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Abstract. In this paper, we present a machine learning based splitting
heuristic for divide-and-conquer parallel Boolean SAT solvers. Splitting
heuristics, whether they are look-ahead or look-back, are designed using
proxy metrics, which when optimized, approximate the true metric of
minimizing solver runtime on sub-formulas resulting from a split. The
rationale for such metrics is that they have been empirically shown to
be excellent proxies for runtime of solvers, in addition to being cheap to
compute in an online fashion. However, the design of traditional splitting
methods are often ad-hoc and do not leverage the copious amounts of
data that solvers generate.
To address the above-mentioned issues, we propose a machine learning
based splitting heuristic that leverages the features of input formulas
and data generated during the run of a divide-and-conquer (DC) par-
allel solver. More precisely, we reformulate the splitting problem as a
ranking problem and develop two machine learning models for pairwise
ranking and computing the minimum ranked variable. Our model can
compare variables according to their splitting quality, which is based on
a set of features extracted from structural properties of the input for-
mula, as well as dynamic probing statistics, collected during the solver’s
run. We derive the true labels through offline collection of runtimes of a
parallel DC solver on sample formulas and variables within them. At each
splitting point, we generate a predicted ranking (pairwise or minimum
rank) of candidate variables and split the formula on the top variable. We
implemented our heuristic in the Painless parallel SAT framework and
evaluated our solver on a set of cryptographic instances encoding the
SHA-1 preimage as well as SAT competition 2018 and 2019 benchmarks.
We solve significantly more instances compared to the baseline Painless
solver and outperform top divide-and-conquer solvers from recent SAT
competitions, such as Treengeling. Furthermore, we are much faster than
these top solvers on cryptographic benchmarks.

1 Introduction

Boolean satisfiability (SAT) solvers are powerful general purpose search tools
that have had a revolutionary impact on many different domains, such as soft-
ware engineering [9], AI [37], and cryptography [30, 32]. They get their power



from proof-construction components like clause learning [29] and heuristics aimed
at optimally sequencing, selecting, and initializing proof rules such as branch-
ing [31, 22] and restarts [3].

The availability of many-core machines has led to a considerable effort in
parallel SAT solver research in recent years [5]. Broadly speaking, researchers
have developed two parallel SAT solver strategies, namely, portfolio and divide-
and-conquer (DC) solvers. A portfolio SAT solver consists of a set of sequential
worker solvers, each implementing a different collection of heuristics, and all of
them attempting to solve the same instance running on different cores of a many-
core machine. The key principle behind a portfolio solver is that of the diversity
of heuristics, i.e., by leveraging a diverse set of heuristics to solve an instance
may be more efficient than just using a single heuristic given the well-known fact
that different classes of formulas are often best solved by distinct methods [11].
On the other hand, DC solvers partition the search space of the input formula
and solve each sub-formula using a separate sequential worker solver. Each sub-
formula is a restriction of the input formula with a set of assumptions [41]. In
both the portfolio and DC settings, the sequential worker solvers may share
clauses to exchange useful information they learn about their respective search
spaces.

In the context of DC solvers, a splitting heuristic is a method aimed at
choosing the “next variable” to add to the current list of assumptions (also known
as guiding paths [41]). A bit more formally, one can define a splitting heuristic
as a function that takes as input features of a given formula φ and/or statistics
of a DC solver’s state and outputs a variable to split on. Splitting heuristics are
typically dynamic, i.e., they re-rank variables at regular intervals throughout the
run of a DC solver.

The process of splitting itself can be described as follows: for a given input for-
mula φ, say that a variable v is chosen for splitting. The solver generates φ[v = F ]
(resp. φ[v = T ]) by setting v to False (resp. True) and appropriately simplifying
the resultant sub-formulas using Boolean constraint propagation (BCP). These
two sub-formulas are then solved in parallel. Each of these sub-formulas can be
further split into smaller sub-formulas recursively. Many heuristics for splitting
have been studied in the literature [17, 2, 1, 35].

Splitting heuristics can be broadly categorized as look-ahead and look-back.
Look-ahead heuristics choose some subset of variables in the input formula,
analyze the impact of splitting on these variables, and rank them based on some
measure that correlates well with minimizing runtime3 of the solver on the sub-
formulas thus obtained. By contrast, look-back heuristics compute statistics on
“how well a variable participated in the search exploration in the past” (e.g.,
in clause learning, propagation, etc.), rank them appropriately, and split on the
highest-ranked variable. Examples of look-back heuristics include splitters based
on VSIDS activity [2], number of flips [21], and propagation-rate [35].

While considerable work has been done on splitting heuristics, almost all
previous approaches share the following characteristics: they compute some fea-

3 Runtime of a solver here refers to the wallclock time of solving a formula.



tures of the input formula and/or statistics over the solver state at appropriate
intervals during the solver’s run, and then use these as input to a “hand-coded”
function (a splitting heuristic designed by the solver designer), that in turn com-
putes a metric correlated with solver runtime to pick the “best” variable to split.
By metric we mean a quantity that can be used to rank variables of the input
formula such that splitting on the highest-ranked variable ideally corresponds to
minimizing solver runtime. We argue that the design of splitting heuristics can
be dramatically improved by leveraging a data-driven machine learning (ML) ap-
proach, especially for families of formulas (e.g., cryptographic instances) where it
can be hard for human designers to come up with effective “hand-coded” splitting
heuristic.

In this paper, we propose two ML-based methods, namely pairwise ranking,
and min-rank. The pairwise ranking model takes as input features of a given
formula φ, aspects of solver state, as well as features of a pair of variables v
and u, and ranks them in descending order based on some splitting metric. This
ML-based “comparator” is in turn used by our DC solver to rank variables for
splitting at regular intervals during its run. The min-rank model, takes as input
features of a given formula φ, aspects of solver state, and features of a variable v,
and outputs whether the variable v has the minimum rank among all variables
of the input formula (i.e is it the best variable to split?). Both of these models
are binary classifiers implemented using random forest.

We implemented our heuristics in the Painless parallel solver framework [20]
(we refer to our solver as MaplePainless-DC), and compared it with top parallel
SAT solvers from recent SAT competitions. We find that our ML-based method
out-performs the best DC solvers on both SAT 2018/2019 competition as well
as cryptographic instances.4

Contributions. In greater detail, our main contributions are as follows:

1. MaplePainless-DC: A DC Solver based on ML-based Splitters. We
present MaplePainless-DC, an ML-based splitting DC parallel SAT solver.
To the best of our knowledge, MaplePainless-DC is the first parallel solver
with an ML-based splitting heuristic. Briefly, our splitting heuristics are
ML models, trained offline on both static formula/variable features (e.g.,
variable occurrence in binary clauses) as well as “dynamic” features based on
aspects of the solver’s state at runtime (e.g., number of times a variable has
been assigned, activities). We propose and implement two different models,
namely, pairwise ranking and min-rank, described above. At runtime, the
trained ML-model is invoked by MaplePainless-DC on a vector of static and
dynamic variable features at appropriate intervals, which in turn outputs a
ranking of the variables in the input formula. The splitting heuristic then
chooses the top-ranked variable, splits the formula by assigning that variable
both True and False values, and gives the resultant sub-formulas to worker
solvers to solve. (See Section 3)

4 We only compare our MaplePainless-DC solver against the state-of-the-art DC
solvers because it is well-known that the most notable portfolio solvers often out-
perform the DC solvers on application benchmarks.



2. Evaluation on Cryptographic Instances. We evaluated our splitting
heuristics on a cryptographic benchmark of 60 instances encoding preimage
attack on round-reduced SHA-1 function (inversion of 60 random hash tar-
gets). We used top sequential solvers in solving cryptographic instances as
backend solvers (MapleSAT and Glucose). We outperform the baseline solver
(Painless-DC with the same backends and flip as splitting heuristics) in an
apple-to-apple comparison, solving an additional instance from the hardest
subset of instances and 30% faster on average on solved instances. We also
solve 19 more instances (over a benchmark of 60) and are significantly faster
relative to one of the top DC solvers, Treengeling. (See Section 5.2)

3. Evaluation on SAT Application Instances from SAT 2018 compe-
tition and SAT 2019 race. We evaluated our splitting heuristics on main
track benchmarks of SAT competition 2018 and SAT race 2019 (total 800 in-
stances) against the baseline solver (Painless-DC with flip as splitting heuris-
tic) in an apple-to-apple comparison, as well as against Treengeling. On the
combined SAT 2018 and SAT 2019 benchmarks, we outperform both these
solvers in terms of the number of solved instances and PAR-2 score5. Fur-
thermore, MaplePainless-DC solves satisfiable instances much better than
all other solvers (18 more than both the baseline and Treengeling solvers
overall application instances), when using the pairwise ranking model. (See
Section 5.1)

2 Background

In this section, we list relevant definitions and notations. We refer the reader
to [7] for details on CDCL SAT solvers. By the term “split” or “splitting” a
formula φ over variable v we refer to the process of generating two sub-formulas
φ1 = φ ∧ ¬v and φ2 = φ ∧ v, which are assumed to be simplified via unit or
Boolean constraint propagation.

DC solvers take as input a Boolean formula and split it into many smaller
sub-formulas, solve them using sequential worker solvers, and combine the results
(SAT if at least one sub-formula is SAT, UNSAT if all of them are UNSAT). The
architecture is usually of a master-slave type, where the slaves are sequential
solvers and the master node maintains the splittings in the form of a search
tree. Each node of the tree is a variable and branches correspond to setting that
variable to True or False. Each “root to leaf” path represents a set of assumptions,
also known as guiding path or cube. The phrase “solving a cube” refers to solving
the original formula constrained with the given cube.

The notation tS(φ) refers to the time to solve a Boolean formula φ with a
sequential worker CDCL SAT solver S (We drop the subscript if it is clear from
context). We denote the reduced formula after setting v to False (respectively
to True) with φ[v = F ] (respectively, φ[v = T ]). By reducing a formula we mean

5 PAR-k is the Penalized Average Runtime, counting each timeout as k times the
wallclock timeout.



simplification via unit propagation (i.e., removal of satisfied clauses from the
formula, falsified literals from clauses).

The term performance metric, with respect to a given solver S, refers to a
function pm : φ × v → R, over a formula φ and a variable v ∈ vars(φ), that
characterizes the “quality” of splitting φ over v. Minimizing this metric ideally
should correlate with minimizing solver runtime.

More precisely, the general goal of designing a splitting heuristic is twofold:
first, to come up with a metric that correlates with minimizing solver runtime,
and second to design a function to compute said metric. Researchers have pro-
posed a variety of performance metrics in the context of splitting heuristics. Be-
low are definitions of three such performance metrics and the intuition behind
each of them. In previous work, researchers have found that these metrics are
good proxies for minimizing runtime in the context of splitting in DC solvers.
Further, to state the obvious, it is ideal to split on a variable that minimizes
these metrics over all variables of an input formula. Let φ1 = φ[v = F ] and
φ2 = φ[v = T ], be the sub-formulas after splitting φ over v.

– pm1(φ, v) = max{t(φ1), t(φ2)}: This metric aims to capture the runtime of
a DC solver executed in parallel over the sub-formulas φ1 and φ2.

– pm2(φ, v) = t(φ1) + t(φ2): This function gives higher priority to splitting
variables that make the problem easier even in a single core setting.

– pm3(φ, v) = −(t(φ) − t(φ1)) · (t(φ) − t(φ2)): The idea behind this metric is
to measure runtime “progress” in each branch (by comparing the runtime of
sub-formulas with the original formula) and also aims to balance the hardness
of the two branches.

Random Forest Classification. We refer the reader to the paper by Liaw
et al. on random forests [26]. Briefly, the random forest is an ensemble learning
method, that constructs a set of decision trees at training time and outputs
the class that appears most often at the output of decision trees. Decision trees
are a popular method for various machine learning tasks. However, trees that
grow very deep tend to learn highly irregular patterns: they overfit their training
sets, i.e. have a low bias, but very high variance. Random forests are a way of
averaging multiple deep decision trees, trained on different parts of the same
training set, with the goal of reducing the variance.

3 Machine Learning Models for Splitting

In this section we discuss a formulation of the splitting problem, define a
quality measure for splitting, and study how we can train ML models that ap-
proximate the best splitting variable.

3.1 The Splitting Problem

Given a Boolean formula φ, a sequential solver S, and performance metric
pm, the splitting problem is to determine a variable v in φ such that the time



required to solve each of φ[v = T ] and φ[v = F ] by S is minimal over all
variables in φ with respect to the given performance metric pm, i.e. to find
argminv∈vars(φ){pm(φ, v)}.

Modeling the exact behavior of a DC solver as it solves the sub-formulas in
parallel and splits them on demand, is a challenging task. Below we define a
metric that we believe is a more accurate measure of the optimal choice of a
splitting variable, compared to the heuristic metrics mentioned in Section 2.

Let φ1 = φ[v = F ] and φ2 = φ[v = T ] be sub-formulas of splitting φ over v,
and let t1 = tS(φ1) and t2 = tS(φ2) be runtimes of solving them by sequential
solver S. The total time taken to solve the formula φ in this setting depends on
the status and runtimes of the sub-formulas. If φ is UNSAT, the solver needs to
prove both of the sub-formulas UNSAT. Hence the total time to solve such an
instance is the maximum of the solver runtimes over the two sub-formulas. If on
the other hand the formula φ is SAT, at least one of the sub-formulas must be
SAT. If both sub-formulas are SAT, the total time is the minimum of the two,
otherwise, only the SAT sub-formula matters. The total time of solving φ after
splitting over variable v can be represented as follows:

Ttotal(φ, v) =


max(t1, t2), φ1 : UNSAT, φ2 : UNSAT

t2, φ1 : UNSAT, φ2 : SAT

t1, φ1 : SAT, φ2 : UNSAT

min(t1, t2), φ1 : SAT, φ2 : SAT

We use this total runtime as our performance metric: pm(φ, v) = Ttotal(φ, v).
In other words the target of our splitting heuristic is: given formula φ, find a
variable v = argminv∈vars(φ){Ttotal(φ, v)}.

3.2 Handling Timeouts

In practice, sub-formulas obtained after splitting on a variable can be hard
for SAT solvers, and thus they may timeout for those cases. Let the status of a
timed out (sub-)formula be labeled as “UNKNOWN”. For a pair of variables u
and v in formula φ, we collect the runtime and status of solving sub-formulas
u1 = φ[u = F ], u2 = φ[u = T ], v1 = φ[v = F ] and v2 = φ[v = T ]. If the status
of all four of these sub-formulas is UNKNOWN, we cannot derive the truth
label (we do not know which of these two variables is better for splitting). In
all other cases (mix of having SAT/UNSAT and UNKNOWN), we have enough
information to be able to compare u and v.

3.3 Learning to Rank

Generally, performance metrics can be used to generate a total order over
the splitting variables (the higher ranked variables have a higher performance
metric). Thus we can see the splitting problem as picking the minimum element
from a ranked list. A common way of implementing splitting heuristics is to rank



the variables by directly deriving the performance metric of each variable and
selecting the minimum element. However, this is not the only way one can rank
the elements. There are three main approaches in the ML literature for learning
a model to rank a list of elements [28]:

– Pointwise: Learning a numerical or ordinal score for each data point, which
are in turn sorted according to their ordinal score. The problem here trans-
lates to training a regression model.

– Pairwise: In this approach, ranking is done via learning a model that acts
as a comparator, which takes as input two data points and outputs a total
order over them.

– Listwise: These algorithms try to directly minimize a ranking evaluation
metric (e.g. τ -score or Mean Average-Precision) that compares a predicted
ranking against a true ranking.

Almost all previous branching and splitting heuristics use pointwise ranking.
For example, VSIDS branching heuristics [31] maintains a score for each variable,
which represents how much that variable participated in clause learning recently.
Then the variable with the highest activity is picked. Ultimately, the goal is to
minimize the runtime and one might learn a function that directly approximates
the desired runtime based ranking. However, approximating the runtime distri-
bution of the CDCL SAT solver is very hard in general, as the interplay of the
many heuristics in CDCL solvers makes it hard to predict how the search pro-
gresses. Heuristic designers hope that their variable ranking strongly correlates
with a ranking where high ranking variables generate easier sub-formulas. In
other words, their variable ranking using the proxy metric strongly correlates
with runtime-based ranking. In the case of splitting or branching heuristics, we
do not care about the actual runtime of sub-formulas and only want to know
which variable corresponds to the lowest runtime. In other words, we want a
way of comparing runtimes and not exactly deriving the runtime values. As
mentioned above, we are looking for a minimum element in an array, sorted
based on a metric. We approach this task of finding the minimum using two dif-
ferent methods. First, we build a pairwise ranking model that learns to compare
two elements (two variables in our case), and second, we use a modified version
of ordinal ranking, that we call min-rank, where we build a classifier that deter-
mines whether a given variable sits at the rank 1. We used binary classification
for building both of these models. In the pairwise ranking, we use the model
as a less-than operator and find the minimum in a linear scan. In min-rank, we
check all of the variables against the model and pick the variable that the model
declares as the minimum.

The first model is represented by a binary classifier PW (PairWise) that
takes as input features of a formula φ and features of two variables vi and vj
within φ, and answers the question of “is vi better than vj for splitting φ?”
(according to our splitting performance metric described in Section 3.1).

PW (φ, vi, vj) =

{
1, pm(φ, vi) < pm(φ, vj)

0, otherwise
(1)



This type of predicate learning was also used in one of the SATZilla ver-
sions [40] (known as pairwise voting), to rank a list of algorithms on a given
instance.

For the second model, we used the idea of reduction by Lin et al. [27] for
implementing ordinal ranking using binary classification. In their work, the role
of a binary classifier given an element and an integer rank k is to determine
whether the element is within the top k elements or not. Splitting heuristics
look for the top variable in a ranked list, thus we are only interested in the k = 1
case. We define a binary classifierMR (Min-Rank) that takes as input a variable
v, and answers the question “is v the best variable for splitting φ?”.

MR(φ, vi) =

{
1, ∀j 6= i : pm(φ, vi) < pm(φ, vj)

0, otherwise
(2)

3.4 Features for Training the Models

The data points that we used to train the model have the following format:

PW : (〈formulafeatures(φ), varfeatures(vi), varfeatures(vj)〉, {0, 1})
MR : (〈formulafeatures(φ), varfeatures(v)〉, {0, 1})

(3)

where the last element corresponds to the appropriate classifier (PW (φ, vi, vj)
or MR(φ, v)). For the formula features, we started from the features proposed
by SATZilla in SAT competition 2012 [40]. Compared to the model that has
been used in SATZilla, we will query our model at each splitting point. The fea-
ture computation time can quickly become a big part of the total runtime, and
dominate the gain from picking a better splitting variable. On the other hand,
each of the features could have an important role in making the model represen-
tative of the target distribution. To address this problem we performed a feature
selection on our initial set of features (both formula and variable features). We
first removed the very heavy features like LP-based (linear programming) fea-
tures. We used the random forest for training our models. We then extracted
the relative importance of each feature after training, which corresponds to the
frequency of the appearance of those features in the ensemble of decision trees.
We created a sorted list of features based on their relative importance (f) and
performed a forward feature selection [10]. More specifically, starting with an
empty list F , we passed through f and added the features to F , if they reduced
the cross-validation error when training on F . We then performed a backward
pass on F , to remove heavy-to-compute features (having normalized cost of at
least 100 milliseconds), that do not contribute much to the accuracy of the model
(having feature importance in the 25th percentile). We also took into account
the product features (features from the multiplication of pairs of other features)
to add non-linearity to the model. The final variable and formula features are
listed in Table 1, consisting of structural metrics and metrics from a limited
search. The features are listed in order of their importance extracted from the
trained random forest.



Table 1: Variable (var features(v)) and Formula features (formulafeatures(φ)),
sorted based on their importance extracted from the trained models.
Feature name Description
numAssigned #times v got a value through branching/propagation
numFlip #times the implied value of v is different than its cached value [1]
numLearnt #times v appeared in a conflict clause
numInTernary #times v appears in a clause of size 3
numInBinary #times v appears in a clause of size 2
LRBProduct product of LRB [22] activities of v and ¬v literals
propRate average #propagation over #decision [35]
activity VSIDS activity [31]
numPropagations number of unit propagations in the limited search
conflictRate ratio of #conflict clauses over #decisions
totalReward sum of LRB reward of all of the variables
numBinary number of clauses of size 2 in φ
numTernary number of clauses of size 3 in φ
avgVarDegree average variable node degree in the Variable-Clause graph
avgClauseDegree average clause node degree in the Variable-Clause graph

3.5 Training Data

We used the MapleCOMSPS solver [23] for collection of solver runtime, as
well as formula and variable features. For generating our training data set, we
picked 210 instances from the collection of application/crafted benchmarks of
SAT competition 2016 [14] and 2017 [15]. To be more precise, 87 instances from
the application benchmark of 2016, 21 instances from the crafted benchmark
of 2016, and 102 instances from the main benchmark of 2017. The selection
criteria were based on having instances from different types of problems (not
problems of the same kind with different sizes) and having a wide range of
hardness to make a representative training set. We did not use any instance that
was deemed too hard (timed out) or too easy (was solved under 5 seconds) by our
sequential solver. To match the test environment, we first ran the pre-processing
stage of MapleCOMSPS and simplified the formulas. Then we computed all of
the structural formula features offline and for the search probing features we ran
MapleCOMSPS up to 10,000 conflicts and collected the necessary statistics from
the solver. For computing the true labels, we randomly selected 50 variables in
each instance and split the formula on each of them and solved the sub-formulas
with MapleCOMSPS up to a 5000 seconds timeout, recording the runtime and
status (SAT, UNSAT, UNKNOWN).

3.6 Analysis of the Learned Models

For training the model, we used random forest classifier. We can achieve an
average precision of 83% and an average recall of 83% and an accuracy of 80.7%.
The candidate variable list can be ordered using the learned predicate. For find-
ing the best variable, we only need to find the “min” of the list, which can be done
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Fig. 1: Percentage of instances where the predicted best variable is within the
actual top-k variables for k between 1 and 10.

in linear time. Although, when using a noisy comparator, the error caused by
the inaccurate comparison, might accumulate over multiple comparisons. There
are more robust sorting algorithms in the presence of noisy comparators (e.g.
counting method [38]), but the running time complexity is quadratic in the num-
ber of elements, which is not feasible for large formulas. To check how well our
predicate is performing, we ranked the variables in the instances in our training
set, where we have the true labels.

When sorting the variables using the pairwise ranking, out of 210 instances,
in 120 instances the best variable in the predicted ranking matched the actual
best variable (57.1% of the time). In 18 cases the best actual variable was the
second best predicted variable. The worst prediction happened in an instance
with 2200 variables, where the best actual variable appeared in the 30th position
in the predicted list. The total error (e.g. τ score) of comparing the predicted
ranking and the best actual ranking could be poor, however, we can see some
general ordering over the variables (variables that are much better choices appear
closer to the front of the list). Figure 1 shows the percentage of instances (out of
210), where the predicted best variable (the output of the model for splitting), is
within the actual top-k variables. We observed that the best predicted variable
is one of the actual top 10 variables in 197 out of 210 instances (93.8%). This
shows that top variables in our predicted ranking have a considerable overlap
with the top variables in the actual ranking.

4 Implementation

Our implementation of MaplePainless-DC is built on top of the Painless
solver framework [20]. Painless is a state-of-the-art framework that allows de-
velopers to implement many different kinds of parallel SAT solvers for many-



core environments. The main configurable components of Painless are: parallel
strategies such as DC or portfolio, clause sharing, and management policies,
and diverse sequential engines. The implementation of our machine learning
based splitting heuristic relies on the use of the DC strategy in Painless [21].
We use an instrumented version of the MapleCOMSPS [23] solver as workers in
MaplePainless-DC. The instrumentation collects formula/variable statistics and
chooses splitting variables.

4.1 Implementation of Splitting in Painless-DC

Painless-DC splits a formula at regular intervals throughout its run. At a
high-level, the master node maintains a queue of idle cores to assign jobs to.
Initially, the master node chooses a variable to split and assigns the resultant
sub-formulas to two cores. If the queue of idle cores is non-empty, the master
node chooses a sub-formula from one of the busy cores and splits it into two sub-
formulas, one of which is assigned to the busy core and the other to one of the
idle ones. This process is repeated until the queue of idle cores is empty. If during
the solver’s run a core becomes idle and is added to the idle queue (e.g., if it has
established UNSAT for its input sub-formula), the above-mentioned process is
invoked until the idle queue becomes empty again. This form of load-balancing
ensures that worker nodes are not allowed to idle for too long.

4.2 Feature Computation for Machine Learning in MapleCOMSPS

When it is time to split a formula, Painless’ master node asks the sequential
worker solver whose sub-formula is being split for variables to split on. The
worker solver computes formula and variable features (e.g. number of times a
variable is assigned, either decided or propagated) on the sub-formula to be split.
The description of the variable features is listed in Table 1.

We used scikit-learn python package [36] for training the model and ex-
tracted the parameters and embedded them in a C implementation of random
forest classifier. We later call this classifier from MapleCOMSPS for performing
predictions. Given a list of candidate variables, pairwise classifier PW is used
as a comparator (less-than) operator to find and return the minimum item in
a linear scan. Min-rank classifier MR is invoked for all variables in the list and
the first variable predicted to be the minimum is returned. The worst case time
complexity of both of the models is O(TC ·n), where n is the number of variables
and TC is the time complexity of querying each of the classifiers.

5 Experimental Results

5.1 Evaluation over SAT 2018 and 2019 Competition Instances

Experimental Setup. For evaluation we used the main track benchmark of
the SAT competition 2018 [13] and SAT race 2019 [12], which in total have



Table 2: Performance comparison of our solvers vs state-of-the-art DC parallel
SAT solvers. Number of solved instances is out of 791 (after removing repeated
instances from the original 800). SAT column shows the number of satisfiable
instances solved (resp. UNSAT). The best result in each column is shown in
bold.
Cores Solver Solved SAT UNSAT Avg. Runtime (s) PAR-2 (hr)

8

Treengeling 501 292 209 719.399 905.672
Painless-flip 474 291 183 437.632 938.177
MaplePainless-DC-MinRank 497 299 198 484.340 883.532
MaplePainless-DC-Pairwise 501 309 192 435.610 866.178

16 Treengeling 518 308 210 677.216 855.777
MaplePainless-DC-Pairwise 520 317 203 334.991 801.165

800 instances, consisting of industrial instances coming from a diverse set of
applications and crafted instances encoding combinatorial problems. Within our
sample of instances from 2016/2017 (used for training), a scrambled version (a
shuffling of clauses and variable IDs) of 9 instances appear in the 2018/2019
benchmarks as well (used for testing). To have a fair evaluation, we removed
these 9 instances from the testing benchmark. Timeout for each instance was
set at 5000 seconds wallclock time (the same as in SAT competitions). All jobs
were run on Intel Xeon CPUs (3GHz and 64GB RAM). As a sanity check, we
performed a controlled apple-to-apple study comparing Painless with ML-based
splitting heuristic against the same setup with random splitting heuristic. We
note that Painless with ML-based splitting easily outperforms the version with
random splitting.

Solvers Description. We compared our solver against the top divide-and-
conquer parallel solvers, Treengeling [6] version bcj and Painless-DC [21] with
its best performing setting (node switch strategy: clone, clause sharing: all-
to-all, and splitting heuristic: flip), which we will refer to as Treengeling
and Painless-flip, respectively. We refer to our implementations using
the PW classifier for pairwise ranking as MaplePainless-DC-Pairwise and
MaplePainless-DC-MinRank refers to solver with binary classification of mini-
mum rank (MR classifier). Our parallel solvers and Painless-flip use Maple-
COMSPS [23] as the backend sequential solver. We changed MapleCOMSPS to
always use LRB as branching heuristics. Each solver was assigned 8 cores.

Results. To perform an apple-to-apple comparison and measure the effective-
ness of our splitting heuristics, we reused all of the configurations and compo-
nents of Painless-flip and only replaced the splitting heuristics, which was
straightforward, thanks to the modular design of Painless. Table 2 lists the num-
ber of solved instances, average runtime among solved instances, and the PAR-2
metric. In the SAT competition, PAR-2 is measured in seconds, but for better
readability, we report it in hours. As the table shows, both ML based heuristics,
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Fig. 2: Cactus plot for performance comparison of our parallel SAT solvers
against baseline and state-of-the-art on main track benchmarks of SAT com-
petition and hard cryptographic benchmark (using 8 cores).

improve significantly upon the baseline in the application benchmark of 2018
and 2019. Additionally, MaplePainless-DC-Pairwise solves the same number
of instances as Treengeling, but has the lowest PAR-2 score among all. Figure
2a shows the cactus plot of these solvers over this benchmark.

5.2 Evaluation over Cryptographic Instances

Experimental Setup. We used a set of hard cryptographic instances encoding
preimage attack on round-reduced SHA-1 hash function. More precisely, the
instances encode inversion of 21, 22, and 23 rounds SHA-1, with 20 random
targets for each rounds version [33]. All jobs were run on Intel Xeon CPUs at
3GHz and 64GB of RAM with 12 hours wallclock timeout.

Solvers Description. We compared our MaplePainless-DC-Pairwise solver
against the baseline (Painless-flip) and Treengeling. All solvers were run
with 8 cores. For the backend solvers in this experiment, we used Glucose [4]
and MapleSAT [22] (4 of each). Glucose solvers used Glucose’s default restart
policy. MapleSAT solvers were set to use the MABR restart policy [34]. To have
an apple-to-apple comparison with baseline, we used the same backend solver
configuration for baseline and our solvers.

Results. Figure 2b shows the performance of the considered DC solvers on
our hard cryptographic benchmark. Instances with 21 rounds are easy for all
solvers. 22 rounds instances are much harder than 21 rounds instances and as
can be seen, Treengeling solves very few of these instances. Although both
MaplePainless-DC-Pairwise and Painless-flip solve all of these instances.



The hardness ramps up very quickly at 23 rounds instances, where Treengeling
does not solve any of the instances and Painless-flip solves 2 of them.
MaplePainless-DC-Pairwise solves 3 instances in this subset of instances, and
with 30% lower runtime.

5.3 Scaling Experiments

Our main set of experiments were executed on 8 CPU cores. To study how
our splitting heuristic scales with larger number of cores, we took Treengeling
and MaplePainless-DC-Pairwise, that performed better among the four solvers
on SAT 2018 and 2019 benchmarks, and compared them on these benchmarks
on 16 core machines. Table 2 shows that our MaplePainless-DC-Pairwise
solver can solve 2 more instances than Treengeling (as opposed to solving
the same number of instances as observed in the 8 core setting). Further,
MaplePainless-DC-Pairwise with 16 cores solves 19 more instances compared
to the same version with 8 cores, and 11 of these instances were unsatisfiable.

5.4 Computational Overhead of ML Models

The timing results presented in this section are end-to-end (i.e., the compu-
tational overhead of running the ML models are included in the solver runtimes
presented). The majority of the variable features are dynamic and their counters
are updated whenever there is a related action performed during the search, thus
their complexity is amortized over the run of the solver. The structural formula
features are computed at the start of the search, which are all linearly propor-
tional to the size of formula, and later are updated incrementally as the formula
is reduced via splitting. Setting up the feature values and querying the models
roughly takes 6% of the total runtime of the solver on average for the SAT 2018
and 2019 benchmarks.

5.5 Summary of Results

We first note that MaplePainless-DC significantly outperforms both base-
line as well as the state-of-the-art Treengeling solvers on cryptographic (60
instances) and SAT 2018/2019 competition benchmarks (800 instances) both in
terms of number of solved instances as well as PAR-2 scores. Further, we see an
improvement in performance of our solver MaplePainless-DC as we increase the
number of machine cores from 8 to 16 (see Table 2).

Both of the ML-based heuristics are very successful on satisfiable in-
stances, where MaplePainless-DC-Pairwise solves 17 more satisfiable in-
stances relative to Treengeling and 18 relative to Painless-flip (although
solving fewer unsatisfiable instances than Treengeling). On cryptographic
benchmark, MaplePainless-DC-Pairwise solves 43 out of 60 instances, out-
performing other solvers. From the hardest instances (23 rounds SHA-1) in
this benchmark, Treengeling can not solve any of the instances, whereas
MaplePainless-DC-Pairwise solves three of them (see Table 2 and Figure 2).



6 Related Work

Cube-and-conquer [16] solvers (such as Treengeling [6]) use a look-ahead
procedure to determine the best splitting variable. In contrast to look-ahead
techniques, some solvers use look-back methods that dynamically analyze the
search performed by the solver, as well as formula statistics, to identify the
best candidate at the “current” splitting point. For example, Ampharos [2] picks
the variable with the highest VSIDS activity and MapleAmpharos [35] uses
propagation-rate (average propagation of a variable divided by the number of
decisions). Audemard et al. [1], use the number of times a variable’s saved phase
is flipped through propagation. This has been shown to be effective in divide-
and-conquer settings [21]. We can categorize our work as a look-back heuristic
as all of the features are extracted from previous limited runs of a sequential
solver.

ML has been used to rank and pick the best variable in sequential SAT
solvers. Liang et al. used a reinforcement learning formulation to find the most
rewarding variable according to the learning-rate metric for branching [22]. In
another work, they train a logistic regression model that ranks variables based
on the probability of causing a conflict in the next step [25]. In contrast to
these methods that use a pointwise ranking of the variables, we are employing a
pairwise ranking. The pairwise ranking has been used in other constraint solver
contexts as well. Xu et al. used pairwise voting in the context of algorithm se-
lection, to rank SAT solvers based on their performance on a single formula [40].
Khalil et al. used deep reinforcement learning for learning heuristics in optimiza-
tion algorithms over graphs of up to 1000 nodes [18], however, there is a scaling
challenge when applying their work on industrial SAT instances which can have
millions of variables.

7 Conclusions

We presented two ML based look-back splitting heuristics for DC solvers
in this paper, namely, pairwise ranking PW and min rank MR methods.
These methods significantly outperform the baseline Painless and state-of-the-
art Treengeling solvers on both industrial and cryptographic benchmarks.

One of the key insights that underpins our solver heuristic design is the ob-
servation that solvers are compositions of two kinds of methods, namely, logical
reasoning routines (e.g., conflict clause learning or BCP), and heuristics aimed
at optimally selecting, sequencing, or initializing logical reasoning rules.We show
that our methods outperform hand-tuned heuristics in the best DC solver to-
date, namely, Treengeling, on a large industrial benchmark as well as challenge
problems obtained from cryptographic applications. This gives us greater confi-
dence in our philosophy that design of solver heuristics can effectively leverage
ML methods, especially given the fact that solvers are data-rich environments.
Further, future solver design is likely to move away from ad-hoc heuristic design
and more towards feature engineering and appropriate choice of ML methods,
as has already been witnessed for many solver heuristics [22, 25, 24, 8, 39, 19].
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