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ABSTRACT
Rule Compaction of populations of Learning Classifier Systems

(LCS) has always been a topic of interest to get more insights into

the discovered underlying patterns from the data or to remove

useless classifiers from the populations. However, these techniques

have neither been used nor adapted to Anticipatory Learning Clas-

sifier Systems (ALCS). ALCS differ from other LCS in that they

build models of their environments from which decision policies

to solve their learning tasks are learned. We thus propose CRACS

(Compaction of Rules in Anticipatory Classifier Systems), a com-

paction algorithm for ALCS that aims to reduce the size of their

environmental models without impairing these models or the abil-

ity of these systems to solve their tasks. CRACS relies on filters

applied to classifiers and subsumption principles. The capabilities

of our compaction algorithm have been studied with three differ-

ent ALCS on a thorough benchmark of 23 mazes of various levels

of environmental uncertainty. The results show that CRACS re-

duces the size of populations of classifiers while the learned models

of environments and the ability of ALCS to solve their tasks are

preserved.

CCS CONCEPTS
• Computing methodologies→ Rule learning; Knowledge rep-
resentation and reasoning.
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1 INTRODUCTION
Artificial Intelligence models such as ChatGPT can have huge impli-

cations for science and society [24]. However, these models rely on

"black boxes" lacking transparency and interpretability: their behav-

ior is particularly difficult to capture [20]. Although it is possible

to develop tools to provide explanatory elements about these black

boxes, we advocate in favor of using intrinsically interpretable mod-

els. Rule-based machine learning models are models that generate

rules describing the behavior of agents or characterizing data sets.

The interpretability of the rule-based models is thus admitted in

many fields where they have been used [1].

Learning Classifier Systems (LCS) are Rule-BasedMachine Learn-

ing models designed to learn tasks in complex and continuously

changing environments like real-world ones [10]. LCS build their

populations of rules (called classifiers) thanks to two components:

one devoted to discovering new rules and the other one to adapting

rules to learning tasks [21]. Among these systems, we are inter-

ested in Anticipatory Learning Classifier Systems (ALCS) used in

uncertain environments for reinforcement learning tasks.

ALCS generate their classifiers through successive comparisons

of their perceptions of environments: ALCS are thus able to repre-

sent the consequences of their decisions through the {conditions,
actions, effects} tuples in their classifiers (or {𝐶,𝐴, 𝐸} tuples)
[9]. Contrary to other LCS, ALCS thus build representations of

their learning environments, from which decision policies capable

of solving their learning tasks are learned. Environmental repre-

sentations learned by ALCS are decoupled from the resolution of

learning tasks per se: ALCS would only need to develop new de-

cision policies from their environmental models if a learning task

were to change. The design of ALCS allows them to provide more

explanatory insights about their decisions. For example, a user can

predict the consequences of other decisions that could have been

made and compare them with the ones chosen by an ALCS.

However, environmental uncertainty impacts the ability of ALCS

to develop representations of their environments and to solve their

learning tasks. Environmental uncertainty can take the form of
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actionswith non-deterministic consequences, situations that cannot

be distinctly identified (as with the Perceptual Aliasing Issue) or

noisy environmental rewards [18]. These uncertainties often result

in building more classifiers since finding the most appropriate ones

is more challenging for ALCS (and LCS).

As with any rule-based approach, an increase in the number of

rules reduces the interpretability of these approaches [22]. Algo-

rithms aiming at extracting knowledge from populations of clas-

sifiers have therefore been developed for many LCS to alleviate

this rise: both compaction [22] and condensation [25] target at

removing useless classifiers while other techniques merge similar

classifiers into new ones representing their characteristics [11].

However, algorithms to extract knowledge from populations of

classifiers have not been designed for ALCS, contrary to other LCS.

This paper thus introduces CRACS (Compaction of Rules in

Anticipatory Classifier Systems), a compaction algorithm for ALCS

that aims to reduce the size of their representations of uncertain

environments without impairing these representations or the ability

of these systems to solve their tasks.

A review of ALCS and techniques to extract knowledge from pop-

ulations of classifiers of LCS is presented in section 2 to introduce

CRACS in section 3. Section 4 presents a study of the capabilities of

CRACS through a thorough benchmarking on the different mazes

used as test-beds in the literature. The results achieved by CRACS

are discussed in section 5 before concluding in section 6.

2 EXTRACTING KNOWLEDGE: REVIEW
Techniques to extract knowledge from populations of classifiers are

based on two opposing approaches, depending on whether they are

used with learning data (data-driven) or not (rule-driven). When

environments are uncertain, it seems tricky to use approaches that

rely on data from these environments to extract knowledge. The

changing nature of uncertain environments implies that these data

cannot fully represent learning tasks. Moreover, [11] show that rule-

driven approaches highlight the classifiers that effectively describe

the problem while data-driven approaches suffer from overfitting:

data-driven approaches may use overly specific classifiers or ignore

previously learned knowledge to create a representation that best

matches the data.

The three main techniques for extracting knowledge from LCS

are compaction, condensation and building new rules (through

merging or clustering for example).

Originally proposed by [25], condensation disables rule discover-

ing components of LCS to let them remove unfitted classifiers while

learning to solve their tasks. [12] demonstrated that this technique

enables LCS to build representations of boolean functions with a

minimal number of classifiers, with the least possible overlap, while

completely describing the problem. Condensation was applied by

[13] to an LCS dedicated to data mining, reducing the sizes of pop-

ulations of classifiers by about 94%, with very small impacts on the

resolution of the problems. [4] has finally adapted this technique to

be used with an LCS that solves function approximation problems.

The use of condensation is thus constraining and also unsuitable

to our needs since it subscribes to data-driven approaches. For

condensation to be effective, it requires that LCS have a complete

representation of its data, otherwise, condensation could not make

populations converge to the most compact set of classifiers. In

practice, however, it is difficult to obtain or know whether repre-

sentations built by LCS are complete for uncertain environments.

This would imply that the training data perfectly describes such

changing environments.

The building of new rules was introduced by [11]: classifiers

are first grouped according to their similarity and new classifiers

representing the characteristics of the groups are generated. This

technique depends on a measure of similarity between two classi-

fiers and on a clustering algorithm that uses this measure. It has

been employed by [23], [27] and [16] which combines visualization

tools with statistical tools to guide knowledge discovery by identi-

fying discriminating conditional attributes of classifiers.

Many ALCS already use generalization mechanisms on sets of clas-

sifiers corresponding to the same environmental situations, thus

avoiding any loss of knowledge for these sets [3]. If these tech-

niques were used on the same sets of classifiers, they would be

redundant with the ones already implemented in ALCS. Otherwise,

these techniques could impair the built environmental representa-

tions depending on how classifiers could be grouped, which is not

desirable.

Finally, compaction removes overlapping classifiers, classifiers

with low fitness to learning tasks or classifiers with conflicting

conditions from the populations. Compaction was first suggested

by [26] and consists of a 4-step algorithm :

(1) Classifiers are sorted according to a property that allows

them to be ranked by their relevance to solving a learning

task, such as their numerosity, fitness or experience.

(2) A subset of classifiers is formed from the set of sorted classi-

fiers, such that performance on a training set is maximized:

the first classifier of the sorted set forms a subset, and if

performance is not maximized, the second classifier of the

sorted set is added to this subset, etc.
(3) Classifiers that have been added to the previous subset with-

out improving its performance are deleted.

(4) Classifiers with overlapping conditional structures are re-

moved from the previously formed subset, preferring those

related to the largest number of instances in the training set.

Several propositions related to [26] were then made: [7] changed

the last step of this compaction algorithm by preferring the most

general classifiers; [6] proposed to use the product of one classifier

numerosity multiplied by its reward to form classifier subsets in

step 2 of this algorithm; [8] modified the three first step of [26]’s

algorithm by using experience and prediction reward of classifiers.

But these algorithms rely on training data and thus fall under the

data-driven approach that is not desired; [22] went further by using

the product of numerosity, reward and generality of classifier in

step 2 of this algorithm; [22] also suggested to use the fitness of clas-

sifiers to sort the population and then, to only remove overlapping

classifiers by promoting classifiers whose fitness is the largest.

Other compaction algorithms do not rely on training data. [4]

proposed to directly delete classifiers whose situations described by

their conditional structure are included in a classifier whose predic-

tion error is lower. [22] proposed a filter adapted to LCS performing

classification tasks where classifiers are removed from the popu-

lation if their prediction does not outperform chance, or if these
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classifiers have overfitted the training data. [14] have proposed

a compaction algorithm that seeks to identify, for the same LCS

having to the same problem several times, classifiers common to all

populations. [15] then refined this idea under two new compaction

algorithms whose goal is to identify all correct and unsubsumable

classifiers (what they called the "natural solution"), instead of iden-

tifying the smallest, correct, non-overlapping set of classifiers that

solves a learning task (that is an optimal solution): both algorithms

differ in their use of training data to identify over-general rules

(thus making one of them fall under the data-driven approach).

Since ALCS were originally intended for reinforcement learning

tasks, they attempt to learn both a transition model of the environ-

ment and a decision policy built from this model. The other LCS

focus on setting a decision policy. The object to be compacted is

thus different according to the systems (the model or the decision

policy) and could explain why adaptations of these techniques are

expected for ALCS. This could also be a reason why these com-

paction techniques have not been used with ALCS.

CRACS (Compaction of Rules in Anticipatory Classifier Systems)

is hereby introduced as the first rule-driven compaction technique

generic to any kind of ALCS. CRACS adapts two ideas from [4]

and [22] to reduce the sizes of the environmental representations

learned by ALCS without impairing these representations or the

ability of these systems to solve their tasks.

3 CRACS
ALCS classifiers are mainly made of a {𝐶,𝐴, 𝐸} tuple (consisting
of a condition component 𝐶 , an action component 𝐴 and an effect

component 𝐸), a mark𝑀 that specifies states for which the classifier

has failed to anticipate, a measurement of the quality of anticipation

𝑞, a prediction of the expected reward, and lastly, an experience

𝑒𝑥𝑝 indicating the number of times a classifier has been used [5].

CRACS attempts to take into account all possible representa-

tions of {𝐶,𝐴, 𝐸} tuples to adapt to any ALCS operating in un-

certain environments (partially observable and non-deterministic).

Three different {𝐶,𝐴, 𝐸} representations exist to provide ALCS with
capabilities to manage environmental uncertainty: BACS uses Be-

havioral Sequences consisting of sequences of actions to tackle the

Perceptual Aliasing Issue [17]; PEPACS uses (Probability-)Enhanced

Predictions to enable the building of several consequences in effect

components of classifier so that the system can build complete

representations of uncertain environments [18]; BEACS enhances

and merges Probability-Enhanced Predictions with Behavioral Se-

quences to better enable ALCS to handle uncertain environments

[19]. The figure 1 shows examples of different {𝐶,𝐴, 𝐸} representa-
tions. The hash is a wildcard that corresponds to all possible items

in the condition and indicates there are no changes in the effect.

Both 𝐶𝑙2 and 𝐶𝑙3 depict classifiers having enhanced predictions.

𝐶𝑙2 anticipates two sets of changes that only differ at the right

position of an agent where one set of changes has been predicted

1503 times and the other one 1501 times. 𝐶𝑙3 also anticipates two

possible changes at the right position of an agent where a wall

(resp. a path) is expected with 48% occurring probability (resp. 52%).

Colors correlate classifiers with environmental situations to which

they correspond.

Figure 1: Illustration of different ALCS classifiers tuples in a
maze environment, if the provided observations are limited
to the eight squares adjacent to each position starting from
the North and clockwise. Walls are represented with dark
blue cells while paths are represented with white cells.

CRACS adapts the idea of filtering out classifiers from [22]. In

particular, the use of Behavioral Sequences in ALCS increases the

size of populations of classifiers [17]. Many classifiers with such

sequences can be created without being tested or participating in

the system’s decision policies. For example, the experience of such

classifiers is then lower than the threshold \exp set by the user:

this threshold enables the classifiers to be considered as sufficiently

experimented. Effect components of these classifiers can also pre-

dict that their use of Behavioral Sequences does not lead to any

environmental changes (e.g. an agent taking a step forward and

then a step back). However, environmental changes are expected

when the Behavioral Sequences aims at bridging states related to

the Perceptual Aliasing Issue.

Removing these classifiers would reduce the number of classifiers

in the populations while making it easier to identify the relevant

Behavioral Sequences classifiers for population and decision policy

study.

CRACS also adapts from [4] the idea of removing overlapping

classifiers to reduce the size of the populations and ease their in-

terpretability. Implementing this idea requires defining how one

classifier can subsume another, while taking into account their

structure, i.e. the use of Behavioral Sequences or the presence of
several consequences in their effect components with Enhanced

Predictions.

CRACS then consists of two steps where, for each classifier 𝑐𝑙 in

the population:

• 𝑐𝑙 is compared to every other classifier in the population to

determine if it can be subsumed and therefore removed from

the population ;

• if 𝑐𝑙 cannot be subsumed by another classifier of the popu-

lation, 𝑐𝑙 goes through a filter that removes classifiers with

Behavioral Sequences if their effect components do not antic-

ipate any changes or if they are not sufficiently experienced

according to the \exp parameter of ALCS.

The pseudo-code for CRACS is given by the algorithm 1, and the

function to determine if one classifier subsumes another is given

by the algorithm 2. The compaction of the population of classi-

fiers is performed once, before exploiting the population to solve

a learning task. It takes as arguments the population of classifiers

𝐶𝑙𝑠 , the user thresholds \exp and \r each determining whether a

classifier has been sufficiently tested by the system or whether the

quality of a classifier is sufficiently high (meaning that the con-

sequences of its action can be reliably predicted), and finally the

length 𝐿 characterizing perceptions of the environment. CRACS
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Algorithm 1 Compaction of an ALCS population of classifiers

1: function CompactPopulation(𝐶𝑙𝑠 ,𝐿,\exp,\r)

2: for each 𝑐𝑙1 ∈ 𝐶𝑙𝑠 do
3: 𝑘𝑒𝑒𝑝𝐶𝑙1 ← True
4: for each 𝑐𝑙2 ∈ 𝐶𝑙𝑠 do
5: if IsSubsumed(𝑐𝑙1,𝑐𝑙2,\r) == True then
6: 𝑘𝑒𝑒𝑝𝐶𝑙1 ← False
7: break
8: end if
9: end for
10: if 𝑘𝑒𝑒𝑝𝐶𝑙1 == True and

𝑙𝑒𝑛𝑔𝑡ℎ(𝐴
cl1
) > 1 and

(𝑒𝑥𝑝
cl1

< \exp or 𝐸
cl1

= {#}𝐿) then
11: 𝑘𝑒𝑒𝑝𝐶𝑙1 ← False
12: end if
13: if 𝑘𝑒𝑒𝑝𝐶𝑙1 == False then
14: Discard 𝑐𝑙1 from 𝐶𝑙𝑠

15: end if
16: end for

first performs subsumption between classifiers (lines 4 to 9), be-

fore performing the proposed filtering for the classifiers having

Behavioral Sequences (lines 10 to 12). The execution time of this

algorithm, although quadratic with the size of the population of

classifiers, is still negligible compared to the time taken by ALCS

to learn [4].

Algorithm 2 takes as argument two classifiers 𝑐𝑙1, 𝑐𝑙2, and the

user threshold \r. A classifier 𝑐𝑙2 subsumes 𝑐𝑙1 if:

• The set of environmental situations described by the condi-

tion of 𝑐𝑙1, noted𝐶cl1
, is included in the set of environmental

situations described by the condition of 𝑐𝑙2, noted 𝐶cl2
.

• The actions𝐴
cl1

of 𝑐𝑙1 and the actions𝐴cl2
of 𝑐𝑙2 are identical.

• The set of environmental changes described by the effect

of 𝑐𝑙1, noted 𝐸
cl1
, is included in the set of environmental

changes described by the effect of 𝑐𝑙2, noted 𝐸cl2 .

• 𝑐𝑙2 is reliable, meaning its quality is larger than the related

user threshold \r, or the quality of 𝑐𝑙2 is larger than the

quality of 𝑐𝑙1.

• 𝑐𝑙2 has not been marked by any environmental situations or

its mark𝑀
cl2

strictly corresponds to that of 𝑐𝑙1, noted𝑀cl1
.

By ensuring that the condition and effect components of 𝑐𝑙1 are

included in those of 𝑐𝑙2 for the same actions, any environmental

transition described by one classifier to be deleted from the popu-

lation is then necessarily described by another classifier. CRACS

is also generic to any representation used in the {𝐶,𝐴, 𝐸} tuples
of the ALCS classifiers as long as it is possible to define how one

condition or effect can include another.

Relying on classifiers not marked by an environmental situation

indicates that their anticipations have always been correct. If two

classifiers are marked, checking that their marks match indicates

that these classifiers were used in the same environmental situ-

ations. Using the marks allows us to remove classifiers that are

merely intermediate products of other classifiers, while minimizing

an impairment of the environmental representations constructed

by ALCS.

Algorithm 2 Subsumption of ALCS classifiers

1: function IsSubsumed(𝑐𝑙1,𝑐𝑙2,\r)

2: if 𝐶
cl1
⊆ 𝐶

cl2
and

𝐴
cl1

== 𝐴
cl2

and
𝐸
cl1
⊆ 𝐸

cl2
and

(𝑞
cl2

> \r or 𝑞cl2 ≥ 𝑞
cl1
) then

3: if 𝑀
cl2

== ∅ then
4: return True
5: end if
6: if 𝑀

cl2
== 𝑀

cl1
then

7: return True
8: end if
9: end if
10: return False

CRACS was tested with a set of ALCS using different representa-

tions of {𝐶,𝐴, 𝐸} tuples. The validation of CRACS was done using

a maze benchmark because they are widely used as reinforcement

learning benchmark [2]: the experimental protocol and the achieved

results are presented in the following section.

4 PERFORMANCE IN MAZE ENVIRONMENTS
4.1 Experimental protocol
The mazes used to validate CRACS can be characterized according

to different measures such as the average distance to the exit or

the type of Perceptual Aliasing Issue an agent can experience. [2]

proposes a measure of the complexity of mazes that quantifies

how difficult it is for an agent to learn in these environments. The

complexity is computed as the ratio of how long an agent trained

by Q-Learning takes to reach the exit to the average distance to

the exit (for further details, refer to [2]). Thus, the complexity of

a maze mainly depends on the size of the maze, on the average

distance to the exit and on environmental uncertainties like the

Perceptual Aliasing Issue. The more a maze is uncertain, the higher

this complexity. We used the maze benchmark from [17] as these

mazes were clearly described in the literature and often used in

different experimental protocols. The benchmark is made up of

23 mazes of different complexities (due to the occurrence of states

related to the Perceptual Aliasing Issue for instance) summed up in

the table 1.

Our experimental protocol is set to address the following ques-

tions:

• To what extent are the sizes of ALCS populations of classi-

fiers reduced by CRACS?

• How does CRACS alter the environmental representations

constructed by ALCS?

• To what extent does CRACS influence the ability of ALCS to

perform their learning task?

Three different ALCS (BACS, PEPACS and BEACS) are used to con-

struct a complete and accurate representation of their environment,

by moving one grid-cell at a time and in either eight adjacent po-

sitions, while attempting to reach the exit as fast as possible. To

make the learning and the solving of the task more complex, the

results of actions have a 25% chance of being uncertain, in which

case an ALCS performs a random action without knowing which
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Maze Complexity Maze Complexity

MazeE2 > 250 Woods101.5 > 225

Maze10 > 150 Woods102 > 150

Woods100 > 150 Woods101 > 150

MazeF4 > 125 MazeE1 > 100

Maze7 > 100 MazeB < 10

Littman89 < 10 MiyazakiA < 10

MiyazakiB < 10 MazeD < 10

Littman57 1 Cassandra4x4 1

Maze4 1∗ Maze5 1∗
MazeA 1∗ MazeF1 1∗
MazeF2 1∗ MazeF3 1∗
Woods14 1∗
Table 1: Maze complexities from [2] sorted by descending or-
der. ∗ indicates that no values were provided by [2] because
corresponding mazes does not have the Perceptual Aliasing
Issue. We can expect their complexity to be 1, as an agent
employing Q-learning can optimally reach the exit of mazes
in any position.

one. Their perceptive capabilities are limited to the eight squares

adjacent to each position. Their starting position in the mazes is

random (but distinct from the exit).

For each maze of the benchmark, 30 runs were performed using

each of these three ALCS. A run firstly consists of a succession of

5000 trials, that are constrained explorations until the exit or the

maximal number of actions (100) are reached: 𝜖 is set to 0.8 for the

𝜖-greedy policy used to select actions; the learning rate of the rule

discovery component and the reinforcement component, 𝛽 , is set

to 0.05; the PEP learning rate of PEPACS is set to 0.01; the maximal

length of the Behavioral Sequences of BACS and BEACS is set to 3.

A deep copy of the populations of classifiers is then made to study

the impact of CRACS on the copies when the original populations

serve as a control.

Then, the ALCS are switched to pure exploitation (i.e. no use of rule
discovery component) and have 500 trials to bootstrap an efficient

decision policy (𝜖 = 0.2, 𝛽 = 0.05) and 500 more trials to stabilize the

rewards (𝜖 = 0, 𝛽 = 0.05), before recording the number of actions

required by the ALCS to reach the exit for 500 more trials (𝜖 = 0,

𝛽 = 0.05). Other parameters not described here are initialized to

their default values.

The source code of the three different ALCS, the mazes and the

experimental workflows is available on GitHub.

4.2 Metrics
To determine how CRACS affects environmental representations,

knowledge ratios, average specificities of reliable classifiers, and

average EP-accumulated errors are collected for each experiment

(EP stands for Enhanced Predictions).

The knowledge ratio is the ratio of correct transitions learned by

at least one reliable classifier to all possible transitions. Only tran-

sitions that led to environmental changes are included.

The average specificity of reliable classifiers is the average ratio of

wildcards in the condition components of classifiers whose quality

is larger than the user threshold \r. The average specificities of the

reliable classifiers allow us to calculate the generalization rate:

1 − Average specificity of compacted reliable classifiers

Average specificity of control reliable classifiers

Figure 2: Compression rates for eachmaze environment and
for each classifier system.

The generalization rate assesses the increase or decrease in gen-

eralization of reliable classifiers between control and compacted

populations.

The average EP-accumulated error measures the accuracy related

to the probabilities of anticipating a change within the effect com-

ponents of classifiers [19]. This measure is thus different from the

knowledge ratio which only provides information about the pres-

ence of a change in an effect component.

The sizes of the populations of classifiers and the number of steps

needed to reach the exit of the mazes are also collected for each

experiment to respectively address the first and the last questions.

In particular, the sizes of the populations of classifiers are used to

compute the compression rate between the control and compacted

populations:

1 − Size of compacted population

Size of control population

The compression rate quantifies the reduction in the number of

classifiers between the analyzed populations.

All metrics were averaged over the 30 runs for each environment.

The obtained averages were compared with p-values computed

by Welch t-tests with (Welch-) Satterthwaite degrees of freedom

(significance threshold 0.05).

4.3 Results
To what extent are the sizes of ALCS populations of classifiers

reduced by CRACS?.
Figure 2 shows the compression rates following the use of the

CRACS algorithm for each environment and for each ALCS. CRACS

significantly reduces the sizes of populations of classifiers con-

structed by BEACS for 19 of the 23 mazes, where the compression

rates can go up to 80%. The populations constructed for MazeF1,
MazeF2, MazeF3 and Woods14 are not modified by the algorithm.

The sizes of populations of classifiers in BACS are reduced for all

environments, with a reduction up to 55%. Finally, the sizes of

populations of PEPACS are also significantly reduced across all

environments, to a maximum of 28%.

How does CRACS alter the environmental representations con-
structed by ALCS?.

https://github.com/RomainHappy/Reasoning-with-ALCS
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Figure 3: Generalization rates for each maze environment
and for each classifier system.

The knowledge ratios of the control populations of classifiers

are strictly identical to the knowledge ratios of the compacted

populations, for all environments and all ALCS. The compaction

algorithm did not remove any classifiers that would have induced

knowledge losses in the environmental representations constructed

by the ALCS. Thus, any environmental transition described by

a classifier of a control population is found in a classifier of the

corresponding compacted population.

The average EP-accumulated errors then test whether the com-

pacted populations of ALCS can correctly indicate the probabili-

ties of anticipating upcoming situations for each environmental

transition. The average EP-accumulated errors of the control and

compacted populations of BEACS show no significant difference in

any of the environment. The average EP-accumulated errors of con-

trol and compacted populations of BACS also show no significant

differences. The average EP-accumulated errors of the compacted

populations of PEPACS are 2% larger than those of the control

populations for 11 of the 23 environments and show no significant

differences for the remaining 12 environments.

The mean specificities of the reliable classifiers in the BEACS

compacted populations are higher for 2 environments (Maze7 and
MazeF4), show no significant differences for 9 environments, and

are lower than those of the control populations for the remaining

12 environments. The average specificities of the reliable classifiers

in the BACS compacted populations are lower than those of the

control populations for all environments. The mean specificities

of the reliable classifiers of the PEPACS compacted populations

are lower than those of the control populations except for MazeF2
where they are identical.

Figure 3 shows the generalization rates achieved by the control

and compacted populations of the three ALCS. In other words, this

figure clarifies the variations observed in the average specificities

of reliable classifiers. CRACS increases the generalization of BEACS

reliable classifiers by up to 10% for 12 environments. Conversely,

for Maze7 and MazeF4, this algorithm specializes the reliable clas-

sifiers by about 3%. CRACS increases the generalization of BACS

reliable classifiers by up to 17.5%. Finally, CRACS increases the

generalization of PEPACS reliable classifiers up to 7.5%.

To what extent does CRACS influence the ability of ALCS to perform
their learning task?

Figure 4: Numbers of steps needed for BEACS to reach the
exit of each maze, before and after having compacted the
populations with CRACS.

Figure 5: Numbers of steps needed for BACS to reach the
exit of each maze, before and after having compacted the
populations with CRACS.

The compaction algorithm does not change the ability of BEACS

to reach the maze output for all environments (figure 4).

The compaction algorithm does not change the ability of BACS

to reach the maze exit for 22 of the 23 environments (figure 5).

This capacity is modified for theMazeE2maze where the algorithm

increases the average number of steps by 1.75 additional step, which

corresponds to a relative increase of 14%.

The compaction algorithm does not change the ability of PEPACS

to reach the exit of mazes for 21 of the 23 environments (figure

6). The algorithm increases the average number of steps for the

mazeMiyazakiA by 0.2 additional steps (a relative increase of 4.6%).

Finally, the algorithm decreases the average number of steps for

the mazeMazeE2 by 1.4 additional step (a relative decrease of 4.8%).

5 DISCUSSION
The greater the environmental uncertainty or the larger the size of

the environment, the greater the compaction.
The compression rates seem on average higher the more uncer-

tain the environments are or the larger the sizes of the environment

are, as it implies more numerous and complex environmental tran-

sitions to be discovered and exploited. This result can be explained
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Figure 6: Numbers of steps needed for PEPACS to reach the
exit of each maze, before and after having compacted the
populations with CRACS.

by the use of a structure allowing to anticipate several environ-

mental situations in the case of BEACS and PEPACS, and by the

uncontrolled use of Behavioral Sequences in BACS.

With BEACS and PEPACS, the construction of classifiers able

to correctly anticipate all the environmental situations for a given

situation and action implies a greater number of intermediate clas-

sifiers describing part of the situations to be anticipated. These

intermediate classifiers may still be present in the population at

the end of the training: they are then effectively deleted by our

compaction algorithm.

With BACS, many classifiers using Behavioral Sequences are

created without the system testing them. The filtering introduced in

our compaction algorithm is thusmore important than subsumption

in reducing the size of the classifier populations.

Environmental representations are preserved.
The results show that the environmental representations built

by the three ALCS are not impaired by CRACS.

Indeed, the knowledge ratios show that no environmental tran-

sition is lost. The descriptions of these transitions remain, overall,

of good quality, in particular for BEACS where they are unchanged

(the average EP-accumulated errors have no significant difference).

This is particularly important for BEACS because this system was

designed to allow such descriptions, which BACS and even PEPACS

cannot achieve [19]. The small relative differences of the average

EP-accumulated errors of BACS and PEPACS, which are at most

2%, are thus negligible.

The average specificities of the reliable classifiers are also un-

changed or lower for the three systems. CRACS thus allows the

environmental representations to rely on the most general classi-

fiers of the populations: the generalization rates of figures 3 quantify

this effect. This result remains valid, especially for BEACS, for the

two environments Maze7 and MazeF4 where these specificities in-
crease. This increase is not due to the deletion of the most general

reliable classifiers and gives further evidence that CRACS works

well. Figure 7 illustrates the loss of specificity observed in these

environments, where classifiers with specificity below the average

specificity of a subset result in an increase when deleted.

Environmental uncertainty such as uncertain actions seems to

decrease the generalization rates of BEACS and PEPACS achieved

Figure 7: Illustration of the increase in average specificity
of reliable classifiers observed in Maze7 and MazeF4 with
BEACS.

with CRACS when those of BACS seem to increase. What is high-

lighted here is a consequence of environmental uncertainty and

not a limitation of the proposed algorithm. Uncertain actions imply

that several environmental situations are to be anticipated by ALCS

for a given action and situation. Thus, several changes are to be

anticipated, leading to the further specialization of the classifiers

to describe these changes. This makes the ALCS classifiers less

generalizable, hence the lower generalization rates.

However, this reasoning is incomplete with BACS: it does not

fully explain the increase in generalization rates. Uncertain ac-

tions lead to the creation of many classifiers having Behavioral

Sequences since all environmental situations trigger their creation

(even if they are not necessary). These classifiers will become more

and more specific since the errors associated with their use will

be more numerous, as the number of actions to be performed is

larger. CRACS, therefore, has a more important role, since it acts

directly on these classifiers via filtering and subsumption. Filtering

removes more classifiers having Behavioral Sequences that would

not have been tested by BACS and whose specificity is greater be-

cause of the errors associated with their use. Subsumption then

favors the classifiers having Behavioral Sequences created before

the aforementioned overspecificity occurs. BEACS, which also uses

Behavioral Sequences, does not have this drawback, since their

creation is conditioned by mechanics that seek to determine their

necessity [19].

ALCS’s ability to solve tasks is preserved.
The results show that CRACS does not impact the ability of

ALCS to reach the exit of mazes as quickly as possible, despite

some differences observed (figure 5 MazeE2 with BACS, figure 6

MiyazakiA and MazeE2 with PEPACS).

These differences may result from the fact that CRACS does

not take into account the rewards of the ALCS classifiers, as well

as from characteristics specific to certain environments (like the

type of Perceptual Alising issue, the sizes of these environments,

. . . ). The decision policies established by the ALCSs during the

exploration of the environments may be altered by CRACS, at the

risk of promoting suboptimal decision policies. The experimental

protocol seeks to allow the ALCS to develop the most efficient

decision policy possible for the task. This protocol is common across

environments: the same resources are allocated to the ALCS when

they seek to solve their learning task, regardless of environmental

properties. Thus, decision policies after population compression

and exploitation may remain suboptimal.

Another possibility to explain these differences, especially for

BACS, is the filtering performed on the classifiers having Behav-

ioral Sequences. This filtering removes the classifiers that have not

been sufficiently tested by ALCS. However, the most appropriate
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Behavioral Sequences may have not been used enough during the

exploration of the environments and are then deleted. Their dele-

tion would then promote less efficient decision policies compared

to populations where they would still be present.

Although these discrepancies would require further analysis

to determine their origin more precisely, they remain marginal

compared to the overall performance of CRACS. Indeed, CRACS

preserves the learned environmental representations upon which

the decision policies are built. Because there is no environmental

transition lost, CRACS does not impair the ability of these different

ALCS to exploit all these transitions to set up decision policies fitted

to the learning tasks.

6 CONCLUSION
Anticipatory Learning Classifier Systems can be used for reinforce-

ment learning problems in uncertain environments. However, as

with any rule-based approach, environmental uncertainties increase

the number of classifiers produced by ALCS, reducing de facto their
interpretability.

To reduce the size of ALCS populations of classifiers and thus

extract knowledge from them, CRACS (Compaction of Rules in

Anticipatory Classifier Systems) is introduced in this paper. CRACS

solely relies on the knowledge contained within the populations

and has been designed to be used with any kind of ALCS. Based on a

comprehensive review of knowledge extraction methods dedicated

to Learning Classifier Systems, CRACS relies on a subsumption

mechanism to avoid knowledge losses and classifier filtering.

The results of a thorough experimental protocol using maze en-

vironments with various levels of uncertainty and different ALCS

show that CRACS (1) efficiently shrinks the populations of classi-

fiers (2) without impairing the built environmental representations,

(3) contributes to the generalization of these representations and

(4) does not make ALCS’s ability to solve their tasks less effec-

tive. CRACS is thus able to reinforce their interpretability without

degrading their learning capacities.

The review of different knowledge extraction techniques for

Learning Classifier Systems paves the way for future work on ALCS

populations. This is particularly the case for techniques based on

the building of new rules. For example, they could be used in con-

junction with ALCS generalization mechanisms. They could also

provide new explanatory elements about the perceptual changes

observed in the ALCS classifiers. CRACS could also be improved

to facilitate the implementation of decision policies by ALCS. Our

algorithm does not look at the reward predictions of the classi-

fiers that are deleted: these could for example be transferred under

certain conditions between the classifiers.
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