph Cuts [170, 23]
Hierarchy Tree-based representation [130]
Shortest path Dijkstra [59, 175–177]
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In [173], the authors propose an inexpensive and straightforward algorithm which
is based on the color similarity between adjacent pixels. The input of the method is
a set of seed points which has been categorized into two sets: one for object and
another one for the background. Each pixel is assigned to a label (object or back-
ground) depending on the distance between the color of pixel and the average color
of two classes.

The interactive segmentation based on the classifier model is presented in [174].
In the beginning, the original image is transformed to LAB color space which is close
to our perception. The basic idea of this method is based on the color signature [178]
of the known object and background from user markers. Relying on the generated
color signatures, represented as a weighted set of cluster centers, the pixel is then
classified depending on their distance to the foreground and background color sig-
natures.

The Graphcut algorithm [170] proposed by Boykov considers interactive seg-
mentation as a globally optimal solution using a fast min-cut/max-flow algorithm.
This method is generally used to segment the object in natural images. Then its ex-
tended version is presented in [23] by two enhancements: “iterative estimation” and
“incomplete labeling” to reduce the degree of user interaction. In [179], viewing an
image as a weighted graph, the authors prove the connection between watersheds
and graph cut, and use it for interactive segmentation framework.

Another approach is based on the shortest path algorithm [59, 175–177]. They
search for the shortest path from every pixel to the two sets of marker, and compute
the path-wise distance. A label of each pixel is then assigned to the closest marker.
The Dijkstra algorithm is a well-known method for solving this kind of problem.
In [167], Intelligent scissors method is proposed to find the object contour via shortest
paths in a graph near the boundary of the target clicked by the user.

In [130], the authors propose to use the hierarchical representation of an image
to perform interactive segmentation. Firstly, some markers are put in the image.
Then the nodes on the tree that correspond to the markers in the image are labeled.
Depending on the distance from every node on the tree to the assigned nodes, we
can decide whether it belongs to the object or background. The segmenting image
can be reconstructed from the label of every node on the tree.

2.6 Distance function

The distance function is used widely in image processing and computer vision, es-
pecially in mathematical morphology, because it measures the dissimilarity between
pixels in the image [53]. The distance map which is deduced from the distance func-
tion, is a gray-level image that looks similarly to the binary image, except the fact
that the intensity values of the pixels inside the object region are changed propor-
tionally to the distance between the pixel to the boundary of the object. Besides, a
distance map provides a way to get another representation of the original image or
bring more information to the original image.

In this section, we review several well-known distances, then present a new dis-
tance called Dahu pseudo-distance, which is computed based on mathematical mor-
phology background. Our work will be mainly based on this new distance.
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2.6.1 Definitions and examples

A distance in 2D image is a function: Z2 → R+. Denoting p, q, and r are pixels in
the image, the distance function satisfies these following conditions:

• d(p, q) = 0⇔ p = q

• d(p, q) = d(q, p)

• d(p, q) ≤ d(p, r) + d(r, q)

As presented in previous sections, a digital image is also considered to be a
graph, where vertices represent pixels in the image. A path-wise distance between
two pixels p and q is defined as the shortest path that connects these two pixels. This
shortest path π(p, q) is associated with a metric dS to represent the dissimilarity be-
tween these two pixels.

dS = min
Π(p,q)

d(p, q) (2.21)

where Π(p, q) is a set of all possible paths that connect p and q.

6 5 4 3 4 5 6
5 4 3 2 3 4 5
4 3 2 1 2 3 4

3 2 1 0 1 2 3

4 3 2 1 2 3 4
5 4 3 2 3 4 5
6 5 4 3 4 5 6

FIGURE 2.20: Discrete distance function calculated from the central
pixel of an image

Several well-known discrete distances used in mathematical morphology are
city-block distance dcb, chessboard distance dch and Euclidean distance deu, which
are defined as follows:

dcb[(x1, y1), (x2, y2)] = |x2 − x1|+ |y2 − y1| (2.22)

dch[(x1, y1), (x2, y2)] = max{|x2 − x1| , |y2 − y1|} (2.23)

deu[(x1, y1), (x2, y2)] =

√
(x2 − x1)

2 + (y2 − y1)
2 (2.24)

where (xi, yi) are the coordinates of a pixel. The Euclidean distance is computed
without considering the neighborhood relationships between adjacent points in the
image domain. Note that, the shortest path between two pixels is not necessarily
unique. There may have more than one shortest path in the image between two
pixels [53]. An example of the 4-connected distance map, which is computed from
the central pixel, is illustrated in Fig. 2.20.

The distance functions are used in several applications in mathematical mor-
phology for analysing the object in the binary image [53]. The first application of
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(a) Binary image. (b) Distance transform.

FIGURE 2.21: Skeleton application by using distance transform ap-
proach.

the distance function that we present in this section is the skeleton application. A
skeleton morphology is a way to extract a region-based shape feature representing
the general form of an object. A skeleton is thin so that it contains fewer pixels than
an object image. The skeleton also represents local object symmetries and the topo-
logical structure of the object. An example of the skeleton of the object is illustrated
in Fig. 2.21. In this image, a distance map is computed, where the seed pixels belong
to the background of the image by propagating from the seed pixels to the all pixels
in the image. A priority queue is used for this procedure. The intensity value of pix-
els in the resulting image increase from the boundary to the pixels inside the object,
except pixels belong to the ridges, which also have higher intensities than adjacent
pixels. These ridges are a set of points where the propagation process from different
directions meet. They are also the skeleton of the object in the image.

(a) Set X. (b) D4(x). (c) ε
(6)
♦ (X).

FIGURE 2.22: Distance function and erosion: the set X eroded by a di-
amond shaped structuring element of size 6 is obtained by threshold-
ing the 4-connected distance D on X. Image is extracted from [180].

The distance transform is also used in binary erosion and dilation, which are
two fundamental operations in mathematical morphology. Here, we analyze the
erosion operator. The dilation operator can be implemented similarly. Normally,
erosion operator of a set X, denoted as εB(X) is implemented by using a structuring
element B: εB(X) = {x|Bx ⊆ X}. Besides, erosion (respectively dilation) can be
applied using the distance transform. An illustration is depicted in Fig. 2.22. From
the binary image, a distance map is computed using the city-block distance with
regard to the seed pixels are put in the background. Depending on the size n of the
erosion operator, thresholding is applied to the distance map to get all values strictly
greater than n. Besides, depending on the kind of structure element (diamond ♦ or
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square �), 4-connectivity or 8-connectivity are used. The definitions of the erosion
operator based on the distance transform are expressed as follows:

ε
(n)
♦ (X) = {x ∈ X|D4(x) > n} = T[n+1,tmax][D4(n)] (2.25)

ε
(n)
� (X) = {x ∈ X|D4(x) > n} = T[n+1,tmax][D4(n)] (2.26)

(a) Procedure of marker-controlled
segmentation.

(b) Topological view of distance transform.

FIGURE 2.23: Segmentation of overlapping blobs by watershedding
WS the complement C of their distance function D.

Another application of the distance transform that we present in this section is
marker-controlled segmentation for separating overlapping blobs. In mathematical
morphology, thresholding is a popular method and widely used to segment objects
with high contrast in the image. However, this method has a limitation since it
sometimes provides overlapped blobs between different objects. An example is il-
lustrated in Fig. 2.23. As we can see, two blobs are connected in the foreground
of the image. This distance map is computed, where the intensity values are the
distance from every pixel to the background of the image. The distance map is com-
plemented so that the minima of the image corresponds to the center of the objects.
Finally, a watershed algorithm [67] is applied to segment these two objects.

2.6.2 Geodesic distance

Finding the shortest path between two vertices is one the most common problem
in graph theory. One famous solution to find the shortest path is using Dijkstra’s
algorithm [181]. In [53], the “geodesic distance” dG(p, q) between two pixels p and
q is firstly defined in the connected set S. It is the minimum of length L of the path
π(p, q) = (p1, p2, ..., pn) joining p and q:

dG(p, q) = min{L(π(p, q))|p1 = p, pn = q, π(p, q) ⊆ S} (2.27)

The geodesic distance dG(p, X) between a pixel p and a subset X is defined as
the smallest geodesic distance between p and any pixel q that belongs to X:

dG(p, X) = min
q∈X

dG(p, q) (2.28)
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(a) Geodesic between p and q. (b) Geodesic between p and set Y.

FIGURE 2.24: Geodesics between p and q in a connected set S, and
between p and X.

The geodesic distance between two points and between a point and a set are
depicted in Fig. 2.24.

The geodesic distance is then extended with considering the edge weight W be-
tween 2 pixels in the image. The geodesic distance dG is the minimum integral of
a weight function among a set of all possible paths between two pixels in the im-
age [176].

dG(p, q) := min
πp,q∈Πp,q

q∫
p

∣∣W(x).πp,q(x)
∣∣ dx (2.29)

where πp,q(x) is a path connecting the pixels p, q, and Π(p, q) is a set of possible
paths between two pixels in the image.

In discrete form, the geodesic length L of a path π(p, q) = {p1 = p, p2, ..., pn = q}
between two pixels p, q in the discrete image can be computed by this equation:

L(π) =
n−1

∑
i=1

w(π(pi, pi+1)) (2.30)

The weight w(π(pi, pi+1)) = |I(pi)− I(pi+1)|, which is the gradient between two
adjacent pixels in the image. Then the geodesic distance is:

dG(p, q) = min
π∈Π(p,q)

L(π) (2.31)

Several algorithms are presented to compute the geodesic distance. The first sim-
ple algorithm, which computes the geodesic distance d between all pair of adjacent
pixels, is the algorithm of Floyd [182]. The complexity of this algorithm is O(N3)
operations, where N is the number of pixels in the image. Another algorithm is Di-
jkstra’s algorithm. This algorithm computes the geodesic distance based on a front
propagation in the image. They use a priority queue, in which the order of pixels
relies on their geodesic distance to the seed pixel. The complexity of this algorithm is
O(VN + Nlog(N)), where V is the size of neighborhood of pixels. Therefore, to cal-
culate the geodesic distance between all pair of pixels in the image, the complexity is
O(N2log(N)) operations. In [4], the authors propose an approximated approach to
compute the geodesic distance, namely raster scanning. This method visits sequen-
tially every pixel in the image in the forward direction and then backward direction.
The iteration is repeated until there is no distance value changed. In practice, this
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algorithm usually outputs a satisfying result in a few iterations, and thus it can be
regarded as having linear complexity in the number of image pixels.

The geodesic distance is used in robotics and video games to compute an optimal
path in an environment that has some obstacles [183]. In addition, it is used to de-
tect curvilinear features and perform segmentation [184, 185]. In [176, 175, 59, 177],
geodesic distance gives potential results for interactive segmentation applications.
It is also employed in salient object detection [22, 186, 141, 187].

2.6.3 Minimum Barrier distance

In this section, we recall the mathematical background necessary to define the MBD
in details and we show how to derive a distance map using the MBD.

In image processing applications, an image domain is associated with a graph
in which vertices represent discrete pixels on the image and the set of edges on the
graph corresponds with the adjacency relations N between pixels. A gray-level im-
age (Fig. 2.25(a)) is then represented as a vertex-valued graph (Fig. 2.25(b)).

A path in a graph X is a sequence π = 〈..., pi, pi+1...〉 (where each pi is a vertex
of the graph), with pi ∈ X and pi+1 ∈ NX(pi). Also, the set of paths going from
the vertex x to the vertex x′ is denoted by Π(x, x′). The barrier strength (also called
barrier distance or cost) τ of a path π in the given gray-level image u is defined as:

τu(π) = max
pi∈π

u(pi) − min
pi∈π

u(pi). (2.32)

The minimum barrier distance d MB (MBD) between two vertices x and x′ in u is
then defined by:

d MB
u (x, x′) = min

π∈Π(x, x′)
τu(π), (2.33)

The MBD is thus the minimum of the barrier strengths of all the paths between two
given vertices. An illustration of this operator is depicted in Fig. 2.25. The blue path,
which corresponds to a sequence 〈1, 0, 0, 0, 2〉, is considered to be the shortest path
between these two red vertices. The corresponding MBD is then equal to 2.

Note that, instead of its name, the MBD is not a distance, because it can exist
some x, y such that x 6= y and d MB

u (x, y) = 0.

2.6.4 Distance map based on the minimum barrier distance

It is possible to derive a distance map from the MBD (and it is a common usage).
Given a minimum barrier strength function and a set X′ of seed points, a distance
map S MBD can be computed by:

S MBD
u (x, X′) = min

x′∈X′
d MB

u (x, x′). (2.34)

A distance transform1 can be used to compute a distance map from a set of seed
points X′. Therefore, choosing the appropriate seed points is an essential step to
detect objects in the image. Saliency maps presented in [9], in [10] and in [8] are

1We call distance transforms all the distances or pseudo-distances between two points presented in
this thesis, and distance maps the family of distances (between a set of points and a point) induced by
these distance transforms; saliency maps are an example of distance maps.
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(f) A minimal path in a u<− ũ.

FIGURE 2.25: Image representations for computing barrier distances.

particular cases of that. In these papers, the seeds are in the border (since the image
border is considered to be background). The saliency map is then the distance from
every point of the image to the border of the image. For every point, the MBD looks
for the optimal path that connects a point to the “nearest” border. This saliency map
has already been computed many times relying on many fast MBD (approximation)
computations such as raster scan in [9], minimum spanning tree in [10], water flow-
ing in [8].

2.6.5 MB-based distances

The MBD has been firstly introduced in [5] as a minimum value of the barrier strength
among the set of possible paths between two pixels in the image. The MBD has been
used in several applications in image processing and computer vision, for instance,
in salient object detection (see [9, 10, 8, 11–13]), in object localization (see [16]), in
superpixel segmentation (see [188]), in interactive segmentation (see [6, 14, 15, 20],
refocusing [189]), object proposals generation (see [190]) and in object segmentation
(see [191, 192]).

In salient object detection, the goal is to compute a saliency map that highlights
the most important objects in the image. To proceed, the boundary connectivity prior,
which is presented in [22], assumes that boundary regions are usually large, homo-
geneous and mostly background. The MBD estimates a distance from every pixel
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FIGURE 2.26: The MB-based distances are used in salient object de-
tection (see [8]). The left image is the original image, the right one is
the saliency map of all pixels in the image by considering that pixels

on the border of the image are the background.

in the image to the image boundary while considering that image boundary is re-
garded as the background seeds. An example is illustrated in Fig. 2.26.

FIGURE 2.27: The MB-based distances are used in interactive seg-
mentation (see [20]). The left image is the original image and the right

image is the result of interactive segmentation.

Besides, the MBD has been also used for interactive segmentation (see [5, 20]),
which is illustrated in Fig. 2.27. In this application, the user tags some pixels be-
longing to the object to segment as foreground, some pixels outside of the object as
background and the MBD between these two sets of pixels and all other pixels are
computed to deduce the boundary of the object. In [5], the MBD is computed on
grayscale images, and its extended color version is presented in [20]. These articles
show that this process is robust to noise, blurring and seed point position. Therefore,
the MBD seems to have the potential for real interactive segmentation, where a user
can manually add/remove seed-points to affect the result.

Many applications take advantage of the relevance of the saliency map com-
puted by the MBD. The classical usage of this saliency map is object segmentation.
A saliency map is computed by the MBD and object are segmented according to the
saliency map. For example, in [192], an affinity model based on the MBD is used for
object segmentation. An example is illustrated in Fig. 2.29(a). Object segmentation is
a starting point for multiple other applications. For example, in [16], object detection
is extended to tracking (see Fig. 2.28(a)). Another example, exposed in [189], relies
on object segmentation to perform a refocusing (see Fig. 2.28(b)).

The MBD has also been used in object proposal generation as presented in [190].
The authors propose a method for locating object proposal based on the MBD, called
MBDSal Box. This method takes into account the connectivity between the boundary
of the sliding window and other regions to distinguish the window that contains
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(a) Object localization and tracking.

(b) Refocusing application

FIGURE 2.28: The MB-based distances are used in object localization
(see [16]) and refocusing application (see [189]).

complete objects and incomplete objects. Then, a refinement module is provided to
improve the MBD saliency map where the boundary of the window is considered to
be background. Finally, a scoring module is used to compute the final objectness in
each bounding box area.

Another application is the computation of superpixels. An example is exposed
in [188]. The authors propose a method for superpixel segmentation relying on
the MBD. k initial centers (seeds) are sampled uniformly and superpixels are deter-
mined around them according to “compact-aware MBD ”, which is a combination of
the original MBD and the (spatial) Euclidean distance. A compactness factor is intro-
duced to control the weight of the spatial distance compared to the barrier distance
along the path. An example is given in Fig. 2.29(b).

The MBD is very powerful, however it is difficult to compute the MBD efficiently
on an image of a reasonable size. Because computing the exact MBD is too much
time-consuming, some approximate methods have been proposed to minimize this
drawback and accelerate the algorithm (see [9, 10, 8]).

In [9], the authors proposed a Fast-MBD with a raster scan algorithm, which
provides a good approximation of the MBD in several milliseconds on a 3.2 GHz
CPU. This method visits each pixel in the direct and inverse raster scan orders, and
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(a) Object segmentation.

(b) Superpixels segmentation.

FIGURE 2.29: The MB-based distances are used in object segmenta-
tion (see [192]) and superpixels segmentation (see [188]).

then updates the MBD for its neighbors. This salient object detection method runs
at about 80 FPS (when single-threaded) and achieves competitive performance with
the state-of-the-art saliency detection methods. Despite the fact that it provides good
results, the raster scan method has issues when the exact path between two pixels
is in a direction between the bottom left and the top right of the image (see [8] for
details). Besides, the Fast-MBD only works with seed pixels which are put on the
border of the image. Therefore, the Fast-MBD algorithm is not interesting for all us-
age where the seed points are located into the image as for interactive segmentation,
in which we put the seed inside the objects in the image.

Another approximation of the MBD is proposed in [10]; it uses the minimum
spanning tree (MST). Firstly, the input image is represented by a tree; paths between
pixels correspond to paths between the nodes of the tree. The MST highly reduces
the size of the space we look for to find the shortest path between two pixels of the
image. Obviously, the MBD computed on the MST needs additional time for the
MST construction, but a single tree can be used to compute multiple paths. How-
ever, the “simple” structure property of MST can lead to some approximation errors,
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especially when noise appears in the image.
Recently, a new algorithm to approximate the MBD has been proposed in [8],

which is inspired from the natural phenomena of water flow. The seed pixels which
are usually put on the boundary of the image, are assumed to be sources of water.
Then, the water is propagated from sources to the neighboring pixels (with different
flow costs) until all the pixels are flooded. The MBD can be computed during the
flooding process by considering the priority of each pixel during the propagation,
which is based on the MBD value from this pixel to the source pixels. The Waterflow-
MBD computation achieves a high-speed performance and has comparable results
to the other methods. However, it has difficulties when it must compute multiple
distances between multiple pixels in the image.

These methods based on the MBD achieve state-of-the-art results with other
bottom-up methods on saliency map computation. They can also process an image
in real-time, which is relevant for applications with speed requirements. Despite the
success of salient object detection, the previous MBD is not well managed on color
images (see [9, 10]). Specifically, the MBD is computed separately on each channel
and takes the average value. This approach has a limitation because the optimal
path on each channel is different. For this reason, Géraud et al. propose a new ver-
sion of the MBD, named Dahu pseudo-distance, which is also based on the notion
of barrier (Eq. (2.32)). We talk about this new distance in Section 2.6.6.

2.6.6 The Dahu pseudo-distance

A new discrete version of the MBD, named the Dahu pseudo-distance is defined
in [18] and considers an image (see Fig. 2.25(a)) to be a continous surface in the set-
valued sense (see Fig. 2.25(d)) on a discrete topological domain called the Khalimsky
grids. Details about set-valued continuity and about Khalimsky grids can be found
in [193] and in [194] respectively. The optimal blue path between the two red points
is depicted in the image, and has a distance equal to one. It is slightly different from
the original MBD. Let us briefly present this Dahu pseudo-distance.

A gray-level image can be seen as a function u: Z2 → N. When we represent
an image using a surface, we cannot use scalar functions; we have to use set-valued
functions. More exactly, in [19], the authors proposed to replace the domain Z2

by the topological discrete space H2 of 2D Khalimsky grids (also known as cubical
complexes), and the co-domain N by the set IN of intervals of natural numbers.
The 2D cubical complex, which is illustrated in Fig. 2.25(e) is a set of 2D, 1D, and
0D elements, in which 2D elements are the original pixels, 1D and 0D are the inter-
pixels which take the interval-valued from its 2D neighbors. For example, the 1D
yellow element in Fig. 2.25(e), which is bounded by a purple border, corresponds
to the vertical purple part in Fig. 2.25(c). The inter-pixel is actually a transition step
between two pixels, which is a way to get a discrete topology and to represent what
lies between the pixels. From a scalar image u, we construct an interval-valued
image ũ, which really represents the surface corresponding to u.

The inclusion realtionship between a scalar image and an interval-valued image
is denoted by <− . The Fig. 2.25(f) depicts a scalar image u which is “included”
in the interval-valued image ũ depicted in Fig. 2.25(e); then we can write u<− ũ.
The adaptation of the MBD on the interval-valued image, called the Dahu pseudo-
distance (see [19]), is noted d DAHU. Then the Dahu pseudo-distance between two
pixels x and x′ on the original image u is defined as:
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d DAHU
u (x, x′) = min

u<− ũ
d MB

u (hx, hx′) (2.35)

= min
u<− ũ

min
π∈Π(hx , hx′ )

τu(π), (2.36)

where hx and hx′ are the 2D elements of the cubical complex corresponding to x and
x′ respectively. It means that we look for a minimal path in the cubical complex,
with the classical definition of the MBD, and consider all the possible scalar func-
tions u that are “included” in the interval-valued map ũ. Returning to the earlier
example (Section 2.6.3, Fig. 2.25(b)), the shortest path between the two red points in
Fig. 2.25(c), depicted as a blue path in Fig. 2.25(f) (image u included in the interval-
valued image ũ that provides the minimal path), has a length of one. The result pro-
vided by the MBD (the value 2 Section 2.6.3), is different from the result provided by
the Dahu pseudo-distance (the value 1). The Dahu pseudo-distance is thus of com-
binatorial complexity when we count all the possible scalar images u “included” in
ũ. The Dahu pseudo-distance can be interpreted as the best minimum barrier distance
that we can have considering that the input function is continuous in the set valued sense
(see [94]).

Note that, as the MBD, the Dahu pseudo-distance is not a distance, because it
can exist some x, y such that x 6= y and d DAHU

u (x, y) = 0.

2.6.7 Efficient Dahu pseudo-distance computation using the tree of shapes
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FIGURE 2.30: The tree of shapes of an image allows to easily express
and compute the Dahu pseudo-distance and distance maps (see [19]).

The Dahu pseudo-distance can be computed easily and efficiently thanks to the
tree-based representation of the given image. A tree of shapes (see [56, 123]) is a
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morphological self-dual representation of an image. This tree is a decomposition of
a gray-level image into connected components, called shapes, which can be arranged
into a tree encoding an inclusion relationship. A shape is a filled-in connected com-
ponent without hole inside (its boundary is then an iso-level line). Two iso-level
lines (at different levels or not) cannot cross each other (under some particular con-
straints). A very strong consequence is that shapes are either disjoint or nested,
which explains that the tree of shapes is a tree and not a graph with cycles. In [18],
the authors compute the ToS with assuming that the image has its domain on a cubi-
cal grid that allows continuous properties while staying on a discrete space. There-
fore, the ToS representation is able to deal with the Dahu pseudo-distance properties.

The tree of shapes is a good representation that facilitates the computation of the
Dahu pseudo-distance. The minimal path between two points in the image corre-
sponds to a path between two nodes on the tree. On Fig. 2.30(a), the path between
two points (x, x′) indicated by red bullets in u is depicted by a blue line, which
starts from region B, then goes through A and C, and finally ends in region F. Such
a path is minimal because every path in Π(x, x′) should at least cross this same set
of level lines to go from x to x′; thus the Dahu pseudo-distance corresponds to the
level dynamics of this set of lines. Actually, this path in the image space is exactly
the (shortest in number of nodes) path in the tree of shapes between the nodes tx and
tx′ :

•
π(tx, tx′) := 〈tx, . . . , lca(tx, tx′), . . . , tx′〉, (2.37)

where lca(tx, tx′) is the lowest common ancestor of the pair (tx, tx′) (see the blue
path on the tree depicted in Fig. 2.30(c)). Note that a path in a tree is denoted by

•
π

to distinguish it from paths in the image space.

The Dahu pseudo-distance in the image space between two points x and x′ can
be written as the minimum barrier distance between the two nodes tx and tx′ repre-
senting the components in the tree of shape containing respectively x and x′:

d DAHU
u (x, x′) = d MB

S(u)(tx, tx′) (2.38)

= max
t∈ •π(tx , tx′ )

µu(t) − min
t∈ •π(tx , tx′ )

µu(t), (2.39)

where µu(t) denotes the gray-level associated with the node t of the tree of shapes
S(u) of the image u. For instance, in Fig. 2.30(c), the blue path gives the sequence of
node values 〈0, 1, 2, 1〉, so the Dahu pseudo-distance is 2. There is no need to find the
best scalar image u<− ũ, nor to find the best path π ∈ Π(x, x′) in the image space; it
thus means that the seminal definition of the Dahu pseudo-distance (see Eq. (2.36)) is
the best choice to be fast in time. The new expression of this distance (see Eq. (2.39))
is just a barrier strength computation (such as Eq. (2.32)) on the trivial path

•
π(tx, tx′)

of nodes in the space of the tree of shapes.

2.6.8 Saliency map based on the Dahu pseudo-distance

A distance map function of an image u can be derived from the MBD as we have seen
in Eq. (2.34). Indeed, we can define the saliency map based on the Dahu pseudo-
distance in the following manner:

S DAHU
u (x, X′) := min

x′∈X′
d DAHU

u (x, x′),
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where X′ is some set of points of the domain of the image u.

Now, let us define the corresponding set of nodes on S(u) of X′:

TX′ := { tx′ ; x′ ∈ X′ }. (2.40)

Then, we obtain using Eq. 2.38 and then Eq. 2.34 that:

S DAHU
u (x, X′) = S MBD

S(u)(tx, TX′), (2.41)

which shows how the saliency map induced by the MBD is related to the saliency
map induced by the Dahu pseudo-distance.

2.6.9 Conclusion

In this section, we present a review about distance function, which is used widely in
image processing in general and mathematical morphology in particular. The goal
of the distance function is to measure the dissimilarity between pixels and regions
in the image, thereby providing additional information for the following steps. We
present several well-known discrete distances such as city-block, chessboard, Eu-
clidean and geodesic distance. We also introduce the MBD and its continuous ver-
sion called the Dahu pseudo-distance. The MB-based distances show that they are
robust to noise, blur and seed point positions in the image. However, these distances
are not well-handled for color images. In Chapter 3, we propose a method to extend
this distance to multivariate images.

2.7 Visual saliency detection

“Everyone knows what attention is...”
William James, 1890

With the development of camera devices and social networks, a massive amount
of images are appeared in our daily life activities. It leads to the need for a power-
ful technique that automatically gets the most useful messages from these images
and filters out unnecessary information in a short time for further processing. This
problem brings us to the idea of visual saliency detection, which is a technique to
simulate the human perception of an image. Human eyes are capable to focus on
specific objects in the image with different priorities than others even at first glance.
Research on human visual saliency is a good way to understand the scene and to
collect more information for object detection and recognition process.

In computer vision, modeling visual saliency on images is referred to as saliency
detection or salient image regions detection. The result of the visual saliency de-
tection, simply called saliency map, is an intensity image where regions with high-
intensity value indicate the most important objects in the image. The visual saliency
detection is categorized into two classes: eye fixation modeling and salient object
detection. Early approaches in visual saliency detection belong to the former [195–
197]. Although eye fixation modeling has gained a lot of progress since then, this
approach also has a drawback. In the case of the large object, it usually produces
a sparse map, since it highlights the edges and corners of the object instead of the
whole. The latter one, salient object detection, is employed in many applications in
computer vision. In contrast to predicting eye fixations, the goal of salient region
detection is to detect and segment entire salient objects in a scene. In other words,



2.7. Visual saliency detection 51

(a) Image. (b) Ground truth of eye fixa-
tion.

(c) Ground truth of saliency
detection.

FIGURE 2.31: An example of visual comparison between eye fixation
modeling and saliency detection.

salient object detection is equivalent to the foreground/background segmentation
problem. An example of the difference between eye fixation modeling and saliency
object detection is illustrated in Fig. 2.31.

Visual saliency detection methods are exploited in various computer vision ap-
plications, such as object detection and recognition [198–200, 196], image and video
compression [197], content-based image editing [201, 202] and image retrieval [203,
204]. Moreover, there are several well-known datasets, which are used for saliency
detection applications. Input images with the annotations are shown in Fig. 2.32.

The salient object detection methods are categorized into two types based on
their different strategies [205], namely bottom-up and top-down. The former meth-
ods are relied on several assumptions about the objects and background in the im-
age, without taking into account the knowledge of the image. On the other hand,
the latter methods require the prior information and the class of object in the image,
consequently, need high computational costs.

The salient object detection in this thesis is based on bottom-up approaches be-
cause of its efficiency in both run-time and quality.

2.7.1 Bottom-up methods

The bottom-up methods are studied for non-specific saliency detections task. The
result is computed based on the input image itself without using any knowledge
about the kind of objects and backgrounds in the image. This method usually uses
some assumptions about the different contrast between the objects and the back-
ground, or the position of the objects. The very first bottom-up saliency model is
proposed in [195]. This method is inspired by the concept of feature integration the-
ory (FIT) [206] and visual attention [207]. Following the Itti’s paper, many bottom-up
methods have been proposed. In the following, we present several assumptions that
are used in the bottom up saliency detection methods.

2.7.1.1 Contrast prior

Contrast is used as an important feature in many visual saliency models. This fea-
ture relies on the assumption that the background is homogeneous, and there is a
high contrast between objects and the background. In [202], the authors proposed
a method (context-aware saliency) to detect salient objects in the image. The idea
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(a) MRSA10K. (b) ECSSD

(c) PASCAL (d) DUTOMRON

FIGURE 2.32: Images and pixel-level annotations from four salient
object datasets.

is that salient objects are distinctive with respect to both their local and global sur-
roundings. Therefore, they computed local and global saliency by considering the
contrast of each patch with the K most similar patches in the image concerning their
position distance. The multi-scale model is used to incorporate the local and global
saliency, which leads to a decrease in the saliency of background pixels.

In [208], the authors proposed a frequency tuned method to compute the saliency
map by considering the difference between objects and the average image color of all
pixels. It also eliminates fine texture and noise in the image. The boundaries of the
object are highlighted by keeping more frequency content from the original image.

The global contrast differences and spatial information are exploited in [209] to
compute the saliency map. Their method begins with partitioning image into re-
gions using a graph-based image segmentation method [31]. The color histogram of
each region is computed to analyse the color statistic in the image. Then the contrast
saliency of a region is computed by considering the distance between its color to all
regions in the image. The spatial information is involved to increase the effects of
closer regions.

Since calculating the contrast and spatial saliency in a pixel-wise image is costly,
superpixel segmentation methods are adopted. The SLIC [25] and FH [31] methods
are used widely in many visual saliency applications [209–211]. In [210], after seg-
menting the image into multiple partitions, their method (saliency filter) derives a
saliency map from two contrast measures based on the uniqueness and spatial dis-
tribution of the superpixels. Then these two measures are combined and normalized
to get the final result.
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FIGURE 2.33: Average annotation maps of six datasets used in bench-
marking. Images taken from [212].

2.7.1.2 Center Prior

Center prior is firstly introduced in [213]. This research has been shown that the
human eye is always biased to the center of the image. In other words, objects in
the center of the image usually get more attention than other objects. In general,
when people take pictures, the objects are often placed near the center of the image.
In [214], an average of human saliency map is calculated from 1003 images. The
result shows that 40% of saliency maps are appeared in 11% near the center of the
image, 70% of saliency maps appear in 25% near the center of the image. Also, in this
paper, the authors demonstrate that a Gaussian center is a good choice to simulate
the center prior for visual saliency map. Fig. 2.33 shows the distribution of the object
positions in the images. This figure of center bias is studied in a survey of Borji et
al [212].

The center prior can be used directly to compute the saliency map. An example
is the uniqueness term in [210]. It is also used in many saliency detection methods
as a post-processing method to refine the saliency map [9, 8, 202].

2.7.1.3 Boundary and Connectivity Prior

The center prior is a good way to compute the saliency map, however this prior fails
when an object is placed not in the center but at the corner or near the border of
the image. Therefore, another approach that has been proposed in visual saliency
detection is boundary and connectivity prior as we already talk about it. Different
from previous prior, which focuses on the object position, this prior concentrates the
background of the image. The boundary prior comes from a rule in photographic
that objects do not cut off the image borders. Even the object touches the border, the
border pixels are still mostly background. This prior is similar to the bounding box
prior that we usually use in interactive segmentation application [215]. The second
prior comes from the fact that the background image is connected with the border of
the image. Usually, background regions large and homogeneous, consequently they
are easy to connect with each other. The first paper that applies this prior is [22].
The authors consider pixels in the border of the image, as the background. Then
they compute the distance between every pixel with the border of the image. The
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FIGURE 2.34: Examples from [22] showing the paths of background
(in magenta) and foreground (in green) from the boundary in the top
row. Bottom row shows saliency maps retrieved by their algorithm.

saliency map is computed by using the path-wise distance, namely geodesic dis-
tance. This method resorts to searching the shortest path between each region to the
image border. The background prior is also used in [141] to calculate background
connectivity.

These methods work well in case of objects do not touch the border of the image.
However, this prior has a problem when objects partially touch the image border. To
deal with this problem, several methods have been proposed. In [140], the authors
sequentially compute the saliency map between every superpixel with the top, bot-
tom, left and right border and then combine it to get the final saliency. Another
approach is to calculate the boundary edge weight before computing the geodesic
distance in [22]. In [8], the authors proposed a method to modify the image border.
Fig. 2.34 shows the saliency maps, which are computed with taking into account the
boundary image. Also, this prior can be combined with other contrast-based meth-
ods to deal with this problem. The details of this method can be found in [9, 10].

2.7.1.4 Graph-based Approach

As presented in the previous section, image elements are considered to be nodes in
the graph. The graph-based approach is also used in visual saliency detection. In
this section, we present three principle approaches, namely random walk [216, 217],
manifold ranking [140], and combinational optimization framework [141].

In [216, 217], the authors used the random walk method to solve the problem
of salient object detection. The seed nodes which belong to the salient object and
background regions are obtained by using the global and local properties of salient
regions. The “pop-out” graph model and the seed nodes are used to learn the salient
object in the image.

Manifold ranking method [140] ranks each of the superpixels based on the simi-
larity between superpixel with image background and foreground. The top, bottom,
left and right border are sequentially assigned as queries, then the optimal ranking
of queries are computed. The saliency of the image regions is defined based on their
relevances to the given seeds or queries.

Another graph-based method to compute the saliency map is combinational op-
timization approach. This method generates an optimized function from different
saliency cue maps [140, 218, 219, 11, 220, 187]. Different cue that is used in these
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models can be contrasted prior, spatial prior, boundary prior, object prior or multi-
scale segmentation. The optimize formulation usually has two terms: the first term is
the fitting constraint maintaining the initial query assignment, and the second term
is the smoothness constraint aiming at preserving the similarity between adjacent
regions [220].

The bottom-up methods are efficient and work without any knowledge about
the object and the background. In this thesis, we only focus on this approach.

2.7.2 Top-down methods

The bottom-up models are efficient, but they have limited use because they do not
consider image semantic. The top-down approaches, on the other hand, are goal-
oriented, which depend on the application. These methods require prior knowledge
of the scene context and also the information about the class of object in the figure.
They are task-driven, and involve a complete understanding of the image. These
methods usually divide the saliency detection task into multiple operations such as
object detection, object segmentation and classification. Therefore, these methods
need high computational costs. However, with the development of the processing
unit (GPU), these difficulties can be dealt. Nowadays, top-down methods or super-
vised learning approaches are widely used in studying the presence of salient object
from images. The concept of “learning to detection” is presented firstly in [214, 221].
The knowledge comes from memories, which are collected from the training data.

In [214], they create a dataset of eye-tracking data from 15 users across 1003 im-
ages. They propose a combination of different feature levels from low to high to
model the salient objects. An SVM learning model is used to train this saliency
dataset. The SVM approach is also used in [222] to detect objects of interest. Tong
et al. [223] propose a bootstrap learning model, which are combined of weak and
strong saliency map to detection salient objects in the image. Firstly, weak saliency
maps are computed using contrast and center-bias prior to generate a training dataset
for a strong classifier. Then a multiple kernels SVMs are used to measure saliency
features. Then the weak and strong saliency maps are weighted to generate the final
saliency map.

In [221], they proposed a saliency detection method by using Conditional Ran-
dom Field (CRF) model. The idea behind this method is considering salient object
detection as an image segmentation, where we segment foreground object out of
background regions. A set of features are used including multiscale contrast, color
histogram, and spatial information. The Conditional Random Field is also used
in [224] to aggregate individual saliency from different methods. Weights for ag-
gregation are learned in a data-driven way from most similar images retrieved from
a pre-defined dataset. In the work of Yang et al. [198], a top-down saliency model
based on image patches is computed by jointing Conditional Random Field and vi-
sual dictionary.

Alex et al. [225] propose a method to score objectness measure inside sam-
ple windows. This method combines several image cues from multi-scale features.
In [226], a method which is implemented on the superpixel images is proposed to
detect saliency based on a dataset with manually marked salient objects. The initial
segmentation after using classifier models is refined by a graph-cut optimization.

Recently, along with the success of deep learning and other high level features
extraction, saliency detection has been achieved significantly good performances.
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In [227], Wang et al. compute a saliency map based on local estimation and global
search. A deep neural network (DNN-L) is used to estimate the local saliency map of
pixels. The local map with the global contrast is used to predict the saliency score of
each region in the image by using another deep neural network (DNN-G). Zhao et al.
[228] propose a multi-context Convolutional neural network for saliency detection.
The global and local context are integrated into this deep learning model. The input
of this network is the superpixel image, which is partitioned by the SLIC algorithm.
Chen et al. [229] propose deep learning saliency computing framework (Disc) to
compute the saliency map. Their model is built upon two stacked CNNs. The first
CNN produces coarse saliency map based on the global context. The second one
focus on the detail of the object.

The top-down methods involve the knowledge about the object and the image.
Therefore their performances are much better than the bottom up methods in case
of low contrast and complex background image.

2.8 Document detection

In nowadays world, the demand for using digital document is increasing because of
its convenience in searching, storing, retrieving, etc. A traditional way to digitize pa-
per is using a scanner machine, which is heavy, costly, and usually not portable. With
the development of smartphone cameras, many people use them to acquire docu-
ments. Digitizing papers in images or videos captured by smartphones is not the
same procedure as scanning: images captured by smartphones do contain a back-
ground. Therefore, the first step of the digitization process is the extraction of the
document region from the scene. In this thesis, our goal is to segment automatically
documents in an acceptable run time.

Images taken by smartphones can pose many challenges to the digitization pro-
cess. The scene contexts are unknown, the lighting conditions are variable, and the
illumination is not homogeneous. Images can be noisy. Moreover, the camera is
handheld, this can lead to out-of-focus or motion blur.

Document detection in images captured by smartphones is important for later
steps. That is the reason why challenge 1 of the ICDAR 2015 Smartdoc competi-
tion [30] focuses on the evaluation of the document detection and segmentation al-
gorithms. Eight submissions were made and these eight methods can be classified
into two categories according to the used strategy: The most common strategy is to
rely on lines detection and the other is the hierarchical tree-based representation of
the image. Seven over the eight methods extract lines in the image as candidates for
document segmentation. The Canny edge detector [230], Hough transform [231],
and LSD algorithm [232] are adopted to detect the lines in the image. Although it
is the most common strategy, these methods cannot work well if the document is
curled.

Among them, two methods outperform others. The ISPL-CVML method uses
the LSD algorithm to get vertical and horizontal segments on the down-sampled
image. Then the color and edge features are exploited to select document bound-
aries. SmartEngines method [27] uses several algorithms to detect segments in the
image, then builds a graph of these segments. A quadrangle of a possible document
is constructed from this graph while considering the weights and angles of edges.
The final quadrangle is obtained after applying a Kalman filter based on some local
descriptors.
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The hierarchical tree-based representation method, LRDE method [26], gets the
highest score. They compute the energy of each node on the tree, which consists of
two terms measuring how the shape fits the quadrilateral form and how “noisy" the
object is (text lines and figures, etc) and then select the best candidate. Nevertheless,
this method is slow.

Besides these methods, in the literature, there are also many proposed methods.
Smart IDReader [233] method combines a series of the algorithm depending on the
class of documents. A Viola-Jones method is applied as a decision tree of strong
classifiers for document detection [234].

Geodesic Object proposal [28] method starts with using six seeds to cover all of
the objects in the image. The sign geodesic distance transform computed from each
seed which is specified with an image region, is then evaluated for being the best
document candidate.

Recently, a novel CNN-based method [235] has been proposed, which considers
the document localization problem as finding four corners of the document. The
AlexNet architecture is used to predict four corners of the document, then refine
each prediction by using a shallow convolutional neural network. However, it has
difficulties dealing with occlusion or when the document touches the image bound-
ary.

As presented above, the classical approaches have some limitations in dealing
with challenging images, such as, blurred images, non-straight boundaries docu-
ment, or partially occluded document. To overcome these problems, we present in
this thesis a region-based approach. A key feature of our method is that it relies on
visual saliency, using a recent distance existing in mathematical morphology (the
Dahu pseudo-distance).

2.9 Conclusions

In this chapter, we have reviewed several fundamental concepts that relate to the
context of our works. Specifically, we present two classes of hierarchical image rep-
resentation, which are employed to solve many problems in image processing and
computer vision. Moreover, we introduce the idea of using the distance function,
explicitly, the Dahu pseudo-distance on the tree-based representation. This new dis-
tance is proved to be powerful against the pixel fluctuation. It is also the corner-
stone of our thesis. Chapter 3, Chapter 4, and Chapter 5 are devoted to giving us
a new point of view about this distance, analyzing the properties of this distance
and using it in several proposed frameworks. In addition, we propose to extend
this distance on multivariate images (color or multimodal/multispectral images).
Finally, we use this new distance in a specific application: document detection. Our
proposed method is able to achieve high performance compared to many state-of-
the-art methods.
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Chapter 3

Dahu pseudo-distance
improvements and applications

In previous sections, we have introduced the MBD and the Dahu pseudo-distance.
There exist many useful applications of the MB-based distance. However, they have
a lot of limitations, and especially color images (or more generally multivariate
images) are not well handled (or not handled at all). Therefore, we introduce in
this chapter an efficient method for computing the Dahu pseudo-distance on mul-
tivariate images. Besides, we also propose several frameworks based on the Dahu
pseudo-distance for image processing applications.

This chapter is the fundamental contribution of our work. It is divided into two
sections: Dahu pseudo-distance’s improvements and applications.

• Improvements of the Dahu pseudo-distance: Section 3.1 presents the im-
provement of the Dahu pseudo-distance in speed performance and an exten-
sion of the Dahu pseudo-distance to multivariate images. Explicitly, we pro-
vide a method to efficiently compute the Dahu saliency map while construct-
ing the tree of shapes. In addition, we propose an efficient extended version of
the Dahu pseudo-distance to color and multivariate images.

• Applications based on the Dahu pseudo-distance: We propose several frame-
works based on the Dahu pseudo-distance in Section 3.2. Initially, the shortest
path application based on the Dahu pseudo-distance is presented by using a
two-steps procedure that takes into account at the same time the domains of
the tree of shape and of the initial image. This measure is related to the topo-
graphical representation of the image. Moreover, we employ the Dahu pseudo-
distance on several applications, for example, salient object detection, short-
est path finding or object segmentation. Finally, we apply the Dahu pseudo-
distance for a particular case of object detection: document detection.

3.1 Dahu pseudo-distance improvements

The Dahu pseudo-distance, which inherits the properties from the Tree of Shapes
(ToS) (see [123]), has been shown to be robust to noise and blur effects in the im-
age. This section is dedicated to ameliorate speed performance of the Dahu pseudo-
distance and to extend the Dahu pseudo-distance distance on color images.

3.1.1 Improvement of speed performance: simultaneous computations of
the Dahu pseudo-distance and the tree of shapes

To obtain the Dahu distance map w.r.t the set of seed points, we have to construct the
ToS and compute the map by using Eq. (2.41). However, in the special case of salient
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Algorithm 6: Modification of the sorting procedure of the tree of shapes to
compute the Dahu pseudo-distance.

Data: Image U, Image domain D, Point p∞
Result: Dahu pseudo-distance

1 begin
2 for all h do
3 deja_vu(h)←− false

4 i←− 0;
5 PUSH(q[l∞], p∞) ;
6 deja_vu(p∞)←− true;
7 l ←− l∞;
8 Image2d min_im, max_im, Dahu;
9 min_im (p∞)←− l , max_im (p∞)←− l , Dahu (p∞, p∞)←− 0 ;

1111 while q is not empty do
12 p←− PRIORITY_POP (q, l) ;
13 u[(p)←− l;
14 R[i]←− p ;
15 for all n ∈ N(p) such as deja_vu(n)== false do
16 l′ ←− PRIORITY_PUSH(q, n, U, l) ;
17 deja_vu(n)←− true ;
18 min_im (n)←− min_im (p) , max_im (n)←− max_im (p) ;
19 if l′ < min_im (n) then
20 min_im (n)←− l′

21 if l′ > max_im (n) then
22 max_im (n)←− l′

23 i←− i + 1 ;

24 for all p ∈ D do
25 Dahu (p∞, p)←− max_im (p) - min_im (p) ;

26 return(R, u[, Dahu)

object detection, which is based on the “boundary and connectivity” prior, the Dahu
distance map can be computed while constructing the tree of shape. As a result,
we can improve the execution time of distance map computation. The boundary
prior is introduced in [22], which assumes that the border of the image is mostly
background. Similar to previous works (see [9, 10, 8]), we compute the distance
map, which is the Dahu pseudo-distance of every pixel in the image according to
the border of the image.

The construction of the tree of shapes of the gray-level image is mentioned in [18].
Our algorithm (see Algo. 6) is a modification of the sorting procedure used to com-
pute the tree of shapes: we add some operations (see the blue lines) to the pixel-
sorting procedure (of u[) during the tree construction (the green lines are used to
compute the data exclusively needed to the computation of the tree of shapes). Clas-
sically, the root node of the tree represents the whole image, and a saturation op-
erator, sometimes called cavity fill-in operator, is implemented to compute later the
shapes. We add an artificial border surrounding the image domain, in which we set
the point p∞. Only one step remains to be able to proceed to the front propagation:
we must input the set-valued map U computed thanks to a span-based interpolation
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on the image u. Then, we call the sorting procedure described in [18]. This proce-
dure is based on the handling of a hierarchical queue, denoted by q; the current level
is denoted by l. The Dahu pseudo-distance of the starting point is set at the value
l∞ = 0. Since we use interval-valued maps, we have to decide at which level to en-
queue those elements. The face h is enqueued at the value of the interval U(h) which
is the closest to l, which is denoted l′ (see the produce PRIORITY_PUSH). The value
l′ is compared with the minimum and maximum values of its neighbors to update
the Dahu pseudo-distance. When the queue q(l) at the current level is empty, the
procedure PRIORITY_POP decides whether the next level to be processed is less or
greater than l. This loops continues until all of the pixels have been visited. The
resulting pseudo-distance is then obtained. More information about the PRIOR-
ITY_PUSH and PRIORITY_POP procedures can be found in [18]. Note also that
to finally obtain the tree of shapes, three procedures must be executed (see Algo. 3
in [18]), but we will not go into details.

When the seed pixels are not placed in the outer boundary of the image (for
example, if they are placed at the center of the image), we need to build the tree
of shapes first, and then we can compute the Dahu pseudo-distance. The major
difference with a classical saliency map, defined in the image space (such as the one
of Eq. (2.34)), is that the tree structure is one-dimensional. Since the Dahu pseudo-
distance on the tree (given by Eq. (2.39)) has the form of a barrier “max - min”,
the saliency map S MBD

S(u) at each node tx can be easily computed by a propagation
method on the tree using a priority queue. Besides, this saliency map can also be
computed by a two-steps procedure (here, downwards and then upwards) like the
classical computation of a Chamfer distance map (see [236]). Afterwards, getting the
2D saliency map S DAHU

u means reading for each x the value of S MBD
S(u) at tx. Eventually,

once we have computed the tree of shapes S(u), the computation of a saliency map
x 7→ S DAHU

u (x, X′) is immediate (whatever the set X′).

Last, let us mention that the representation of an image into a tree of connected
components is easy to handle (see [114]). Furthermore, the tree of shapes of an image
can be computed in quasi-linear time w.r.t. the number of pixels (see [18]), and can
be parallelized (see [125]).

3.1.2 Extending the Dahu pseudo-distance to multivariate images

As mentioned before, the previous MBD methods (see [9, 10]) are only defined on
grayscale images or on separate channels of color images. In this last case, they
compute the mean or the maximal value of the distances obtained on each separate
channel, see [10] for details. This approach is not satisfying for image segmentation
purpose: we generally obtain different paths for each color, and then computing the
mean or the max value of the distances has no sense and cannot be used for image
segmentation. An example of the computation of the MBD is illustrated in Fig. 3.1(a).

In [20], a vectorial minimum barrier distance (VMBD) is proposed to compute the
MBD on a multivariate image. This distance is a volume of the minimal bounding
box which contains all pixels color on the path between two pixels. However, this
VMBD is not easy to compute directly on the image. Moreover, the VMBD is not
effective when computing multiple distances between multiple points in images. To
solve this problem, in this section, we present a Dahu pseudo-distance extended to
multivariate images based on the tree space.

The tree of shapes, primarily defined on gray-level images, has been recently
extended to multivariate data (see [17]); this extension is called the Multivariate Tree
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(a) A procedure to compute the MBD and their shortest paths
in the color image when processing separately each channel.

(b) A procedure able to compute the vectorial Dahu pseudo-distance. Even with
color images, our method is able to obtain a coherent shortest path between two
pixels in the image.

FIGURE 3.1: The computation of the MBD and the vectorial Dahu
pseudo-distance in a color image.

of Shapes (MToS). It yields a tree mapping the inclusion relationship of shapes in the
image. Such a representation is of prime importance for computer vision (see [237])
because it satisfies strong invariance properties featured by natural images, such as
self-duality and local contrast changes (see [238]).

However, the definition of the Dahu pseudo-distance on the tree of shapes (see
Eq. (2.39)) cannot be used without modification/improvement. Let us now consider
that u is a multivariate image, t is a node of the MToS of u, and µu(t) is the vec-
tor value associated with the node t. The superscript i indicates which one of the
N components of the vector is taken into account. We can then extend the Dahu
pseudo-distance like this:

d DAHU
u (x, x′) := ∑i∈{1..N} αi τ

(i)
u (

•
π(tx, tx′) ). (3.1)
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with:

τ
(i)
u (

•
π) := max

t∈ •π
µ
(i)
u (t) − min

t∈ •π
µ
(i)
u (t), (3.2)

where αi is the coefficient weighting each channel. Note that
•

π denotes a path be-
tween two nodes on a tree, which is expressed in Eq. (2.37).

Algorithm 7: Computation the Dahu pseudo-distance between two pixels
in the image.

Data: Image U, Image domain D, Point x, x′

Result: Dahu pseudo-distance
1 Compute(MToS(u));
2 Compute(tx, tx′);
3 Compute(lca(tx, tx′));
4 Compute(

•
π(tx, tx′));

5 for i ∈ [1, N] do
6 Compute(min

t∈ •π µ
(i)
u (t));

7 Compute(max
t∈ •π µ

(i)
u (t));

8 Compute(τ(i)
u (

•
π(tx, tx′)));

9 end
10 Compute(d DAHU

u (x, x′));
11 return(d DAHU

u (x, x′))

In other words, the vectorial Dahu pseudo-distance between two points x and x′

in the domain of the image u can be computed using Algo. 7. The algorithm begins
with the computation of the MToS of the image u. Then the node tx and tx′ , which
correspond to the pixel x and x′, are found in the MToS(u). In the next step, the
algorithm searches for lca(tx, tx′), the lowest common ancestor of the nodes tx and
tx′ , thereby generating the sequence of nodes

•
π(tx, tx′) that connects these two pixels.

The maximum and minimum along the path are updated to get the barrier strength
on each channel. Finally, the d DAHU

u (x, x′) is computed with respect to Eq. (3.1). This
algorithm is simple and easy to understand.

In [20], several path cost functions are presented, such as the maximum diame-
ter, the city-block diameter, and the volume of the bounding-box methods. The city-
block diameter function gives the best performance in several experiments. Since
they consider that the importance of each channel is equivalent, we propose to pro-
ceed like them and to fix:

αi = 1/N. (3.3)

Then, for RGB-color images, our equation becomes:

d DAHU
u (x, x′) =

1
3 ∑i∈{R,G,B} τ

(i)
u (

•
π(tx, tx′) ). (3.4)
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(a) Dahu in the grayscale image. (b) Dahu in the color image.

FIGURE 3.2: The Dahu pseudo-distance in the grayscale image and in
the color image.

Please note that, although Eq. (3.1) looks simple, we have here a strong result.
To be able to compute saliency maps (based on the MBD) in an efficient way while
taking into account colors, we need to compute a particular distance between two
points. This distance is one of the optimal paths between two points in the image
space; this path is such that the set of colors on the path has the smallest bounding
box in the color space. On the contrary to the Dahu pseudo-distance in the gray-
scale image, which is illustrated in Fig. 3.2(a), the vectorial Dahu pseudo-distance is
illustrated in Fig. 3.2(b) as the length of the yellow line.

More precisely, the distance between the two points is the city-block diameter
(with the L1 norm) of this 3D bounding box. This is a highly combinatorial prob-
lem, far to be trivial, and which cannot be solved efficiently in the image space. Our
contribution here is to turn this problem into an efficient and straightforward com-
putation in tree space. Therefore, we can easily compute the Dahu saliency map by
using the propagation method proposed in [8] to our MToS structure.

The MToS is computed from the ToS of each image channel by merging some
marginal shapes. Due to the MToS properties, it is not a complete representation of
an image. The node of the final tree is associated with multiple values of the image.
Therefore, a node is assigned to a single value computed from the set of values it
contains. In our case, we set each node in the MToS using the median value of its
pixels. The vectorial Dahu pseudo-distance computed on the color image is not the
exact distance between two points in the image. Nevertheless, this approximation
is still useful for some applications in computer vision and image processing. Some
results will be shown in the next section. The whole process to compute the vectorial
Dahu distance is illustrated in Fig. 3.1(b). This way, we obtain a “coherent” shortest
path between two pixels in the image (see Fig. 3.1(b)).

We have illustrated our vectorial Dahu pseudo-distance on classical R.G.B. color
images. However our vectorial Dahu pseudo-distance is not restricted to 3 channels
and is fully usable on any kind of multi-channels images like multi/hyper-spectral
images thanks to the coefficient in Eq. 3.3. We will illustrate this point further on
satellite multi-spectral images and even on medical multimodal images.

3.2 Dahu pseudo-distance applications

In this section, several applications based on the Dahu pseudo-distance are pre-
sented. Firstly, we combine the Dahu pseudo-distance with spatial information to
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search for the shortest path between pixels in the image. Secondly, an efficient prop-
agation method in the MToS, which is inspired from the water flowing method [8],
is presented to compute efficiently the Dahu saliency map in color images. Thirdly,
we propose an interactive segmentation method based on the Dahu pseudo-distance
by using a statistical approach to study the background and foreground information
from the scribbles. Fourthly, the Dahu pseudo-distance is employed for image seg-
mentation. Our approach belongs to the hierarchy image segmentation class that we
have presented in Section 2.4.2. Finally, our new distance is applied to a document
detection application in videos captured by smartphones.

3.2.1 Shortest path finding based on the Dahu pseudo-distance

FIGURE 3.3: A scheme for shortest path finding application.

In this section, we present an improvement of the Dahu pseudo-distance by in-
volving the spatial information between two pixels in the image. This improvement
is actually a “two-steps” procedure, which is illustrated in Fig. 3.3.

FIGURE 3.4: Shapes on the cubical complex. Image is taken
from [130].

First, let us recall the topological consideration of the ToS. In [18], the ToS is
computed from the 2D cubical complex that represents the continuous properties.
An example of the shapes on the cubical complex is illustrated in Fig. 3.4. As we can
see, the shape A on the tree is an open set which are composed of 0D, 1D, and 2D
elements. We define δ(A) = A ∪ ∂A as the closure operator of the shape A, where
∂A is the boundary of the shape A, which is depicted as the set of red 1D and 0D
elements in Fig. 3.4.

Considering two given pixels x and x′, in the first step, we look for the shortest
path in the sense of the Dahu pseudo-distance in the tree space between two nodes
tx and tx′ , which correspond to these two given pixels (see the blue nodes on the tree
depicted in Fig. 3.3). We denote par(tx) as the parent node of node tx in the tree, and
lca(tx, tx′) as the lowest common ancestor of the nodes tx and tx′ . The shortest path
•

π(tx, tx′) between two nodes tx and tx′ is the sequence of nodes that begins from
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node tx, goes through the lowest common ancestor lca(tx, tx′), and ends at the node
tx′ . When we have tx 6= tx′ , the shortest path

•
π(tx, tx′) can be formulated as follow:

〈tx, par(tx), . . . , lca(tx, tx′), ..., par(tx′), tx′ , 〉 (3.5)

otherwise it is the trivial path 〈tx〉.
Note that each node tx on the tree represents a connected component CC(tx)

in the image domain. We denote <∗(tx) as the region which is the union of con-
nected components that correspond to descendants of the node tx, and <(tx) is the
union of <∗(tx) and the connected component CC(tx) of the node tx itself. After
computing the shortest path

•
π(tx, tx′), we need to find a region in the image space

that connects two pixels x and x′, which is deduced from the shortest path
•

π(tx, tx′)
in the tree space. We call this region as ROI(tx, tx′). The method that computes
ROI(tx, tx′) directly from the union of connected components, which correspond to
a set of nodes that belongs to the shortest path

•
π(tx, tx′) in the tree may create dis-

connected regions. It can be explained in the sense of topology that a shape in the
tree of shapes is an open set (see [130]). Therefore, a sub tree in the tree of shapes
may also be an open set. To deal with this problem, we rely on the subtraction the
region <∗( •π(tx, tx′)), from δ(<(lca(tx, tx′))), which is expressed as:

ROI(tx, tx′) = δ(<(lca(tx, tx′)))−<∗(
•

π(tx, tx′)) (3.6)

where <∗( •π(tx, tx′)) which is the region under the shortest path in the tree of shapes
can be defined as:

<∗( •π(tx, tx′)) = <(lca(tx, tx′))−
⋃

t∈ •π(tx ,tx′ )

CC(t) (3.7)

δ(A) is the closure operator of a shape A. The basic idea of this closure operator
is to enclose the open set on the tree, thereby ensuring to generate the path that
connect two pixels x and x′. Region <(lca(tx, tx′)) and <∗( •π(tx, tx′)) are respectively
illustrated in the third figure of Fig. 3.3 as green and yellow regions.

This ROI is actually the set of all the possible paths between the two given points
in the image space minimizing the Dahu pseudo-distance. In this region, we are
able to obtain a coherent path between the two given pixels in the multivariate im-
age. Therefore, this extended Dahu pseudo-distance solves the problem that we pre-
sented at the beginning of Section 3.1.2, in which the MBD is computed separately
on each channel.

In the second step, we want to find a path between the two given pixels x and x′,
which belongs to the ROI(tx, tx′), so that it has the shortest length in the image space.
This optimal path has different meanings. This path is not only the shortest path in
the “color space” but also the shortest path in the image space. An example of the
optimal path is depicted in Fig. 3.3 depicting a human retinal). The blue path in the
figure is actually the optimal path between two given points x and x′. The shortest
path is found in this region by using the heuristic A∗ algorithm (see [21]). As we
can see, the shortest path between two given points run along the blood vein. This
property of the Dahu pseudo-distance can be applied to the path routing application.
Several experiments of this optimal path will be illustrated in the next chapter.
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3.2.2 Salient object detection based on the Dahu pseudo-distance

FIGURE 3.5: Boundary and connectivity priors [22].

To use the Dahu pseudo-distance in visual saliency detection, we adopt two pri-
ors about the background in natural images, namely boundary and connectivity priors,
which are proposed in [22]. The first prior states the fact that most photographers
restrict to cut off salient objects. In other words, the border of the domain of the
image is mostly background. Concerning the second prior, the authors assume that
the background regions are large and homogeneous, and background elements tend
to connect with the border of the image. These two priors are illustrated in Fig. 3.5.

FIGURE 3.6: Finding the shortest path from every pixel in the image
to the seed set.

Relying on these two priors, we consider pixels along the border of the domain of
the image as seed nodes to compute the visual saliency map. This map is generated
by finding the shortest path from every node on the MToS to the seed nodes and
obtaining its Dahu pseudo-distance. An example is depicted in Fig. 3.6, where two
target pixels are put inside the image, and all image boundary is considered to be
the seed set. The optimal paths between the target pixels and the image boundary
are shown in cyan color.

Inspired from the water flowing algorithm [8], which computes the MB-based
saliency map directly on the image, we compute the Dahu saliency map based on
the Dahu pseudo-distance by using the propagation approach. The process is flowed
from the source node to the other nodes on the tree with different cost values, which
are measured by the Dahu pseudo-distance. Each node on the tree may have three
possible labels 0, 1 and 2, which correspond respectively to three states: droughty
(the node is not touched yet), waiting (the node is pushed into the priority queue)
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and flooded (the node is popped out of the priority queue). Initially, all the source
nodes are flooded, and other nodes on the tree are droughty. The process is prop-
agated from flooded nodes to their neighboring droughty nodes (child or parent),
and then changes the state of the droughty nodes to flooded. This process continues
until every node on the tree is flooded.

The computation of the Dahu saliency map from a set of seed pixels is illustrated
in Algo. 8. Two auxiliary matrices Lu and Uu are used to represent the maximal and
minimal values on the current path for each node. In the beginning, a corresponding
set of nodes TX′ on MToS(u) of set of a seed pixels X′ is found. Then the maximal and
minimal value of each node tx ∈ TX′ are initially assigned to their color as follows:

L(i)
u (tx) = µ

(i)
u (tx)

U(i)
u (tx) = µ

(i)
u (tx)

Dahu(i)(TX′ , tx) = 0

(3.8)

where µu is the color of each node on the tree, and i indicates the index of color
channel.

Every node in a set TX′ is sequentially pushed to the priority queue Q. In this
algorithm, each node has three different states: 0, 1 and 2. Initially, every node is
assigned to a state 0, except the set of seed nodes TX′ , which is assigned to a state
2. Then, a node tj is popped out of the queue. Its parent and children nodes, called
tk, are analysed. The updated procedure between two nodes that have parental re-
lationship, is implemented as Eq. (3.9) on all color components.


L(i)

u (tk) = min(µ(i)
u (tk), L(i)

u (tj))

U(i)
u (tk) = max(µ(i)

u (tk), U(i)
u (tj))

D(i)(tk) = U(i)
u (tk)− L(i)

u (tk)

Dahu(i)(TX′ , tk) = min(Dahu(i)(TX′ , tk), D(i)(tk))

(3.9)

If the node tk has not touched yet (state(tk) = 0), Dahu(TX′ , tk) is computed
and the node tk is pushed into the priority queue Q depending on its distance
value. In the case of state(tk) = 1, if the distance Dahu pseudo-distance of node
tk is higher than the tj one, we update the maximal and minimal values of node tk
as Eq. (3.9). Then this new value (D(tk)) is kept unless it is lower than its old distance
(Dahu(TX′ , tk)). The node tk is then pushed into the queue Q. The process is iterated
until the queue is empty. The saliency map of each pixel Su(X′, x) is simply reading
the distance at its corresponding node Dahu(TX′ , tx). Note that, Algo. 7 and Algo. 8
can be used in both color and gray-scale image.

As presented in Eq. (3.4), the input of the process is a multivariate image when
the output is a (scalar) distance. However, in Fig. 3.1(b), the output of the process
can also be a multivariate image (one distance map per channel). In the experimental
section, we will show some examples of what we call abusively “vectorial distance
maps”. Note that we do not use the vectorial distance map for an evaluation purpose
but for visualization only. It is actually a multivariate image, which is computed
from a multivariate input based on the vectorial Dahu pseudo-distance.

To avoid ambiguities, we will refer in the sequel to viso for vectorial-input-scalar-
output, to vivo for vectorial-input-vectorial-output, and to siso for scalar-input-scalar-
output Dahu pseudo-distances.
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Algorithm 8: Computation of the Dahu saliency map from a set of seed
pixels.

Data: MToS(u) of the image u , set of seed pixels X′

Result: The Dahu saliency map Su(x, X′)
1 Find corresponding set of nodes TX′ on MToS(u) of X′ as defined

in Eq. (2.40);
2 Initiate the Dahu pseudo-distance of each node tx ∈ TX′ as Eq. (3.8) ;
3 Assign state(tx ∈ TX′) = 2 , state(tx /∈ TX′) = 0 ;
4 Push all of tx ∈ TX′ into a priority queue Q;
5 while Q is not empty do
6 A node tj is popped ;
7 if state(tj) ==2 then
8 skip ;
9 end

10 state(tj) =2 ;
11 for all children and parent nodes tk of tj do
12 if state(tk) == 0 then
13 Update the Dahu pseudo-distance of node tk as Eq. (3.9);
14 Push tk and Dahu(TX′ , tk) into Q ;
15 state(tk) = 1 ;
16 else
17 if state(tk) == 1 and Dahu(TX′ , tk) > Dahu(TX′ , tj) then
18 Update the Dahu pseudo-distance of node tk (D(TX′ , tk))

as Eq. (3.9);
19 if Dahu(TX′ , tk) > D(TX′ , tk) then
20 Dahu(TX′ , tk) = D(TX′ , tk) ;
21 Push tk and Dahu(TX′ , tk) into Q ;
22 end
23 end
24 end
25 end
26 end
27 Get the Dahu saliency map Su(x, X′) = Dahu(TX′ , tx) ;
28 return(Su(x, X′))

3.2.3 Interactive segmentation based on the Dahu pseudo-distance

In this section, we use the Dahu pseudo-distance for interactive segmentation. The
robustness of this distance w.r.t pixel fluctuation is promising for segmentation ap-
plication. We show here two interactive segmentation versions based on the Dahu
pseudo-distance. The first one segments the object directly on the MToS, while the
second one borrows the probability distributions of the foreground and background
regions from the scribbles.

3.2.3.1 A simple version for interactive segmentation based on the Dahu pseudo-
distance

Interactive segmentation can be considered to be the binary classification where two
sets of points F and B representing the user’s input information. Each pixel in the
image is classified based on the distance between the pixel itself and the set of seeds
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FIGURE 3.7: Interactive segmentation scheme on the MToS.

F and B. Differently to other methods which process directly in the image, our
method segments the object region on the tree space. Our simple scheme for im-
age segmentation using the Dahu pseudo-distance is illustrated in Fig. 3.7, which
can be summarized as:

• We construct an MToS that represents the original color image.

• We label nodes in the MToS which correspond to the user’s input marker as
background/foreground classes. The markers are exploited as prior informa-
tion about the background (B) and the foreground (F) in the image.

• Then the Dahu distance map of the non-labeled node S (dF(S) and dB(S)) is
computed using the marker F and B, respectively.

• The node S gets a label depending on the nearest class in the tree:

arg minC∈{F,B}dC(S).

• The segmentation image is reconstructed from the label of all of nodes in the
tree.

This method is quite simple and easy to understand. However, there is still one
challenge in interactive segmentation that we need to solve. The problem happens
when the object region traverses several level-lines that belong to the background
(the level-line goes from inside to outside of the object). As a result, a node may get
a confused label from background and foreground. This is due to the fact that, in the
simplification step to obtain the MToS from a GoS, two different color regions in the
original image can be merged in the final tree. To address this issue, we present an
extended method for interactive segmentation in the next section.

3.2.3.2 An extended version for interactive segmentation based on the Dahu pse-
udo-distance

In this section, an improving model for interactive segmentation is proposed using
the Dahu pseudo-distance. Our method aims to solve the problem presented in the
last section. We also consider an investigation of the prior information of the fore-
ground and background regions from the scribbles. In the last version, the saliency
maps is computed directly from scribbles in the original image. In this version, a sta-
tistical approach is applied to obtain more information about the image. The scheme
of our method is presented in Fig. 3.8.

In the first step, two Gaussian mixture models (GMM) are used to perform the
probability distribution of the foreground and background regions. A Gaussian mix-
ture model is a probabilistic model that assumes all the data points are generated
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FIGURE 3.8: GMM model for interactive segmentation based on the
Dahu pseudo-distance.

from a mixture of a finite number of Gaussian distributions with unknown param-
eters. One can think of mixture models as generalizing k-means clustering to incor-
porate information about the covariance structure of the data as well as the centers
of the latent Gaussians. A Gaussian mixture model, which is composed of several
Gaussian functions, is expressed as:

p(x) =
K

∑
i=1

ΦiN(µi, ∑i ) (3.10)

where x is the pixel in the image, Φi defines how big or small the Gaussian func-
tion will be, a mean µi that defines its center, and a covariance ∑i that defines its
width. The parameter K here denotes the number of clusters of our dataset. The
mixing coefficient is the probability of each Gaussian function so that it satisfies this
condition:

K

∑
i=1

Φi = 1 (3.11)

In our method, we use K = 3 to fit the two GMMs for foreground and back-
ground regions from the prior scribbles. After fitting these models, we estimate a
probability of every pixel w.r.t the foreground scribbles in the image as follows:

PF(x) =
p(x|F)

p(x|F) + p(x|B) (3.12)

A pixel with high probability indicates its color value that closes to the scribbles. We
implement similarly for the probability of each pixel w.r.t the background scribbles
PB(x).

In the next step, we construct two ToSs to represent these two probability maps.
We label the node of the tree that corresponds with the markers. Then the Dahu
pseudo-distance is used to compute the saliency map from the marked nodes. These
two distance maps are compared to each other to determine the label of the pixel
in the image. Then the image with the labels is reconstructed. The results of this
method are presented in Chapter 5.
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FIGURE 3.9: Image segmentation based on the Dahu pseudo-
distance.

3.2.4 Image segmentation based on the Dahu pseudo-distance

Here we present another application of the Dahu pseudo-distance: image simplifi-
cation and segmentation. Image segmentation has been widely used as an interme-
diary step for many tasks in image processing and computer vision, such as object
detection and segmentation [34, 40, 52, 26].

The scheme for image segmentation of our method is illustrated in Fig. 3.9. Our
proposed approach is a hierarchical segmentation method. It starts with the SLIC
algorithm [25] to partition an image into several small regions called super-pixels.
The regions contain more information about the object in the image than the pixels.
Moreover, processing on image regions is faster than the original image because of
significantly reducing the number of elements. The SLIC algorithm allows us to ob-
tain a set of regions in several milliseconds. It is an advantage for many applications
in image processing. The simplified image now can be seen as a graph of super-
pixels. This first step drastically reduces the number of image elements to process
in the next steps. Let G = (V, E) denote an undirected graph consisted of vertices
v ∈ V and edges e ∈ E. Each edge eij = (vi, vj) is assigned to a weight that mea-
sures the dissimilarity between the two vertices. This is the finest segmentation of
the hierarchy.

A ToS of the image is constructed in parallel with the SLIC algorithm. The pur-
pose of the ToS is to compute the Dahu pseudo-distance between the centers of each
pair of neighboring superpixel, thereby analyzing the similarity between superpix-
els. Depending on the distance value, we can merge these superpixels to obtain a
hierarchical segmentation.

The merging process is implemented by using the minimum spanning tree (MST)
approach based on Kruskal’s algorithm [55]. At the beginning of MST construction,
we sort all the edges in non-decreasing order of their weights. The two super-pixels
which have similar appearance tend to be connected in the MST. On the contrary, the
edges with large weights are removed. We pick the smallest edge, which connects
two nearest super-pixels, and join them together. The algorithm is repeated until one
tree has remained. To quickly construct a hierarchical, we only used the low-level
features for computing the similarity score. Let denote Ri and Rj two neighboring
super-pixels, the distance D(Ri, Rj) between Ri and Rj is used as an edge weight on
the MST which is expressed as:

D(Ri, Rj) = α× d DAHU
u + β× dc. (3.13)
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where d DAHU
u is the Dahu distance between the center marker of two neighbor super-

pixels Ri and Rj; dc is a measure of the difference between the color histogram of
two neighbors. Let Ci denote the center marker (3 × 3 pixels) of the super-pixels Ri.
The Dahu distance between two center markers Ci and Cj of super-pixels Ri and Rj
is computed as:

d DAHU
u (Ci, Cj) = min

xi∈Ci
min
xj∈Cj

d DAHU
u (xi, xj). (3.14)

The Dahu distance between two center markers Ci and Cj is the minimum of the
Dahu distance between all of pixels xi and xj inside the markers. This step is com-
puted efficiently thanks to the advantage of the tree of shape.

Another distance, which is adopted in this scheme, is the dissimilarity of the
color histogram between two super-pixels. For each region Ri, the histogram Hi is
calculated from the quantized colors of all pixels in the region Ri, then normalized
so that ∑m

k=1 Hi(k) = 1. The Chi-square distance between color histograms Hi and
Hj is computed to express the color similarity between Ri and Rj.

dc(Ri, Rj) = exp(−1
2

m

∑
k=1

[Hi(k)− Hj(k)]
2

Hi(k) + Hj(k)
) (3.15)

Each time we merge two regions Ri and Rj, the image segmentation S(l) arrives
at a coarser level S(l+1), where (l) is the level of the image segmentation. Note that,
K is the number of super-pixels, so that we have K− 1 levels of image segmentation.
After constructing a MST of super-pixels, our mission is producing a meaningful
segmentation on this tree. There exist several works of hierarchical image segmen-
tation based on energy minimization [48, 40]. Here, we adopt the Mumford-Shah
functional proposed in [46] as an energy functional. A general energy functional
has a form as : Eλs = λsEre + E f i, in which Ere is a regularization term and E f i is a
data fidelity term and λs is a parameter, which is able to control the simplification
or segmentation degree of the algorithm. The higher value of λs is, the coarser seg-
mentation degree is. Here, we aim to find an optimal image segmentation of a color
image u. The data fidelity term E f i is computed from the scalar luminance value
with l = (r + g + b)/3. It is actually the variance of the luminance of each node on
the MST. The regularization term Ere is equal to contour length |∂{R}| of each node
R. The total energy of node R is expressed as:

E(R) = ∑
x∈R

∥∥l(x)− l̄(R)
∥∥2

+ λs(|∂R|) (3.16)

With a fixed value of λs, the optimal cut is chosen from additive laws of com-
position. The energy on the parent node R is compared with the sum of the energy
of all the children nodes TR

i . The parent node is kept if it satisfies this condition :
E(R) ≤ ∑ E(TR

i ). After producing a cut to every node in the image, we reconstruct
the simplified image from the remaining nodes in the tree, where each node corre-
sponds with a region in image. We assign a median color from every pixels in the
region to perform a unique color for this region. Several segmenting results of our
method are illustrated in Section 5.4. In fact, the scheme, that we present in this
section, is proved to be useful for a particular object detection: document detection,
which is introduced in Section 3.2.5.2.
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3.2.5 Document detection based on the Dahu pseudo-distance

Smartphones are now widely used to digitize paper documents. Document detec-
tion is the first important step of the digitization process. Whereas many methods
extract lines from contours as candidates for the document boundary, we present in
this section a region-based approach. A key feature of our method is that it relies
on visual saliency (VS), which pertain to computer vision, have not been considered
yet for this particular task. Here we compare different VS methods, and we propose
a new VS scheme, based on the Dahu pseudo-distance. We show that our result-
ing saliency maps are competitive with state-of-the-art visual saliency methods, and
that such approaches are very promising for use in document detection and seg-
mentation, even without taking into account any prior knowledge about document
contents.

In the first section, we present a simple method to detect the document, which
is very fast and efficient. However, this method has a limitation on choosing the
best threshold in the segmentation step. To overcome this problem, we propose
an extended version which is based on the hierarchical image segmentation. This
method is able to accurately segment the document region with a fast runtime speed.

3.2.5.1 A simple version for document detection based on the Dahu pseudo-
distance

We present here a simple method for document detection. The scheme of our pro-
posed method is illustrated in Fig. 3.10.

FIGURE 3.10: Simple scheme for document detection.

The method we propose is composed of four steps. In the first step, we rely on
the SLIC algorithm [25] to simplify the image into superpixels (clusters of pixels, i.e.,
very tiny regions). This step is interesting because it removes unnecessary image
details, and the image can now be seen as a graph of superpixels, which has a reason-
able size (instead of a huge matrix of pixels). That drastically reduces the number
of elements to deal with the next steps. Then in the next step, we assign to each
superpixel its average color, and a tree of shapes is computed from this graph. This
tree of shapes is a good way to represent an image. From the tree of shapes, we then
produce a saliency map from this structure using the Dahu pseudo-distance, and
we normalize this map (defined later) in the third step. Finally, we apply a simple
detection step by choosing a threshold value to obtain the resulting detection.

We assume that the four sides of the image boundary are mostly composed of
the scene background (i.e., the document does not predominantly touch the image
boundary). Hence, from each boundary side of the image, we compute a saliency
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map; for instance, with Xtop being the set of pixels of the image top row, we have the
saliency map S DAHU

u (x, Xtop). We end up with 4 saliency maps, depicted in Fig. 3.11(b),
that we combine in a pixel-wise way using:

S DAHU
u (x) = ∑i∈{top, left, right, bottom} S DAHU

u (x, Xi) / 4. (3.17)

(a) Input (b) 4 saliency maps (c) Fusion

FIGURE 3.11: Effect of fusing four side-specific maps using Eq. (3.17).

An example is given in Eq. (3.17). As we can see in Fig. 3.11(a), the fact that
the document touches the top row gives an irrelevant saliency map S DAHU

u (x, Xtop),
marked T in Fig. 3.11(b). However, after the fusion of the 4 maps, we obtain a satis-
fying result, which is depicted in Fig. 3.11(c).

Similarly to some previous works [239, 6, 7], we normalize the saliency map by
using “a - b” normalization (with a = 0.1 and b = 0.8), followed by an adaptive
contrast enhancement with a sigmoid mapping. The saliency map in Fig. 3.11(c) is
depicted after normalization in the 2nd row of Fig. 5.12(f).

The final detection step is deducing a binary image from the saliency map ob-
tained by Eq. (3.17). In this section, our detection step is still experimental (briefly
put, we only search for a threshold so that the result looks like a quadrilateral), since
we focus on comparing gray-level saliency maps w.r.t. all possible thresholds.

3.2.5.2 An extended version for document detection based on the Dahu pseudo-
distance

In the previous section, we present a simple method for document detection. The
Dahu distance is used to compute the saliency map, then a simple threshold is
applied to segment the document. However, a thresholding method is not strong
enough to extract the whole document, and also the method has difficulty in choos-
ing the best threshold for all images in the dataset. To deal with this problem, a
scheme of our proposed method is given in Fig. 3.12.

Our extended approach is a saliency-based method which is composed of four
main steps. In the beginning, we compute the Dahu saliency map similarly with
the previous section by using Eq. (3.17). This method allows us to know the docu-
ment position in the image. To successfully segment the document region, we pro-
pose to use a hierarchical image segmentation in parallel with computing saliency
map. Hierarchical image segmentation partitions an image into several meaningful
regions, hence reduces the number of image elements or reduce the search space
in other words. The hierarchical image segmentation is implemented by using the
Dahu pseudo-distance, which is introduced in Section 3.2.4. Then, we combine the
result of the Dahu saliency map and hierarchical image segmentation to achieve a
final saliency map. In this final saliency map, the pixels of the document region are
brighter than other pixels. Otherwise speaking, the document region is highlighted
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FIGURE 3.12: An extended scheme for document detection based on
the Dahu pseudo-distance.

out of the image. Therefore, we construct a max-tree (which is presented in Sec-
tion 2.3.1) of this saliency map. The document features are computed at each node
of the tree. By computing several document features from each node in the tree, we
are able to correctly segment the document region. The idea is to consider the local
maxima of the energy map as candidates for document detection. To enhance the
document detection during a video stream, a simple tracking method compares the
positions of the shapes in consecutive frames.

Saliency based on the Dahu distance
We assume that we have a high contrast between the document and the back-

ground, and the border of the image is mostly background. Thus, we consider pix-
els along the border of the image as seed nodes to compute the visual saliency map
S DAHU

u (x, X′) similarly to Section 3.2.5.1. The saliency map S DAHU
u (x, X′) is computed

by using the propagation approach that we present in Section 3.2.2. In fact, this pro-
cedure is computed instantly on the ToS S(u), whatever the set X′. Note that the
ToS can be computed in quasi-linear time w.r.t. the number of pixels [18, 240] in the
image, and can be parallelized [125].

Image simplification and segmentation
Different from the method developed at LRDE [26], which looks for a document

among hundreds of thousands of nodes in the ToS of the original image, we use
an image simplification and segmentation method based on the Dahu distance to
reduce the number of image elements into tens of nodes for max-tree construction
in the next step. This step is implemented in parallel with the computation of the
saliency map. The details of the algorithm are presented in Section 3.2.4.

Max tree of a visual saliency map
Because the Dahu saliency map S DAHU

u and the hierarchical image segment method
are presented in previous sections, here we introduce the construction of the max-
tree. In this step, we combine the Dahu saliency map with the result of the image
segmentation method. The final saliency value of each region Ri is the average of
the saliency map of every pixel in the region.

S DAHU
u (Ri) =

∑x∈Ri
S DAHU

u (x)
|Ri|

(3.18)

After combining the saliency map with the image segmentation, we get the final
saliency map which is a set of connected components or a graph of regions. In the
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final saliency map in Fig. 3.12, the document candidate is brighter than the back-
ground. We construct a max-tree representation directly on the graph of regions.
After segmenting, the number of image elements is trivial, so that this max-tree is
built immediately. This max-tree reduces significantly the search space of the docu-
ment and provides an efficient way for document segmentation. The next step is to
find the document candidate from all the nodes on the max-tree.

Document detection

FIGURE 3.13: Document detection from the max-tree. A document
candidate tends to have a quadrilateral shape, also the top line is
parallel with the bottom line (respectively with the left line and the
right line). On the other hand, the document region is brighter in the

saliency map.

Assuming that the candidate document is represented in the max-tree, then the
document segmentation problem resorts to finding the document in the tree space.
To do that, we assign an attribute to each region that corresponds to a node on the
max-tree. Here, we borrow one prior knowledge from the document information
that is the document has a quadrilateral shape. We compute sequentially the at-
tribute on every node of the tree and we observe how much these attributes fit with
the document criteria. Our criteria are the followings:

1. A ratio that measures how much a shape boundary of a node A is close to the
best fitting quadrilateral Quad(A):

E f (A) =
|A ∩Quad(A)|
|A ∪Quad(A)| (3.19)

2. The angles between the top (resp. the bottom) lines, denoted by TL (resp. BL),
and between the left (resp. the right) lines, denoted by LL (resp. RL):

Ea(A) =
cos(TL, BL) + cos(LL, RL)

2
(3.20)

3. The saliency map value of each node of the tree:

Es(A) = S DAHU
u (A) (3.21)

The final attribute is computed by this equation:

E(A) = E f (A)× Ea(A)× Es(A) (3.22)

Once the attribute E(A) is available, we can look for the “most likely” node on
the tree maximizing this attribute function. Fig. 3.13 shows the node selection pro-
cedure.

Tracking document between frames
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To implement document detection in video streams, a tracking method is used to
compare the document position between the previous frame and the current frame.
Based on the node attributes computed in the previous section, we select the best
three nodes in the tree as candidate documents, and then we look for this document
position in the previous frame. The current detected shape A∗t is the one that mini-
mizes the distance to the shape A∗t−1 in the previous frame.

A∗t = Ak
t : k = min{i|1 ≤ i ≤ 3 : d(A∗t−1, Ai

t)} (3.23)

where d(X, Y) is the Jaccard index.
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Chapter 4

Validation of the Dahu
pseudo-distance

In this section, we validate the properties of the vectorial Dahu pseudo-distance via
some experiments.

• Section 4.1 demonstrates the robustness of the vectorial Dahu pseudo-distance
on salient object detection. We also compare the Dahu pseudo-distance with
state-of-the-art MB-based distances.

• In Section 4.2, we analyze the efficiency of the Dahu pseudo-distance w.r.t noise
and contrast between objects and background based on the ratio between inter-
and intra-distances. We recall that the inter-distance is the distance from a
marker outside the object to a marker inside the object. On the other hand, the
intra-distance is the distance between two markers in the same object.

• In Section 4.3, we provide a comparison between the complexities (in time) of
the Dahu pseudo-distance vs. some other MB-based distances.

4.1 Visual saliency detection

To show the robustness of the vectorial Dahu pseudo-distance, we start with vi-
sual saliency detection applications (see [8–10]). It should be reminded that visual
saliency detection has been widely used in computer vision to obtain visual attention
areas in the image. It is considered as a useful intermediary step for object detection
and recognition.

First, we compare the vectorial Dahu pseudo-distance with the Dahu pseudo-
distance on separate channels. Then in the following section, we compare the vecto-
rial Dahu pseudo-distance with state-of-the-art MB-based distances.

As presented in Section 3.2.2, our visual saliency method is based on two priors
about the background in natural images, namely boundary and connectivity priors,
which are proposed in [22].

Datasets. To perform this evaluation, we use four large benchmark datasets:

• The first dataset is MSRA-10K dataset (see [209]), which contains 10000 images
with pixel accurate salient object labeling for each image. It is widely used in
salient object detection and segmentation community.

• The second DUTOMRON dataset (see [241]) consists of 5166 challenging im-
ages, each of which has one or more salient objects and complex background,
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with pixel-wise ground truth annotated by five users. Therefore, images in
the DUTOMRON dataset are more difficult and challenging for salient object
detection.

• The third dataset ECSSD (see [242]) contains 1000 images along with pixel-
wise ground truth masks, which includes more salient objects under complex
scenes.

• The final PASCAL-S dataset (see [243]) contains 850 images and 1296 object
instances from the validation set of PASCAL VOC 2010. Each image consists
of multiple complex objects and clustered backgrounds, which is manually
segmented for salient object annotation. The PASCAL-S dataset is designed to
eliminate the center bias and color contrast bias.

Among these datasets, the PASCAL-S and DUTOMRON datasets are the most chal-
lenging.

Evaluation metrics. We use the following measures:

• The Precision-Recall (PR) curve, to evaluate the overall performance of a method
concerning its trade-off between the precision and recall rates. For a saliency
map, we generate a set of binary images by thresholding at values in the range
of J0, 255K with a sample step as 1, and compute the precision and recall rates
for each binary image. On a dataset, an average PR curve is computed by
averaging the precision and recall rates for different images at each threshold
value.

• The Mean absolute error (MAE), which is the average difference between a
saliency map S (gray-level image) and a ground-truth image GT (binary im-
age):

MAE := ∑x∈D |GT(x)− S(x)|
Card(D) ,

(4.1)

with D the domain of the initial image and Card the cardinal operator.

• An Fβ-measure defined by:

Fβ := (1 + β2)× P× R / (β2 × P + R),

(4.2)

where P and R are respectively the precision and the recall which we men-
tioned above. We will set β2 = 0.3 (because it is the classical setting in the
visual saliency community).

• The percentage curve, which shows how many images in the dataset having a
Fβ score over a specific value. To compute it, we threshold the saliency map at
each value being between 0 and 255 (we compute upper threshold sets), and
we chose the “best” threshold set, that is, the one who gives the highest Fβ

score (we call this score Fβ
max). After its computation for each image in the

dataset, we compute the corresponding histogram (we chose a number of bins
equal to 10), and we finally obtain the percentage curve.
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• A score (briefly called EMD) inspired from [244] relying on the Earth Mover’s
Distance, which is the cross-bin distance function. It is used as a measure to
estimate the dissimilarity between two signatures. In our case, the EMD is
computed as the cost between the histogram of Fβ score and the histogram of
the ground truth image, which is equivalent to one bin at the value Fβ = 1.
Note that, the lower EMD values are, the better the method is.

4.1.1 Comparison of saliency maps obtained by the usual Dahu pseudo-
distance on separate channels and by our vectorial Dahu pseudo-
distance

(a) ECSSD

Method MAE Fβ
max EMD

Color 0.21 0.69 0.29
Gray 0.22 0.6 0.33

R 0.22 0.62 0.34
G 0.22 0.6 0.33
B 0.23 0.62 0.35

Combination 0.22 0.62 0.33

(b) DUTOMRON

Method MAE Fβ
max EMD

Color 0.17 0.57 0.41
Gray 0.18 0.50 0.43

R 0.18 0.52 0.45
G 0.18 0.50 0.43
B 0.19 0.52 0.45

Combination 0.18 0.52 0.43

(c) PASCAL

Method MAE Fβ
max EMD

Color 0.22 0.69 0.28
Gray 0.24 0.63 0.3

R 0.23 0.65 0.31
G 0.23 0.64 0.3
B 0.24 0.65 0.31

Combination 0.23 0.65 0.3

(d) MSRA

Method MAE Fβ
max EMD

Color 0.16 0.79 0.17
Gray 0.19 0.72 0.21

R 0.18 0.75 0.22
G 0.18 0.73 0.21
B 0.18 0.74 0.21

Combination 0.18 0.75 0.23

TABLE 4.1: Comparison between saliency maps obtained using the
vectorial Dahu pseudo-distance and using the Dahu pseudo-distance
on separate channels using Fβ

max measure and EMD score. “Color”
is the color saliency map computed using our vectorial Dahu pseudo-
distance applied directly on color image, “Gray” is the saliency map
deduced from the Dahu pseudo-distance computed on the grayscale
image, R, G and B are the saliency maps deduced from the Dahu
pseudo-distance computed on each channel separately and “Combi-
nation” is the saliency map obtained by averaging the three saliency
maps R, G and B. The best result is in bold form and the worst is
in underlined. The three different measures show that our vectorial

Dahu pseudo-distance leads to a much better saliency map.

Experimental setting. We compare our vectorial Dahu pseudo-distance (the
extension of the Dahu pseudo-distance on the color images which are mentioned
on Section 3.1.2) with the Dahu pseudo-distance computed on separate channels.
To do so, we compare a (“color”) saliency map computed using our vectorial Dahu
pseudo-distance and saliency map computed by the Dahu pseudo-distance com-
puted on separate channels (gray, red, green, blue). We also compare against a
saliency map obtained by a simple combination of saliency maps computed on each
three color channels (pixel-wise average of the three channels).

As mentioned previously, for our (“color”) saliency map, relying on our vectorial
Dahu pseudo-distance, we adopt the MToS and compute the saliency map following
Eq. (3.1). For the saliency map computed on each separate color channel, the tree of
shapes (ToS) is constructed to represent each image channel; then the saliency map
of the Dahu pseudo-distance is computed as detailed in Eq. (2.41).
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(a) PR (b) Fβ-measure (c) Percentage

FIGURE 4.1: Comparison between saliency maps obtained using the
vectorial Dahu pseudo-distance and using the Dahu pseudo-distance
on separate channels. From top to down are four datasets: MSRA-
10K, DUTOMRON, ECSSD, PASCAL-S. From left to right are three
evaluation metrics: (a) Precision-recall curves, (b) Fβ-measure, (c) Per-
centage curves. “Color” is the color saliency map computed using
our vectorial Dahu pseudo-distance applied directly on color image,
“Gray” is the saliency map obtained using the Dahu pseudo-distance
computed on the grayscale image and “Combination” is the saliency
map obtained by averaging saliency maps computed on separate red,
green and blue channels. The three different measures show that our
vectorial Dahu pseudo-distance leads to a much better saliency map.

In our implementation, input images are resized proportionally so that the max-
imum dimension (width or height) is 300 pixels. In the tree of shapes computation
step, a border with the median value of all of the pixels on the boundary of the image
is added to the image. We consider all the pixel in the added border of the image
as seed pixels when we compute the saliency map. For the post-processing step,
we used the same method as presented in [9] to “normalize” the resulting saliency
maps.

Evaluation using PR curves. In a dataset, an average PR curve is computed by
averaging the precision and recall rates for different images at each threshold value.
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(a) Input (b) GT (c) vivo (d) viso (e) Gray (f) Red (g) Green (h) Blue (i) Combi-
nation

FIGURE 4.2: Several saliency maps of the vectorial Dahu pseudo-
distance on color images and the Dahu pseudo-distance on separate
channels. Note that image (c) and (d) are respectively the vivo and
viso Dahu pseudo-distances on the color image. The Dahu pseudo-
distance on the color image highlights the object over the background,
whereas, when only one channel is used, the saliency map only spots

a part of the object.

In Fig. 4.1, we show the PR curves for the saliency maps: directly computed on
color images thanks to our vectorial Dahu pseudo-distance, computed on grayscale
images thanks to the Dahu pseudo-distance and, a pixel-wise combination saliency
map of the three saliency maps computed separately on the red, green, and blue
channels (as presented in [9]). These saliency maps have been computed on four
datasets: MRSA-10K, DUTOMRON, ECSSD, and PASCAL-S. The vectorial Dahu
pseudo-distance outperforms the Dahu pseudo-distances on grayscale images and
the combination of three channels in all datasets. On the most challenging dataset
DUTOMRON, the performance of the distance maps deduced from Dahu pseudo-
distance are lower than the performance of the one on others datasets. Note that in
this dataset, there are multiple objects in images, the backgrounds are complex and
the color contrasts between the foreground and the background are low.

Evaluation using MAE. The MAE scores of compared methods are shown in Ta-
ble 4.1. Note that the lower the MAE is, the better performance of the method is. The
comparison of the saliency maps shows that the Dahu pseudo-distance does not give
a better score on the grayscale images compared to the separate channels (R/G/B)
however the combination of the saliency maps computed separately from each color
channels improve the quality of the saliency map. This comparison shows also that
the vectorial Dahu pseudo-distance achieves better scores than all other methods.
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(a) Input (b) Gray

(c) siso border (d) viso border

(e) vivo border

(f) siso center (g) viso center

(h) vivo center

FIGURE 4.3: Different versions of saliency map deduced from Dahu
pseudo-distances computed on the original color image (a) or the cor-
responding grayscale image (b); The saliency map when the seeds
are the border pixels deduced from: the Dahu pseudo-distance (c)
computed on the grayscale image and the vectorial Dahu pseudo-
distance (d) computed directly on color image (with vivo (e) an ad-
ditional color visualization of this latter); The saliency map when the
seed is the center pixel deduced from: the Dahu pseudo-distance (f)
computed on the grayscale image and the vectorial Dahu pseudo-
distance (g) computed directly on color image (with vivo (h) an addi-

tional color visualization of this latter).

Evaluation using Fβ-measure. We adopt the Fβ-measure proposed in [245] to evalu-
ate saliency maps. The Fβ-measure scores are shown in Fig. 4.1. The vectorial Dahu
pseudo-distance, (used to compute the “color” saliency map) significantly achieves
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better scores than the Dahu pseudo-distance on grayscale images and than the com-
bination across all datasets (whatever the threshold). We also notice that the Fβ-
measure curves of the Dahu pseudo-distance (whatever the strategy we use) have
stable and flat curves, which is an advantage because the “best” threshold remains
unknown and can vary a lot from an image to another. This stability makes the algo-
rithm to search this threshold more robust. The “global” Fβ-measure, maximized for
all thresholds and all images, is denoted by Fβ

max. In Table 4.1, Fβ
max of our vectorial

Dahu pseudo-distance gives the best performance on all datasets.

Evaluation using percentage curves and EMD. We do not only apply the value of
Fβ

max to evaluate the performance of the Dahu pseudo-distance, but also use the
percentage curves and the EMD. By computing the histogram of the best cut of Fβ-
measure, we are able to calculate the EMD and the percentage curve. In Fig. 4.1,
the vectorial Dahu pseudo-distance not only gives better results of Fβ-measure than
the others, but also provides better saliency maps for the images of the dataset.
Notably, Table 4.1 shows that in the MSRA-10K and ECSSD dataset, the number
of good saliency map (Fβ-measure > 0.8) of the vectorial Dahu pseudo-distance
is higher around 7% than the Dahu pseudo-distance on separate channels. In the
case of MSRA dataset, the vectorial Dahu pseudo-distance has more than 60% good
saliency maps with the only assumption that the boundary is mostly background.
In Table 4.1, the EMD results of the vectorial Dahu pseudo-distance is lower than the
Dahu pseudo-distance on the separate channel which proves that our vectorial Dahu
pseudo-distance improves saliency map computation. Furthermore the EMD score
is quite low on MSRA, which means that the histogram of vectorial Dahu pseudo-
distance is close to the histogram of the ground truth. It proves that the vectorial
Dahu pseudo-distance is robust for saliency detection.

Some examples of saliency maps induced by the Dahu pseudo-distance are pre-
sented in Fig. 4.2. The saliency map induced by the vectorial Dahu pseudo-distance
is shown in Fig. 4.2(d) (the “viso”) and a color representation of the saliency map
is given in Fig. 4.2(c) (the “vivo”). The “optimal” visual quality is reached for the
vectorial Dahu pseudo-distance (compared to the Dahu pseudo-distances on sepa-
rate channels or on the grayscale image). Indeed, the main barrier is clearly visible
around the objects. The robustness of the vectorial Dahu pseudo-distance is easy to
explain: the tree of shapes on the color image contains more information and is more
structured than the tree of shape computed on separate channels.

In another example (see Fig. 4.3), we compare visually the vectorial Dahu pseudo-
distance and the Dahu pseudo-distance by comparing deduced saliency map com-
puted on a color image and computed on the corresponding grayscale image while
using different sets of seed points. In the first case, all border pixels of the image are
set to seed points, and in the second one, a single seed point is placed in the cen-
ter of the image. The impact of seed positions and color usage is illustrated. When
the seeds are the border pixels, the vectorial Dahu pseudo-distance on color image
performs better than the Dahu pseudo-distance on the grayscale image. With the
vectorial Dahu pseudo-distance, the flower in the image is spotted in the image.
Whereas, the Dahu pseudo-distance computed on the grayscale image does not well
distinguish the background and the flower (the contrast is low). Similarly, when
the only seed is the center point, the vectorial Dahu pseudo-distance on the color
image is better than the Dahu pseudo-distance on the grayscale image. The flower
zone in the image is darker than the background. Besides, the background zone in
the case of the vectorial Dahu pseudo-distance is more homogeneous than the Dahu
pseudo-distance on the grayscale image. Similar intensities are obtained on most of
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the background regions in the distance map. Normally, the more homogeneous of
the distance map in the background is, the less seed points that we need to segment
the image. This is an advantage of the vectorial Dahu pseudo-distance to reduce the
number of seed points for object segmentation.

4.1.2 Comparison of saliency maps of the vectorial Dahu pseudo-distance
with state-of-the-art methods

(a) Input (b) GT (c) viso Dahu (d) Fast-MBD (e) Waterflow-
MBD

(f) MST-MBD

FIGURE 4.4: Comparison on color images of saliency maps de-
duced from our vectorial Dahu pseudo-distance on color images with

saliency maps deduced from state-of-the-art methods.

Experimental setting: In this section, the saliency map computed by the vectorial
Dahu pseudo-distance is compared with some saliency maps deduced from multi-
ple MB-based methods: Fast-MBD (see [9]), MST-MBD (see [10]), Waterflow-MBD
(see [8]). To compare these methods, we modify them, as [8] do, by adding color
and computing a color MBD by summing MBD on each channel. For the MST-MBD
method, we construct a MST from the color image, then we compute the MBD in
the same way as we did for MST-MBD on the grayscale image. In order to fairly
evaluate the performance of these methods, we add an outer border to the image
and consider all pixels on the boundary image as the background. Note that, in this
experiment, we just want to compare the Dahu pseudo-distance with the MB-based
distance, we do not try to achieve the best results of the saliency maps. The same
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post-processing to normalize the saliency map, as in the previous section, is applied
here.

Evaluation using MAE: Our method gives better MAE scores than other MB-based
methods across all datasets. It can be explained by the fact that the vectorial Dahu
pseudo-distance tends to give distance values lower than other MB-based distances,
especially in the background regions, which constitute the largest part of an image.
However, even if the vectorial Dahu pseudo-distance provides systematically better
results, the difference is very low.

(a) ECSSD

Method MAE Fβ
max EMD

Dahu 0.21 0.73 0.228
Fast-MBD 0.22 0.74 0.21
MST-MBD 0.22 0.73 0.227
Waterflow 0.22 0.74 0.205

(b) DUTOMRON

Method MAE Fβ
max EMD

Dahu 0.17 0.634 0.316
Fast-MBD 0.21 0.626 0.324
MST-MBD 0.21 0.606 0.344
Waterflow 0.21 0.634 0.316

(c) PASCAL

Method MAE Fβ
max EMD

Dahu 0.22 0.72 0.23
Fast-MBD 0.24 0.73 0.22
MST-MBD 0.24 0.72 0.23
Waterflow 0.24 0.73 0.22

(d) MSRA

Method MAE Fβ
max EMD

Dahu 0.17 0.815 0.14
Fast-MBD 0.18 0.821 0.135
MST-MBD 0.18 0.812 0.143
Waterflow 0.18 0.824 0.132

TABLE 4.2: Numerical comparison of saliency maps deduced from
the vectorial Dahu pseudo-distance applied on color images and dif-
ferent MB-based distances adapted to manage color images. The
comparison is performed using Fβ measure and EMD score. Best
scores are in bold. Results of all methods are comparable and vari-

ations among them are negligible.

Evaluations using the Fβ-measure: The Fβ-measure is illustrated in Table 4.2. At
a glance, the vectorial Dahu pseudo-distance shows equivalent results to the MST-
MBD method and lower results than the Fast-MBD and Waterflow-MBD methods.
However, the differences between these methods are minimal. In the DUTOMRON
dataset, the Dahu pseudo-distance achieves better Fβ-measure than other methods.
Especially, in the MSRA dataset, the Dahu pseudo-distance and MB-based methods
can achieve a high value of 0.82.

Evaluation Using EM distance. For the EMD, the Fast-MBD and the Waterflow-
MBD methods achieve similar results in all datasets. Whereas, the Dahu pseudo-
distance gives comparable results with the MST-MBD method, and slightly lower
results than the Fast-MBD and the Waterflow-MBD methods but here again, the dif-
ference is rather low.

Some example images are given in Fig. 4.4. In these images, the backgrounds
are not homogeneous like in the scene of the sky, the field of grass or even the sofa
image. The Dahu pseudo-distance seems to deal better in these cases and achieves
better performance than the MB-based distances. The tree of shapes properties and
the insertion of the inter-pixels between the neighbor pixels allow the Dahu pseudo-
distance to get the lower value compared to the MB-based distances. Also, each
node on the tree of shapes is set at the median value of all the pixels in the node; this
reduces the impact of noise in the color images. The Dahu pseudo-distance is shown
to be robust to noise in the image. In the next section, we will explore this problem
in details.
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4.2 Efficiency and robustness of the algorithm

In this section, we investigate the efficiency of the algorithm and its robustness
against noise. To do so, the ratio between inter-distances (the distance from a marker
outside the object to a marker inside the object) and intra-distances (the distance be-
tween two markers in the same object). The higher this ratio is, this more discrim-
inant the distance is. To analyze the noise stability of the vectorial Dahu pseudo-
distance we will analyze the evolution of this ratio when noise in the image in-
creases.

4.2.1 Ability to distinguish object and background

In this section, we analyze the ability to separate the object from the background. To
do so, we measure the difference between the Dahu pseudo-distance and the MB-
based distances by using the ratio between the inter-distance (the distance from a
marker outside the object to a marker inside the object) and the intra-distance (the
distance from two markers inside the object).

Experimental setting: This experiment is implemented on four benchmark datasets:
ECSSD [242], PASCALS [243], DUTOMRON [241] and MRSA [209]. With two ran-
dom markers in the image, each method finds the optimal path between them, which
has the minimum bounding box on the color space. We compare the distance be-
tween two markers using the following “distances”: the MST-MBD, the Waterflow-
MBD and the vectorial Dahu pseudo-distance. We can not include Fast-MBD in this
comparison because the Fast-MBD (see [9]) method works only when all the seed
pixels are in the boundary of the image.

We create randomly 100 markers in the image and sequentially compute the dis-
tance between two markers. The Dahu pseudo-distance between two markers X and
X′ is computed this way:

d DAHU
u (X, X′) := min

x′∈X′
min
x∈X

d DAHU
u (x, x′). (4.3)

Evaluation metric: Using the binary ground truth, the inter- and intra-distances are
well defined. The contrast metric is denoted by the ratio between the average of the
inter-distances and the average of the intra-distances:

R =

1
N1

∑
N1

dinter

1
N2

∑
N2

dintra
(4.4)

in which N1 and N2 are respectively the numbers of inter- and intra-distances.

TABLE 4.3: A comparison of ratio of inter- and intra-distances be-
tween the Dahu pseudo-distance and other MB-based methods.

Dataset MST-MBD Waterflow-MBD Dahu
ECSSD 1.28 1.36 1.404

PASCALS 1.324 1.398 1.448
DUTOMRON 1.341 1.432 1.483

MRSA 1.784 1.997 1.992
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Ratio of inter- and intra-distances evaluation: The ratio between the inter-distance
and the intra-distance are presented in Table 4.3: the ratio of the Dahu pseudo-
distance is higher than the one of the MB-based distances in all of the datasets. It
means that the Dahu pseudo-distance is more contrasted than the MB-based dis-
tances. We can give an intuition of this result: the Dahu pseudo-distance is com-
puted on the tree of shape, which considers an image to be a surface and a scalar
value to be replaced by an interval. So, during the front propagation procedure,
the pixel can pass through the inter-pixels to decrease the Dahu pseudo-distance be-
tween points on a same background as an illustration in Fig. 2.25(f). It leads to an
increase of the ratio of the inter- and intra-distances of the Dahu pseudo-distance.

4.2.2 Robustness against noise

This section shows the impact of the noise on Dahu pseudo-distance and MB-based
distance.

Experimental setting: An example image is chosen in Fig. 4.5 where two markers
p1 and p2 (5 × 5 pixels) are set in the background and another marker p3 is set
inside the object. We observe the inter-distance d(p1, p3) and intra-distance d(p1, p2)
during the test, with d a pseudo-distance among the Dahu or the MB-based one.
During the noising experiment, a zero mean Gaussian noise is added to the image
with the respective variance values: 0.0001, 0.001, 0.01, 0.1 and 0.5. One hundred
noisy images are generated for each value of variance. The three markers are fixed
for the entire experiment.

FIGURE 4.5: An example image to investigate noise stability of the
Dahu pseudo-distance and MB-based distance. The points p1 and p2
belong to the background, when p3 is inside the object (this picture

comes from the MSRA dataset (see [209])).

Evaluation: The results of the experiments are presented, respectively, in Fig. 4.6
with the mean value as well as the associated confident interval. In both Fig. 4.6(a)
and Fig. 4.6(b), we can see the evolution of the Dahu pseudo-distance and other
MB-based distances. The MST-MBD and Waterflow-MBD both increase when the
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(a) Inter-distance

(b) Intra-distance

FIGURE 4.6: Stability of the inter- and intra-distances using the vecto-
rial Dahu pseudo-distance or other MB-based methods against Gaus-

sian noise.

variance of the noise increases. Also, the Dahu pseudo-distance is much more ro-
bust against noise than the MB-based distances. Especially when the noise vari-
ance is high, the difference between inter- and intra-distances of MST-MBD and
Waterflow-MBD is minimal. Whereas, the ratio of inter- and intra-distances of the
Dahu pseudo-distance remains more stable. This experiment shows that the vecto-
rial Dahu pseudo-distance is stable against noise variations. This property is impor-
tant for many real-world applications.

4.3 Speed performance

In this section, we introduce empirical evaluation on the speed performance of our
Dahu pseudo-distance against several MB-based distances.



4.3. Speed performance 91

Experimental setting: We want to measure the time necessary to compute numerous
distances between two points using the Dahu pseudo-distance and other MB-based
distances. We analyze the runtime of the algorithm to compute the distance between
100, 1000, 10000 and 100000 pairs of pixels on 20 tested images. Our method is imple-
mented in C++. The evaluation is conducted on a machine with a 4-cores processor
Intel i7 at 2.6GHz with 8GB of RAM (but we use always only one core). The size of
test image is the same as used in previous experiment (the maximum dimension is
300 pixels) for all evaluated methods.

Speed performance evaluation: The construction of the tree of shapes is based on
the Union-Find algorithm (see [18]). In [240], the authors propose to construct the
tree of shapes based on a linear Max-tree algorithm on the depth map image, which
is the depth of nodes that contain pixels in the image. The whole process is linear on
average (and quasi-linear at worst). The computation of the ToS runs at about 20 FPS
when used on grayscale images. Whereas, it takes about 1 second to construct the
MToS of the color image. Although the computation of the MToS is longer than the
ToS, but the Dahu distance maps deduced from MToS achieve better performances
as we presented in Section 4.1.1. Depending on the application, we can choose either
the ToS or MToS to compute the Dahu pseudo-distance. On the other hand, the
contruction of the MST is fast (30 FPS) and easy to implement. However, this method
is sensitive to the impact of noise and usually does not provide good results in this
case.

FIGURE 4.7: Execution time (in milliseconds) to compute numerous
distances between two points using the (pseudo-)distances presented

in this thesis.

There is another convenient point of the Dahu pseudo-distance (based on the
tree of shapes): once the tree is computed, the Dahu pseudo-distance between any
two points in the image is computed instantly. The execution time is illustrated
in Fig. 4.7 with mean and confident values. As we can see in this figure, for a small
number of distances, the Waterflow-MBD has an advantage compared to the vecto-
rial Dahu pseudo-distance. However, when the number of distances increases, the
Dahu pseudo-distance and the MST-MBD are much faster than the Waterflow-MBD.
It can be explained by the fact that the Dahu pseudo-distance and the MST-MBD
take a fixed time while to construct the tree, but when the tree is computed, the time
to compute the distances in the tree is extremely fast thanks to the fast search of the
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nodes corresponding to the points in this tree. This is (like the robustness against
noise) a huge advantage for some real-time applications.
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Chapter 5

Applications and Evaluations

The major application of the Dahu pseudo-distance is visual salient object detection,
which is used in various other applications such as object detection and localization,
object segmentation and tracking, or image refocusing. The visual salient object
detection is carefully investigated in the previous section. Therefore, in this section,
we demonstrate the ability of the Dahu pseudo-distance in other applications.

• The first application that we present in Section 5.1 is the shortest path finding
between two points. It is actually an extension of the Dahu pseudo-distance
that takes into account the spatial information in the image, which is intro-
duced in Section 3.2.1.

• In Section 5.2, the Dahu pseudo-distance is applied in multimodal medical
images with experiments to demonstrate the usability of the Dahu pseudo-
distance on multimodal medical images, usage also made possible by the mul-
tivariate extension of the Dahu pseudo-distance. The next investigated ap-
plication is to validate the ability of the Dahu pseudo-distance on multivariate
images is multi-spectral imaging. We exploit the Dahu pseudo-distance to seg-
ment objects in the satellite images.

• In Section 5.3, we apply the Dahu pseudo-distance for interactive segmenta-
tion in both synthetic and natural images. We also propose an extended ver-
sion for interactive segmentation using the Dahu pseudo-distance.

• Besides the interactive segmentation, we exploit the Dahu pseudo-distance for
automatic image segmentation in Section 5.4. This approach can be used to
provide the intermediary results for the next steps in object detection.

• In Section 5.5, a full framework based on the Dahu pseudo-distance is used to
segment the document in the image. Our method is fast, easy to understand
and able to achieve state-of-the-art results.

5.1 Shortest path in images

In this experiment, we apply our distance to the shortest path finding algorithm.
The scheme of this algorithm is presented in Section 3.2.1, it is an extension of the
Dahu pseudo-distance that takes into account the spatial information of the image.

Experimental setting: Let us assume we have two markers. We compare the result-
ing shortest paths found by the Dahu pseudo-distance on one side and by the other
MB-based pseudo-distances on a second side. Some images, which are extracted
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FIGURE 5.1: Shortest path finding in images. The input images and
the end points (depicted in red) of the path we want to find are
shown on each picture. Result are given for Dahu pseudo-distance,
Waterflow-MBD and MST-MBD. Images are extracted from [246] and

from [247].

from [246] and from [247] such as a noisy synthetic image, a map image, a retinal
photography and a thin glass fiber are illustrated in Fig. 5.1.

Results: In the synthetic spiral image (see Fig. 5.1, column 1), there are two parts: the
spiral and background. We can see at a glance that the shortest path provided by the
Dahu pseudo-distance is “shorter” than the ones provided by the other MB-based
pseudo-distances. The two chosen markers are in the background, and the shortest
path between them based on the Dahu pseudo-distance, runs follow the shape of the
spiral as we expected.

Similarly to the map image (Fig. 5.1, column 2), the goal is to find the shortest
path connecting two points located on the sea near the coast. The shortest path
based on the Dahu pseudo-distance is still better than the ones using other MB-based
pseudo-distances.

The retinal image is depicted in Fig. 5.1, column 3. The two chosen markers
are placed on a retinal blood vessel. In this image, the Dahu pseudo-distance and
Waterflow-MBD give satisfying results when the MST-MBD is sensitive to noise and
to blurring (which explains that its shortest path is deviated from the blood vessel).

Similarly, in the last example (see Fig. 5.1, column 4), the markers are placed on
the glass fiber. The image is quite blurred, and the intensities of pixels along the
fiber are variant, some parts of the fiber are darker than other parts. However, both
the Waterflow-MBD and the Dahu pseudo-distance still find the shortest path that
follows the fiber.



5.2. Dahu pseudo-distance on multimodal images and hyperspectral images 95

To conclude, the Dahu pseudo-distance gives better performance than the other
MB-based pseudo-distances in this context.

5.2 Dahu pseudo-distance on multimodal images and hyper-
spectral images

FIGURE 5.2: A scheme for object segmentation on multi-
modal/multispectral images.

Multivariate imagery is widely used in various applications, ranging from med-
ical imagery to satellite remote sensing. Multivariate can be color, multispectral,
multimodal or multi-source imagery which corresponds to a set of one channel im-
ages. The data information from each image channel can be combined with other
channels, so that we have more information about the image. A color image is just
a special case of multivariate image. In this section, we present the application of
the vectorial Dahu pseudo-distance in multimodal medical imagery and in multi-
spectral satellite imagery. We use the same strategy to deal with the multimodal and
multispectral images, which is illustrated in Fig. 5.2. The method begins with the
construction of the MToS. Then we put markers in the image and compute a dis-
tance map from these markers based on the Dahu pseudo-distance. Finally, we use
simple thresholding to segment the object in the image.

5.2.1 Multimodal images

Multimodal imaging, defined as a combination of imaging modalities, which are
acquired using different techniques, is becoming increasingly common in diagnosis
and treatment planning (see [249]). Several common methods to achieve multimodal
imaging are computed tomography (CT), magnetic resonance imaging (MRI), and
positron emission tomography (PET). These methods demonstrate their abilities in a
specific activity. Therefore, to overcome the limitation of each individual technique,
multimodal imaging is proposed to provide a better solution. In this subsection, we
applied the vectorial Dahu pseudo-distance to segment the white matter in 3D brain
MR images.

We consider two images for each slice of the volume to the segment: the T1 slice
(Fig. 5.3(a)), the T2-FLAIR slice (Fig. 5.3(b)). Examples of saliency maps are shown
in Fig. 5.3, where images have been acquired from different modalities. The Dahu
pseudo-distance is able to segment the white matter region from the combination of
these two modalities.

We construct the MToS on these images to get the mutual information from dif-
ferent machines. Then a marker (5 x 5 pixels) is put on the white matter region. The
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(a) T1 (b) T2-CLAIR (c) Distance map

(d) Segmentation (e) GT

FIGURE 5.3: White matter segmentation using the vectorial Dahu
pseudo-distance. Images are taken from [248].

Dahu pseudo-distance is used to compute a distance map from this seed. A sim-
ple threshold method is used to segment the white matter region in the image. As
a first remark, the MToS preserves the geometric information of the two channels
and mixes them in a sensible way. Second, as one can see, the distance map gives
low values to the white matter region, which will be thresholded to get a final seg-
mentation. As compared to the ground truth image, our method achieves a good
segmentation result. The vectorial Dahu pseudo-distance show then to be efficient
for this experiment.

5.2.2 Multispectral images

Over the last few years, the use of multispectral imaging has been increasingly
investigated in many applications, especially in target detection and recognition
(see [250]). Multispectral imaging collects information from hundreds of spectrum
bands, thus providing a powerful mean to discriminate different objects in the im-
age. Similarly to the application in the previous section, we focus here on the use of
the vectorial Dahu pseudo-distance in multispectral imaging.
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(a) C1 (b) C2 (c) C3 (d) C4

(e) C5 (f) GT (g) Distance map (h) Segment

(i) Distance map (j) Segment (k) Distance map (l) Segment

FIGURE 5.4: Hyperspectral images

We apply our method on the Pavia University dataset (see [251]). It consists of
103 images which correspond each to a spectral channel. The dataset has a size of
610*340 pixels, contains nine classes which represent trees, meadows, asphalt, etc.
The images are pre-processed with a PCA (see [252]) to reduce number of channels
of the images. This pre-processing relies on the fact that neighboring bands of multi-
spectral are highly correlated and contain mutual information about the object. The
PCA algorithm reduces the correlation among the bands, and selects the best bands
for object detection.

In general, most of the information may be contained in the first few bands. In
our case, we choose the first 5 channel components. As we can see in Fig. 5.4, some
objects clearly appear in some images but not in the others. The MToS is then con-
structed on these images. We put some seeds in the image to compute the distance
map. Then a simple threshold is used to segment the object in the image. As we
can see in Fig. 5.4, our proposed method can segment the objects in the image with
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high accuracy, for instance, the painted metal sheets, the bitumen, and self-blocking
bricks classes.

These results demonstrate the robustness of the vectorial Dahu pseudo-distance
in this context.

5.3 Dahu distance in interactive segmentation

In this section, we demonstrate the robustness of the Dahu pseudo-distance with
regard to the marker positions for interactive object segmentation. The position of
seeds plays a key role in the quality of image segmentation, especially if the seg-
mentation is based on computing the distances from the seeds. We investigate how
the Dahu pseudo-distance is stable and how this stability influences the results of
distance-based image segmentation. The Dahu pseudo-distance is firstly applied on
the synthetic and then natural images. We also proposed a new scheme based on the
Dahu pseudo-distance for interactive segmentation.

5.3.1 Dahu pseudo-distance in interactive segmentation on synthetic im-
ages with taking into account noise and position of seeds

In this experiment, we demonstrate the ability of Dahu pseudo-distance in dealing
with noise and position of seeds in interactive segmentation on synthetic images. To
do that, we compare the Dahu pseudo-distance with several MB-based distances.

Experimental setting: The interactive segmentation is applied on the synthetic im-
ages, which have two separated segments by a boundary in the image center. The
example images are illustrated in Fig. 5.5. Four examples are noisy images, which
are added a zero- mean Gaussian noise with the variance values σ2 are respectively
0.2, 0.3, 0.4, and 0.5. Two random markers which sequentially correspond to the two
segmented areas (one marker in each segment). The marker is a square 5 x 5 pixels to
reduce the local noise influence. We also take into account the impact of the position
of markers on the segmentation results by creating 200 samples with various marker
positions and compute the standard deviation of the segmentation error.

Evaluation metric: We analyze the result of interactive segmentation of our method
using the Dahu pseudo-distance by comparing with method MST-MBD and Waterfl-
ow-MBD. To evaluate the segmentation results, a segmentation error is evaluated as
a percentage of incorrectly labelled pixels. The results are presented in the form of
mean values and standard deviations. For better visualization, we also accumulate
the segmentation result of each method across 200 images. The higher contrasted
between the two segments are, the better method is.

Evaluation: The segmenting images are illustrated in Fig. 5.5. As a glance, the Dahu
pseudo-distance gives better segments than other MB-based methods. The image is
well segmented and also the accumulated result is well contrasted. The Waterflow-
MBD achieves quite good results, although the accumulated gray-scale image is not
well contrasted as good as the result of the Dahu pseudo-distance. On the contrary,
the MST-MBD is sensitive to noise. Therefore, it does not get satisfying results.

The segmentation errors table is shown in Table 5.1. In the table, we can see
that the Dahu pseudo-distance gives extremely good results on these synthetic im-
ages, the error rates are quite low. Especially, the standard deviation result is really
low. The small value of the standard deviation expresses the stability to the seed
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(a) σ2 = 0.2 (b) σ2 = 0.3 (c) σ2 = 0.4 (d) σ2 = 0.5

FIGURE 5.5: Interactive segmentation on synthetic images with tak-
ing into account the seed point positions and noise.

TABLE 5.1: The segmentation results of the synthetic images (5.5).
The percentage of incorrectly labelled pixels is presented in the form
of the mean values and standard deviations. The best scores are in

bold.

Method σ2 = 0.2 σ2 = 0.3 σ2 = 0.4 σ2 = 0.5
Dahu 0.077 (0.003) 0.1 (0.04) 0.13 (0.06) 0.15 (0.009)

Waterflow 0.068 (0.03) 0.3 (0.3) 1.48 (1.57) 5.76 (5.15)
MSTMBD 0.17 (0.5) 9.9 (10.5) 35.27 (6.28) 44.2 (41.66)

positions of the Dahu distance. It proves that the Dahu pseudo-distance is robust
to noise and also stable for the position of seed points. This property is very im-
portant for choosing a suitable method for interactive segmentation. If the seeds
placed in different positions lead to a stable segmentation result, it simplifies user
interaction. The Waterflow-MBD gives quite good results, but lower than the Dahu
pseudo-distance. With the low value of the variance of the noise, the MST-MBD
method gives satisfying results. However, when the variance increases, the quality
of MST-MBD decreases dramatically. The Dahu pseudo-distance is strong for this
kind of synthetic images. In the next section, we adopt the Dahu pseudo-distance
for interactive segmentation natural images.
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5.3.2 Dahu pseudo-distance in interactive segmentation concerning the
numbers of markers

In this test, we examine the dependence of the number of seeds of the Dahu pseudo-
distance for interactive segmentation in natural images. The less the number needed
of seed pixels are, the more powerful method is. It helps users not to use many seed
points.

Experimental setting: The testing images, which are extracted from the ECSSD
dataset [242], are depicted in Fig. 5.6. We suppose that there is only one object in
the background. For the object, only one marker is necessary. For the background,
we respectively use one, two, three markers and evaluate the segmenting result of
each case. The size of the marker is similarly with the previous test (5 x 5 pixels).
We take into account how many needed markers to achieve a good segmentation.
The method for interactive segmentation is similar to the one that is presented in the
previous section.

FIGURE 5.6: On the sensitivity to the number and position of seeds.

Results: On Fig. 5.6, the segmenting results by using one marker for the object and
one marker of the background is very good. The segmenting region is closed to the
ground truth image. We also notice that the segmenting results by using one, two, or
three markers are similar. By using very few seed points, the Dahu pseudo-distance
on color image is able to achieve good segmentation. It proves the robustness of the
Dahu pseudo-distance to the number of seed points.
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5.3.3 A simple interactive segmentation based on the Dahu pseudo-dista-
nce on natural images

In this section, we investigate the ability of the Dahu pseudo-distance in interactive
segmentation on natural images via a simple method which is presented in Sec-
tion 3.2.3.1.

Experimental setting: We test the Dahu pseudo-distance in interactive segmenta-
tion using the Gulshan dataset [59]. In this dataset, 151 images along with the prior
scribbles to define the background and foreground region, are provided. In the be-
ginning, we assign labels F or B to the set of nodes that corresponds with a set of
scribbles in the image. In some special cases, a node in the tree may get a common
label from background and foreground scribbles. We assign this node to a majority
class.

FIGURE 5.7: Interactive segmentation.

The segmenting procedure is implemented similarly with the method that we
present in Section 3.2.3.1. We apply the Dahu pseudo-distance to compute two
saliency maps from two sets of scribbles for segmenting an image into two parts:
object and background. This operation is equivalent to classify every node in the
tree into two classes. The obtained label of each node is the nearest label to the set of
background and foreground classes.

Qualitative results: Several successful segmenting results are illustrated in Fig. 5.7.
The first row shows the original images with their prior scribbles on object and back-
ground regions. The segmenting results of our Dahu pseudo-distance are depicted
in the second row. Comparing with the ground truth in the last row, our method
achieves quite good results. Despite the simplicity of our method, the segmenting
results are very close to the ground truth. These results prove that our distance is
strong for interactive segmentation.

Limitation: Fig. 5.8 illustrates some failure cases of our algorithm. As we can see,
there exist background marker-nodes in the foreground region and vice versa since
there are several level-lines that go from inside to outside of the object. In that sit-
uation, we can not correctly segment the background and foreground regions, as
presented in Fig. 5.8(c). In the next section, we demonstrate an algorithm based on
the Dahu pseudo-distance to ameliorate the segmenting results for interactive seg-
mentation.
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(a) Image (b) Marker-node (c) Segment (d) GT

FIGURE 5.8: Failed Interactive segmentation.

5.3.4 An extension in interactive segmentation based on the Dahu pseudo-
distance

Experimental setting: This section aims to validate our proposed method for in-
teractive segmentation that we present in Section 3.2.3.2. Here, we compare our
extension method with the simple one that presented in Section 5.3.3. We also com-
pare our proposed method with the grabcut method [23] and the state-of-the-art
MB-based distances. Note that, in [24], the authors proposed a distance, named Min-
imum Spanning Distance (MSD). This distance is computed by counting the number
of colors visited along a path. To be specific, they quantize the color space into dis-
crete boxes and count the number of boxes instead of colors.

Qualitative results: Fig. 5.9 presents the results of our method on several examples
which are failed in Fig. 5.8. Our method uses the statistic approach to exploit the
prior knowledge from the scribbles, thereby demonstrating the probability of every
pixel in the image concerning the scribbles. These images are illustrated in Fig. 5.9(b)
and Fig. 5.9(c). From these probability images, the Dahu pseudo-distance is used
to compute two saliency maps with regard to the two sets of scribble. Fig. 5.9(d)
provides the results of our segmentation. Our method performs significantly better
than Fig. 5.8, where we use the Dahu pseudo-distance directly on the image. Our
results are also close to the ground truth. Our extended algorithm solves the problem
that we met in the previous section.
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(a) Image (b) GMM-FG (c) GMM-BG (d) Seg (e) GT

FIGURE 5.9: The qualitative results of our extension method for inter-
active segmentation. The original images along with the scribbles are
presented in column (a); (b) and (c) respectively represent the proba-
bility of every pixel in the image with regard to the background and
foreground scribbles; the segmentation results are illustrated in col-

umn (d) which are close to the ground truth in column (e).

We also present some qualitative results of our method compared to Grabcut
method [23]. Both of these two methods exploit the background and foreground in-
formation based on the statistic approaches using GMM algorithm. While the Grab-
cut method segments the object region by using an energy minimisation method,
our approach relies on the Dahu pseudo-distance. The results of our proposed and
Grabcut method are illustrated respectively in Fig. 5.10(c) and Fig. 5.10(c). In the
first row, our method is able to segment a very small detail of the boat while Grab-
cut method is not. The second row shows the image of a scissor. The propagation
of our distance allows to segment correctly the object regions. In the third row and
the last row, the Grabcut method requires some additional scribbles to completely
segment the object region. On the contrary, our method provides satisfying results
with the giving scribbles.

TABLE 5.2: A comparison of interactive segmentation between our
proposed method and several state-of-the-art methods.

Distance Geo [24] MBD [24] MSD16 [24] MSD32 [24] Grabcut [23] Our
F-score 0.6469 0.6166 0.6821 0.6807 0.6392 0.7143

Evaluation: Table 5.2 presents some quantitative results of our method comparing to
state-of-the-art approaches. We compare our method with some other path-wise dis-
tance metrics such as geodesic distance, MBD, and minimum spanning distance [24].
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(a) Ori (b) GT (c) GMM-Dahu (d) Grabcut

FIGURE 5.10: Comparison on interactive segmentation between our
proposed method and Grabcut method [23].

For color images, Geo and MBD are performed channel by channel and then we av-
erage the maps as final distance [24]. For minimum spanning distance [24], their
methods use the box size 16 and 32. To evaluate the quality of interactive segmen-
tation methods, we use the weighted F score. This metric can better evaluate the
segmentation map since it takes into consideration the location of errors in the pre-
dicted maps. The higher weighted F means better segmentation performance. In the
table, we can see that our proposed method achieves the best performance. It proves
the robustness of our distance. It is able to obtain a good segmentation with very
few knowledge about the background and foreground information (scribbles). Note
that, the results of geodesic, minimum barrier, and minimum spanning distance are
extracted from [24]. Our method achieves better results than Grabcut method, which
is usually used in many interactive segmentation applications.

5.4 Image segmentation based on the Dahu pseudo-distance

Image simplification and segmentation is still a difficult challenge, which has been
long studied in computer vision. In Section 2.5, we presented several state-of-the-
art methods, which are used to segment an image into many meaningful regions.
In this section, we demonstrate the proposed fast method for image segmentation
based on our new distance which is presented in Section 3.2.4. It proves one more
time the robustness and efficiency of the Dahu pseudo-distance in image processing
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(a) Image (b) λs = 10000 (c) λs = 20000 (d) λs = 30000

FIGURE 5.11: Image segmentation.

application. The image segmentation is usually used as a preprocessing step for ob-
ject detection and recognition. Our proposed method here is used for the document
detection that we will present in Section 5.5.

Experimental setting: In this section, we present some setting details of the pa-
rameter that we use in our scheme. We also illustrate several examples of image
segmentation using our method. The algorithm begins by reducing proportionally
the size of the image so that the maximum so that the maximal dimension is 300
pixels. Then we convert the color image into gray-scale image. The SLIC algorithm
[25] is adopted to segment an image into 300 super-pixels. To compute the distance
between two neighbor super-pixels, α and β values are used respectively with α = 5
and β = 1. The λs value is chosen to control the coarse level of the image segmenta-
tion.

Qualitative results: Our method provides a hierarchical segmentation. We apply
it to BSDS500 dataset which is introduced in [52]. Several qualitative results of our
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method are illustrated in Fig. 5.11. The higher value of λs is, the coarser segmenta-
tion is. The segmenting images are obtained by assigning to each region the median
color of every pixel inside it. The regions in the segmenting image correspond to
the survived nodes after cutting a tree. In the first and second images, there are two
parts: the object and the background. Our method is able to segment the foreground
region out of the image. Moreover, the contour of the object is very close to the real
contour of the object. The three following images contain many object regions in the
image. Our method can segment object region in the image. We obtain a homoge-
neous color to the sky and ground regions.

Our method is very fast. It can achieve 5 frames per second. The results that we
present in this section are the primary results of our method. Therefore, we do not
provide their evaluation results.

5.5 Document Detection based on the Dahu pseudo-distance

In this section, we evaluate the ability of the Dahu pseudo-distance for document de-
tection. Firstly, we compare our simple method based on the Dahu pseudo-distance
with other saliency based methods. Then, in the next section, we evaluate our ex-
tended version with several state-of-the-art methods in the end-to-end document
detection.

5.5.1 Simple saliency based method for document detection

To know how our Dahu-distance-based saliency method performs in the context of
identity document segmentation, we are going to compare it with some other similar
approaches. This is a simple approach which is presented in Section 3.2.5.1.

5.5.1.1 Experiment setting

Let us now present three state-of-the-art methods of salient object detection, that we
are going to compare our method with. In [22] the saliency detection is based on a
geodesic distance (GS) which uses background priors. The major assumptions are
that the background is usually large, homogeneous, and located near the bound-
ary of the image. In [140] the saliency detection relies on a bottom-up approach to
choose some regions by manifold ranking (MR) on a graph of superpixels. Such as
in Eq. (3.17), the authors compute 4 maps and fuse them. In these maps, the super-
pixels are ranked w.r.t. the similarity with some seeds located in the image bound-
aries. In [141], a saliency optimization method (SO) is proposed which combines
multiple saliency measures, one of them using the notion of “boundary connectiv-
ity”. Note that all these methods also rely on a post-processing step to “normalize”
the resulting saliency maps.

For our experiments, we have built a dataset of identity documents available at
http://publications.lrde.epita.fr/movn.18.das. We have a dozen of different types of visas
and passports from various countries. We recorded over 100 videos under different
environment conditions, using several kinds of smartphones. From these videos, we
selected 100 frames to create our dataset, so that it presents some realistic difficulties
such as out-of-focus and motion blur, inhomogeneous illuminations, etc. Then, we
generated manually the corresponding ground-truth images.

We compare our method with the state-of-the-art saliency-based detection meth-
ods presented in the previous section. We use two distinct measures:
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(a) Input (b) GS [22] (c) MR [140] (d) SO [141]

(e) Dahu-based... (f) ...normalized (g) Detection (h) Ground truth

FIGURE 5.12: Comparison of our saliency maps with other classical
or state-of-the-art methods.

1. the Mean Absolute Error (MAE), which is the average difference between
a saliency map S (gray-level image) and a ground-truth image GT (binary image):
MAE = (∑x |GT(x)− S(x)|) / N, with N being the number of pixels.

2. an Fβ-measure defined by: Fβ = (1+ β2)× P× R / (β2× P + R), where P and
R are respectively the precision and the recall, and with β2 = 0.3 (it is the classical
setting in the visual saliency community).

5.5.1.2 Experimental Results

To compute the precision and recall scores, for each image to process, we simply
binarize the corresponding gray-level saliency map with a threshold sliding from 0
to 255. Then, for every threshold, we compare the obtained binary map with the
ground-truth map. For a given threshold, we depict in Fig. 5.13(b) the average Fβ-
measure obtained on the dataset of 100 images. The “global” Fβ-measure, averaged
for all thresholds (and all images), is denoted by Fβ.

The values of Fβ and the MAE scores for all the compared methods are depicted
in the table in Fig. 5.13(a); note that the better a method is, the lower MAE values
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Method MAE Fβ

GS [22] 0.328 0.573
MR [140] 0.299 0.642
SO [141] 0.265 0.7461

Dahu 0.178 0.7465

(a) MAE and Fβ
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(b) Fβ w.r.t. saliency map thresholding

FIGURE 5.13: Numerical comparison of saliency maps.

are, and the higher Fβ values are. First, we can observe that, over the years, the state-
of-the-art methods give better results (first GS, then MR, and last SO). Second, the
Dahu-based approach gives the lowest MAE score, and slightly outperforms the SO
method for the Fβ criterion.

If we look at the Fβ-measure curves for the different thresholds in Fig. 5.13(b),
there are two main observations. First, the methods SO (in gray) and Dahu (in red)
have stables / flat curves, which is an advantage, because the “best” threshold re-
mains unknown and depends on the image. Conversely, for the GS and MR methods
(respectively in blue and green), the curves are not stable, which means that taking a
threshold might not be a very robust task. The second observation is that the “best”
method with respect to the Fβ-measure seems to be the MR method, with a rather
low threshold (around 50). Though, the MR method is computationally expensive
so it cannot run in real-time on smartphones, whereas the Dahu-based approach can.

Some qualitative illustrations on a few images (Fig. 5.12(a)) are depicted in Fig. 5.12.
The prominent observation is that the compared saliency methods, from Fig. 5.12(b)
to Fig. 5.12(f), have rather different behaviors. The one based on the Dahu dis-
tance, so on the principle of a barrier (see Eq. (2.32), Eq. (2.39), and Eq. (3.2)) is ef-
fective: the main barrier is visible around the documents, even before normalization;
see Fig. 5.12(e). Also we can notice that the saliency values inside the documents
are much more uniform with the Dahu-based method than with the other saliency-
based methods.

5.5.1.3 Limitation

The major limitation of saliency-based methods is due to low contrast; some failure
cases are depicted in Fig. 5.14. The left image is blurred and the contrast between the
document and the background is poor, so the document cannot be detected. In the
right image, the identity card has a color similar to the one of the background, so the
salient objects are the hand and the portrait. Actually, as perspectives, the method
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(a) Image (b) Saliency

(c) Image (d) Saliency

FIGURE 5.14: Some failure cases of the Dahu-based approach.

we present can be improved through taking into account some extra prior informa-
tion such as “text texture”, and can be combined with more classical contour/line-
based approaches. An extended version for document detection is presented in Sec-
tion 5.5.2.

5.5.2 Extended saliency based method for document detection

In this section, we evaluate our completed frame for document detection based on
the Dahu pseudo-distance, which is introduced in Section 3.2.5.

5.5.2.1 Dataset and Evaluation

To perform the evaluation, we use the ICDAR 2015 SmartDoc challenge 1 dataset
[30]. These videos are taken by a Google Nexus 7 tablet for a total of 25K frames
with a resolution of 1920 × 1080 on six types of document, that are placed over 5
different backgrounds. The document pages are placed inside the image (and never
hit the boundary of the image). The dataset is challenging (variable lighting con-
dition, inhomogeneous background, motion blur and out-of-focus blur). Especially,
the fifth background is complex with many objects placed near the document or
even over it.

To evaluate the performance of the method, the Jaccard index between the de-
tected document A and the ground truth G is used:

J I = area(G ∩ A)/area(G ∪ A) (5.1)

5.5.2.2 Experiments and Results

We start with reducing the size of each frame by a factor of 2. We also convert an
image to L∗a∗b∗ space to mimic the human vision. Then the ToS is built on L∗ and
b∗ channels of each frame (the contrast between the document and the background
is not sufficient on the other channel).
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Method Bg 1 Bg 2 Bg 3 Bg 4 Bg 5 Overall Runtime
A2iA-1 0.972 0.801 0.912 0.635 0.189 0.779 ?
A2iA-2 0.960 0.806 0.912 0.826 0.189 0.809 ?

ISPL-CVML 0.987 0.965 0.985 0.977 0.856 0.966 ?
LRDE [26] 0.987 0.978 0.989 0.984 0.861 0.972 1min
NetEase 0.962 0.955 0.962 0.951 0.222 0.882 ?

SEECS-NUST 0.888 0.826 0.783 0.781 0.011 0.739 ?
RPPDI-UPE 0.827 0.910 0.970 0.365 0.216 0.741 ?

SmartEngines [27] 0.989 0.983 0.990 0.979 0.688 0.955 ?
L. R. S. Leal [28] 0.961 0.944 0.965 0.930 0.412 0.895 0.43s

LRDE-2 [29] 0.905 0.936 0.859 0.903 ? ? 0.04s
Ours 0.985 0.982 0.987 0.980 0.848 0.97 3.7s

Smartdoc ave. [30] 0.9465 0.9031 0.9377 0.8122 0.4041 0.8552 ?

FIGURE 5.15: Quantitative results on Smartdoc 2015 competitions
data. The red (resp. blue) color denotes the best (resp. second) re-
sult in each background. Our method gets the second highest overall
score. It is competitive with the LRDE method [26], but about 20 times

faster than their method.

The SLIC algorithm [25] is adopted to segment an image into 300 super-pixels.
The values α = 5 and β = 1 are chosen to emphasize the Dahu distance. Variations
on them do not change results so far. The value λs = 8000 is low enough to avoid
under-segmentation of the document.

Quantitative results on the Smartdoc 2015 dataset are shown in Fig. 5.15. Our
method achieves the second highest overall score over 12 methods. The difference
with the first ranked method (LRDE) is negligible (0.972 vs 0.97), but we are about 16
times faster (1 min vs 3.7s). Our method is better than the other methods in the com-
petition (even with SmartEngines method [27] which is ranked first on background
1, 2 and 3). Especially, it fails on the most difficult case: background 5 (shortly Bg.
5). In this evaluation, we do not compare our method with SEECS-NUST-2 [235]
method because of the following reasons: they use highly correlated training and
testing data. For background 5, they used 50% of each video for training, next 20%
for validation, and only 30% for testing. It is not a good strategy because:

• the training and testing dataset are too much similar (the accuracy on Bg. 5
decreased from 0.94 to 0.66 when all samples extracted from Bg. 5 “testing
video” were removed from training [235]),

• the testing dataset is different from the other methods.

In Fig. 5.16, we show the results of our method on some challenging images.
Our method is well handled with blurred, illumination variation cases. Even in
some tedious cases such as the superposition of documents, non-straight boundaries
document, partially occluded documents or the document slightly hits the boundary
of the image, our method succeeds.

Concerning the tests, we used an Intel i7 2.6 GHz CPU with 8 GB of RAM. The
speed can be improved as we use a naïve implementation of the method. The to-
tal time (excluding I/O time) of our method depends on the size of the image and
the number of super-pixels. Fig. 5.17 demonstrates the compromise between the
executed time of the process and the overall score. If we increase the scaling param-
eter and decrease the number of super-pixels, the executed time is much shortened,
while the accuracy remains acceptable. Our method achieves an overall score of
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FIGURE 5.16: Some qualitative results of our method. These images
show the robustness of our method to illumination, blur and curled

document.
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FIGURE 5.17: The compromise between the executed time (image res-
olution i.e. image scale) and the overall accuracy. Even at low reso-
lution, our method achieves an overall score of 0.962 for a run time

equal to 0.65s.

0.962 at run time equal to 0.65 second, which is almost 100 times faster than the
method of the LRDE [26].

In this section, we have proposed a framework to detect documents in photos
or videos captured by smartphones based on saliency maps, with very few prior
knowledges about the documents and the images. We only take into account that
the document looks like a quadrilateral and does not mostly touch the image bound-
ary. Our main conclusion (and contribution) is that visual saliency approaches are
relevant to document detection. Moreover, while remaining efficient, which is criti-
cal in embedded software, we have the potential to offer better results than the one
presented here, using some extra knowledge.
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Conclusion

In this thesis, we have studied the Dahu pseudo-distance, which can be considered a
continuous version of the Minimum Barrier Distance (MBD), and we have proposed
several improvements to it.

The MB-based distances have been proved to be robust for pixel fluctuation.
Since these distances were initially developed for grayscale images, they have many
limitations, and there is still room for improvement, especially for color images,
which are not well handled. Therefore, in our work, we have introduced a vec-
torial extension of the Dahu pseudo-distance, which is able to deal with multi-
channels images. Our proposed method is implemented by using the multivariate
tree of shapes, which is a version of the tree of shapes extended to multivariate im-
ages. Obviously, this vectorial Dahu pseudo-distance can manage color images well
which already exposes a great improvement. Nevertheless, our distance is not re-
stricted to three channels images, but it is also applied on multispectral/multimodal
images. Through several experiments, the vectorial Dahu pseudo-distance signifi-
cantly achieves better performance than the Dahu pseudo-distances on grayscale im-
ages and separate channels. The robustness of the vectorial Dahu pseudo-distance
can be explained as follows: the tree of shapes on the color image contains more
information and is well structured. Hence, this extended Dahu pseudo-distance is
promising for many image processing applications.

We have improved the Dahu pseudo-distance by combining the pseudo-distance
with information on the spatial domain of the images. The optimal path found by
our proposed method has an interesting meaning. This path is not only the shortest
path in the “color space” (tree space) but also the shortest path in the image space.
Thus, our approach can be efficiently used for shortest path finding applications.
Typically, we can use this distance to segment a blood vessel.

We have compared our new distance to MB-based distances in some applica-
tions. We have shown that the vectorial Dahu pseudo-distance is less affected by
noise in the image than other MB-based distances. It can be explained that each
node on the tree of shapes is associated with the median value of all pixels in the
node, thereby reducing the impact of noise in the image. Additionally, our pro-
posed distance is more contrasted than MB-based distances. It is because the Dahu
pseudo-distance is computed on tree of shapes, which considers an image to be a
surface and scalar value to be replaced by an interval. Therefore, the Dahu pseudo-
distance tends to decrease its path cost between pixels in the same background while
retaining the contrast between objects and background.

We also have demonstrated an improvement of the vectorial Dahu pseudo-dista-
nce in dealing with multimodal and multispectral images through experiments on
multimodal medical images and multispectral satellite images. Specially, we can
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observe that our distance has successfully been employed in these kinds of applica-
tions.

Another advantage of this new vectorial version is that it can be instantly com-
puted on the tree of shapes. Thanks to a clever representation of images, the mul-
tivariate tree of shapes, the execution time to compute this distances in the tree is
extremely fast (and the tree can be computed in a quasi-linear time w.r.t. the number
of pixels of the images). This is useful when we want to compute multiple distances
between pixels in the image.

With the diversity of advantages stated above, we have tested the Dahu pseudo-
distance in multiple applications, such as interactive segmentation and salient object
detection. Specifically, we have developed a new method for document detection in
videos captured by smartphones. We have achieved high performance with very
little a priori knowledge on the document and the images. In addition, we have
shown the efficiency of the visual saliency for document detection. Our detection
scheme is very fast and offers a good compromise between speed and accuracy. It
is worth noting that severe images, such as, blurred, illumination variation, non-
straight boundaries or partially occluded documents, can be processed efficiently
by our approach. Based on the lessons that we have learned, one future direction
clearly stands out. As our scheme is efficient in the aspect of processing ability, we
plan to extend our work in embedded smartphone direction.

However, the Dahu pseudo-distance still has limitations. First, to compute the
Dahu pseudo-distance, we have to construct a ToS, in the case of gray images and
MToS, in the case of multivariate images. Although the execution time to compute
the tree of shapes is fast, we can not reach 30 frames per second for FullHD im-
ages. Due to the additional time for the computation of the tree, the Dahu pseudo-
distance can not be used in the real-time applications. Secondly, although our dis-
tance has some interesting properties, using only the Dahu pseudo-distance is not
sufficient for many applications. Therefore, it is necessary to combine the Dahu
pseudo-distance with many other features to improve the results.

The hierarchical representation in our segmentation method is computed by us-
ing the Dahu pseudo-distance. For future work, we plan to apply machine learning
techniques to improve the results of hierarchical image segmentation. By learning
other features, such as the gradient values and the textures in each region, we would
be able to achieve good segmentation results.

For the salient object detection application, we applied our Dahu pseudo-distance
to compute the shortest path between each pixel in the image to the border of the
image, thereby generating the saliency map. This approach highly depends on the
background assumption (objects do not touch or only partial touch the background),
which might not be true in the natural images. Moreover, computing the saliency
maps based on the Dahu pseudo-distance is not sufficient. We might need to com-
bine our results with other approaches to improve the final results of our method,
for example, contrast prior or graph-based methods. Furthermore, we can envision
a multi-scale model that can take the best from hierarchical image segmentation to
achieve better saliency maps.

This thesis is an opportunity for us to demonstrate the robustness of the Dahu
pseudo-distance. We believe that this new pseudo-distance can be applied to many
image processing and computer vision applications.
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