
Performance Evaluation of IoT-Enabled Edge
Computing Infrastructure for mHealth Services

Hermyson Cassiano, Kádna Camboim, David Beserra and Jean Araujo

Abstract The rapid technological advancements and growing demand for inno-
vative healthcare solutions highlight the critical role of integrating the Internet of
Things (IoT) with mobile health (mHealth) services. This study evaluates the per-
formance of an IoT platform within a mHealth context, focusing on the MQTT pro-
tocol’s effectiveness for healthcare data communication. Using an Orange Pi Win
Plus board as the IoT platform, we simulated real-world mHealth conditions with
varying workloads to assess platform resilience and scalability. Representative test
scenarios were developed to simulate normal, increasing, and extreme load condi-
tions, measuring key metrics such as CPU usage, memory consumption, throughput,
and latency. Data were collected and analyzed using custom scripts to evaluate the
platform’s response across different Quality of Service (QoS) levels. Results indi-
cated that the platform could effectively manage standard and moderately high de-
mands, while performance under extreme loads highlighted areas for optimization.
This study concludes that the MQTT-based IoT platform demonstrated reliable per-
formance in the mHealth environment, providing a basis for future optimizations
and scalability improvements.

Hermyson Cassiano and Kádna Camboim
Universidade Federal do Agreste de Pernambuco (UFAPE), Garanhuns, Brazil, e-mail:
{hermyson.oliveira, kadna.camboim}@ufape.edu.br

David Beserra
École Pour l’Informatique et les Technologies Avancées (EPITA), Paris, France, e-mail:
david.beserra@epita.fr

Jean Araujo
Instituto de Telecomunicações, Universidade de Aveiro, Aveiro, Portugal, e-mail:
jean.araujo@ua.pt

1

2 Hermyson Cassiano, Kádna Camboim, David Beserra and Jean Araujo

1 Introduction

The Internet of Things (IoT) has emerged as a transformative technology, redefining
interactions between individuals and connected devices. Its capability to facilitate
remote, real-time operations and information access has sparked significant inter-
est across multiple fields. IoT encompasses an interconnected network of physical
objects capable of autonomously collecting and sharing data without direct human
intervention [2].

Advancements in wireless communications have propelled IoT into an extensive
network that integrates seamlessly with the Internet [3]. This connectivity enables
data-capturing devices such as radio frequency identification (RFID), infrared sen-
sors, and laser scanners to support IoT’s vision [9].

The application of IoT spans various sectors, including smart cities, automated
homes, logistics, intelligent transportation, and healthcare. Notably, the healthcare
domain, particularly mobile health (mHealth), has benefited significantly from IoT.
MHealth leverages mobile and wireless devices to enhance medical practices, fa-
cilitating communication between healthcare providers and patients and enabling
real-time health status monitoring [6]. However, the integration of IoT in healthcare
raises concerns related to the security and privacy of patient data.

The primary goal of this study is to evaluate the performance of an IoT platform
delivering mHealth services using the MQTT protocol. This research focuses on a
comprehensive performance assessment of MQTT in mHealth contexts, which has
been relatively underexplored. The objective is to understand how well the platform
handles load conditions and supports reliable data transmission. The findings con-
tribute to identifying the practical implications of using MQTT for mHealth and
recognizing any limitations.

The remainder of this paper is structured as follows: Section 2 presents some
interesting related works, while Section 3 outlines the experimental methodology
used. The results are presented in Section 4, and the final considerations are given
in Section 5.

2 Related Works

Research on communication protocols for IoT has focused on evaluating their per-
formance, particularly in remote health monitoring (mHealth). The selection of an
appropriate protocol is crucial for ensuring efficient, reliable, and secure transmis-
sion of patient data. While existing studies provide valuable insights into various
protocols, gaps remain in comprehensive assessments specific to mHealth. Next, we
present some related work (RW).

Thangavel et al. [10] conducted a comparative study of MQTT and CoAP, ana-
lyzing metrics such as overhead, message size, and packet loss rate under different
network conditions. This work provided an understanding of the trade-offs between
these protocols in terms of network efficiency.

Performance Evaluation of IoT-Enabled Edge Computing Infrastructure 3

Silva et al. [8] examined the performance of MQTT, CoAP, and OPC UA under
different testing scenarios, highlighting the suitability of each protocol for various
IoT applications. However, the focus was not specifically on mHealth environments.

Villanueva et al. [11] explored the use of MQTT for mHealth by comparing ECG
signals from CardiaQloud with synthesized signals generated by the ECG Wave-
form Generator for Matlab from PhysioNet. This study offered insights into data
transmission efficiency but did not provide a comprehensive performance analysis.

Ford et al. [5] investigated the impact of a Denial-of-Service (DoS) attack on the
performance of MQTT when implemented on a Raspberry Pi, emphasizing security
vulnerabilities in IoT environments. Although informative, this study did not focus
on mHealth.

Oliveira et al. [7] compared the performance of WebSocket and MQTT through
qualitative and quantitative analyses, identifying key performance differences. While
relevant, their work did not address mHealth applications.

Araujo et al. [1] used high-level models such as Petri Nets and Reliability Block
Diagrams (RBD) to simulate the dependability of an mHealth system. However
theoretical, this work lacked practical performance evaluations.

This study aims to conduct a thorough performance evaluation of MQTT within
an mHealth context. By employing real-world testing on an Orange Pi Win Plus
board, our research provides a practical perspective on MQTT’s capabilities and
limitations in mHealth applications, contributing novel insights to the field. Table 1
summarizes the differences between this and the presented works.

Table 1 Summary of Related Works

RW Protocols mHealth Performance
Evaluation

[10] MQTT, CoAP No Yes
[8] MQTT, CoAP, OPC UA No Yes
[11] MQTT Yes Yes
[5] MQTT No Yes
[7] MQTT, WebSocket No No
[1] No Yes Yes
This work MQTT Yes Yes

3 Materials and Methods

To achieve the objectives outlined in this study, the following hypotheses were es-
tablished:

• Hypothesis 1: The MQTT protocol can handle standard and moderately high
user loads efficiently in an mHealth context.

• Hypothesis 2: The platform’s performance will show significant latency and re-
source consumption increases as the user load reaches an extreme level.

4 Hermyson Cassiano, Kádna Camboim, David Beserra and Jean Araujo

• Hypothesis 3: Higher Quality of Service (QoS) levels will provide increased
reliability but will incur higher latency and resource usage.

We employed a structured methodology to validate these hypotheses, as depicted
in Figure 1. This methodology encompasses a step-by-step process for defining the
functional and non-functional requirements of an IoT platform aimed at providing
mHealth services using the MQTT protocol.

Fig. 1 Methodology flow

The process began with defining functional and non-functional requirements to
establish the essential functionalities that the IoT platform must support. These func-
tionalities include capabilities for collecting, storing, and sharing patient data in real
time, enabling continuous remote patient monitoring. Additionally, non-functional
requirements were specified to establish key performance attributes such as data
security, scalability, and efficiency, all of which are critical for the effective imple-
mentation of mHealth services.

Next, we devised a monitoring strategy to assess the platform’s performance un-
der various conditions. Initial tests involved a limited number of connected users,
simulating typical usage to evaluate the platform’s performance under normal oper-
ating conditions. Subsequently, the number of users and their requests was gradually
increased to determine the platform’s saturation point. Finally, the platform was sub-
jected to a high volume of simultaneous requests, designed to test its stability and
efficiency under extreme overload conditions.

In the analysis of results phase, detailed reports were generated and retests were
performed as needed. This iterative process allowed for the identification of poten-
tial areas for improvement, which could include infrastructure adjustments, config-
uration changes, or code optimizations. Implementing these improvements incre-
mentally enabled a step-by-step assessment of their impact on the platform’s perfor-
mance.

This structured approach provided a comprehensive evaluation of the platform’s
ability to meet established requirements and handle different usage scenarios, en-
suring alignment with research objectives and hypotheses.

Performance Evaluation of IoT-Enabled Edge Computing Infrastructure 5

3.1 Testbed Environment

For the experiment’s development, both hardware and software were selected. The
hardware used included an Orange Pi Win Plus IoT board, employed as the bro-
ker server, along with two notebooks, one acting as the publisher and the other as
the subscriber. The Orange Pi Win Plus board is a compact and affordable device
equipped with a quad-core Allwinner A64 processor, 2GB of RAM, and 64GB of
internal storage.

Additionally, it features HDMI, USB 2.0, and USB 3.0 ports, along with IEEE
802.11 b/g/n Wi-Fi connectivity, making it ideal for IoT. The notebooks used were
an Acer running Ubuntu 20.04 and a Lenovo running Linux Mint 19, both equipped
with Intel Core i5 processors, 8 GB and 16 GB of RAM, respectively, as well as
1TB of storage.

The software used included Mosquitto, an MQTT message broker server, and
JMeter, a performance testing tool. Mosquitto was employed as the MQTT broker
server, while JMeter was used to simulate request loads and evaluate the perfor-
mance of the IoT platform.

Mosquitto is an open-source software available for free download. It is compati-
ble with a wide range of operating systems, including Linux, Windows, among oth-
ers. Mosquitto is used as a message broker server responsible for implementing the
MQTT protocol. It is a powerful tool widely used in a variety of IoT applications.

JMeter is also an open-source software capable of performing performance test-
ing, load testing, and stress testing on systems. Conducting tests on systems is cru-
cial to ensure their functionality, helping identify flaws and areas for improvement.
Among the various types of tests applicable to a system, performance testing stands
out, aiming to evaluate response capacity, reliability, throughput, interoperability,
and scalability under a specific workload [4]. In this experiment, several metrics
were employed based on theoretical foundations. However, the metrics that proved
particularly relevant for this study were latency, throughput, scalability concerning
increasing connected users, and resource efficiency (CPU and memory). These met-
rics provided valuable data for the analysis conducted in the experiment.

4 Results

This section presents a detailed analysis of the results obtained during the experi-
ments, providing insights into the performance of the IoT platform under different
conditions. The analysis is discussed concerning the objectives and hypotheses set
out in the methodology. These insights contribute to understanding the platform’s
performance and advancing knowledge in mobile health (mHealth) and IoT systems.

6 Hermyson Cassiano, Kádna Camboim, David Beserra and Jean Araujo

4.1 CPU Usage Analysis

CPU performance is crucial for evaluating the platform’s ability to manage con-
current user requests efficiently. In Scenario #1, where 400 users were simulated,
CPU usage remained below 30% for most of the experiment (see Figures 2(a), 2(b)
and 2(c)). This consistent performance aligns with Hypothesis 1, which suggested
that the MQTT protocol would handle standard loads effectively. An isolated spike
reaching approximately 60% was noted in the QoS 2 setup after 100 minutes (Figure
2(b)). This spike may be attributed to specific processing requirements or temporary
system activity, demonstrating that while occasional peaks can occur, the system
maintains stability under typical loads.

In Scenario #2 (800 users), CPU usage displayed more frequent peaks but re-
mained below 30%, with a notable spike of 55% in QoS 0 after 130 minutes (see
Figures 2(d), 2(e) and 2(f)). This result continues to support Hypothesis 1 by show-
ing that the platform can handle moderate loads efficiently. It also indicates that even
as the number of users doubled, the platform adapted without a significant decrease
in performance.

Scenario #3 (1600 users) revealed more complex behavior. CPU usage started
between 15% and 20% but gradually increased to approach the 50% threshold (see
Figures 2(g), 2(h) and 2(i)). Notably, a spike in QoS 0 around 170 minutes indicated
additional processing needed to manage packet losses. This supports Hypothesis 2,
which anticipated higher CPU resource usage as user loads increased. The over-
all trend suggests that while the platform is capable of scaling up, optimization is
necessary for extreme load conditions.

4.2 Memory Usage Analysis

Memory management is essential in IoT platforms, especially in resource- con-
strained environments like mHealth. Scenario #1 (400 users) showed stable memory
consumption between 700MB and 800MB (Figures 3(a), 3(b) and 3(c)), supporting
Hypothesis 1. This result indicates that the platform managed memory efficiently,
maintaining steady performance under standard load conditions.

In Scenario #2 (800 users), a different pattern emerged. While QoS 0 showed a
peak of up to 1100MB (Figure 3(d)), QoS 1 and QoS 2 maintained stability between
700MB and 800MB (Figures 3(e) and 3(f)). The increase in QoS 0 could be linked
to the absence of message delivery guarantees, which leads to resource allocation
for handling discarded messages and potential packet loss.

Scenario #3 highlighted memory usage challenges as user loads reached 1600.
In QoS 0, memory consumption fluctuated between 800MB and 1400MB (Figure
3(g)), reflecting higher demands on system resources as anticipated in Hypothesis
2. QoS 1 ranged between 700MB and 1100MB, while QoS 2 remained more stable
at 700MB to 1000MB (Figures 3(h) and 3(i)). The observed variations underline the

Performance Evaluation of IoT-Enabled Edge Computing Infrastructure 7

0 30 60 90 120 150 180
Time (minutes)

0

10

20

30

40

50

60

CP
U

Us
ag

e
(%

)

(a) CPU QoS 0, 400 users

0 30 60 90 120 150 180
Time (minutes)

0

10

20

30

40

50

60

CP
U

Us
ag

e
(%

)

(b) CPU QoS 1, 400 users

0 30 60 90 120 150 180
Time (minutes)

0

10

20

30

40

50

60

CP
U

Us
ag

e
(%

)

(c) CPU QoS 2, 400 users

0 30 60 90 120 150 180
Time (minutes)

0

10

20

30

40

50

60

CP
U

Us
ag

e
(%

)

(d) CPU QoS 0, 800 users

0 30 60 90 120 150 180
Time (minutes)

0

10

20

30

40

50

60

CP
U

Us
ag

e
(%

)

(e) CPU QoS 1, 800 users

0 30 60 90 120 150 180
Time (minutes)

0

10

20

30

40

50

60

CP
U

Us
ag

e
(%

)

(f) CPU QoS 2, 800 users

0 30 60 90 120 150 180
Time (minutes)

0

10

20

30

40

50

60

CP
U

Us
ag

e
(%

)

(g) CPU QoS 0, 1600 users

0 30 60 90 120 150 180
Time (minutes)

0

10

20

30

40

50

60

CP
U

Us
ag

e
(%

)

(h) CPU QoS 1, 1600 users

0 30 60 90 120 150 180
Time (minutes)

0

10

20

30

40

50

60

CP
U

Us
ag

e
(%

)

(i) CPU QoS 2, 1600 users

Fig. 2 Broker CPU Usage Across Different Scenarios and QoS Levels

impact of different QoS settings on memory usage, emphasizing the importance of
resource management for high-load scenarios.

4.3 Throughput Analysis

Throughput, measured in bytes transmitted over time, is a critical performance indi-
cator for evaluating data delivery in real-time IoT applications. Scenario #1 demon-
strated relatively stable byte consumption, with QoS 0 ranging between 2.5MB and
5MB (Figure 4(a)), while QoS 1 showed greater variability, oscillating between
1MB and 6MB (Figure 4(b)). QoS 2 remained between 3.5MB and 6MB (Figure
4(c)), supporting Hypothesis 3 that higher QoS levels influence data throughput.

In Scenario #2 (800 users), byte consumption showed significant fluctuations, es-
pecially in QoS 1 and 2. QoS 1 reached peaks of up to 10MB (Figure 4(e)), indicat-
ing the impact of intermediate delivery guarantees. QoS 2 displayed erratic behavior,
stabilizing after initial spikes (Figure 4(f)). This behavior aligns with Hypothesis 3,
which suggested that higher QoS levels would increase resource demands.

8 Hermyson Cassiano, Kádna Camboim, David Beserra and Jean Araujo

0 30 60 90 120 150 180
Time (minutes)

0
100
200
300
400
500
600
700
800
900

1000
1100
1200
1300
1400
1500

Us
ed

 m
em

or
y

(M
B)

MemUsed
MemBuffer
MemShared

(a) Memory QoS 0, 400
users

0 30 60 90 120 150 180
Time (minutes)

0
100
200
300
400
500
600
700
800
900

1000
1100
1200
1300
1400
1500

Us
ed

 m
em

or
y

(M
B)

MemUsed
MemBuffer
MemShared

(b) Memory QoS 1, 400
users

0 30 60 90 120 150 180
Time (minutes)

0
100
200
300
400
500
600
700
800
900

1000
1100
1200
1300
1400
1500

Us
ed

 m
em

or
y

(M
B)

MemUsed
MemBuffer
MemShared

(c) Memory QoS 2, 400
users

0 30 60 90 120 150 180
Time (minutes)

0
100
200
300
400
500
600
700
800
900

1000
1100
1200
1300
1400
1500

Us
ed

 m
em

or
y

(M
B)

MemUsed
MemBuffer
MemShared

(d) Memory QoS 0, 800
users

0 30 60 90 120 150 180
Time (minutes)

0
100
200
300
400
500
600
700
800
900

1000
1100
1200
1300
1400
1500

Us
ed

 m
em

or
y

(M
B)

MemUsed
MemBuffer
MemShared

(e) Memory QoS 1, 800
users

0 30 60 90 120 150 180
Time (minutes)

0
100
200
300
400
500
600
700
800
900

1000
1100
1200
1300
1400
1500

Us
ed

 m
em

or
y

(M
B)

MemUsed
MemBuffer
MemShared

(f) Memory QoS 2, 800 users

0 30 60 90 120 150 180
Time (minutes)

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

1500

Us
ed

 m
em

or
y

(M
B)

MemUsed
MemBuffer
MemShared

(g) Memory QoS 0, 1600
users

0 30 60 90 120 150 180
Time (minutes)

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

1500

Us
ed

 m
em

or
y

(M
B)

MemUsed
MemBuffer
MemShared

(h) Memory QoS 1, 1600
users

0 30 60 90 120 150 180
Time (minutes)

0
100
200
300
400
500
600
700
800
900

1000
1100
1200
1300
1400
1500

Us
ed

 m
em

or
y

(M
B)

MemUsed
MemBuffer
MemShared

(i) Memory QoS 2, 1600 users

Fig. 3 Broker Memory Usage Across Different Scenarios and QoS Levels

Scenario #3 revealed pronounced byte rate oscillations in all QoS levels, with
initial spikes up to 14MB followed by stabilization (Figures 4(g), 4(h) and 4(i)).
This indicates that high user loads and intensive data transmission challenge the
platform’s throughput, supporting Hypothesis 2 on the increased strain under heavy
workloads.

4.4 Latency Analysis

Latency is critical for real-time monitoring in mHealth. Scenario #1 showed low
latency in QoS 0, staying below 1 millisecond (Figure 5(a)). QoS 1 and 2 showed
more pronounced spikes, reaching up to 5 milliseconds and fluctuating between 500
and 1750 milliseconds, respectively (Figures 5(b) and 5(c)). These findings partially
confirm Hypothesis 3, showing that higher QoS levels introduce latency.

Performance Evaluation of IoT-Enabled Edge Computing Infrastructure 9

0 20 40 60 80 100 120 140 160 180
Time (minutes)

0

1

2

3

4

5

6

Th
ro

ug
hp

ut

(a) Throughput QoS 0, 400
users

0 20 40 60 80 100 120 140 160 180
Time (minutes)

0

1

2

3

4

5

6

7

8

Th
ro

ug
hp

ut

(b) Throughput QoS 1, 400
users

0 20 40 60 80 100 120 140 160 180
Time (minutes)

0

1

2

3

4

5

6

Th
ro

ug
hp

ut

(c) Throughput QoS 2, 400
users

0 20 40 60 80 100 120 140 160 180
Time (minutes)

0

1

2

3

4

5

6

Th
ro

ug
hp

ut

(d) Throughput QoS 0, 800
users

0 20 40 60 80 100 120 140 160 180
Time (minutes)

0

1

2

3

4

5

6

7

8

Th
ro

ug
hp

ut

(e) Throughput QoS 1, 800
users

0 20 40 60 80 100 120 140 160 180
Time (minutes)

0

1

2

3

4

5

6

7

8

Th
ro

ug
hp

ut

(f) Throughput QoS 2, 800
users

0 20 40 60 80 100 120 140 160 180
Time (minutes)

0

2

4

6

8

10

12

14

16

Th
ro

ug
hp

ut

(g) Throughput QoS 0, 1600
users

0 20 40 60 80 100 120 140 160 180
Time (minutes)

0

2

4

6

8

10

12

14

Th
ro

ug
hp

ut

(h) Throughput QoS 1, 1600
users

0 20 40 60 80 100 120 140 160 180
Time (minutes)

0

2

4

6

8

10

12

14

Th
ro

ug
hp

ut

(i) Throughput QoS 2, 1600
users

Fig. 4 Broker Throughput Across Different Scenarios and QoS Levels

Scenario #2 (800 users) presented latency variations, with QoS 0 remaining sta-
ble under 1 millisecond (Figure 5(d)). In QoS 1 and 2, peaks reached up to 4000
milliseconds (Figures 5(e) and 5(f)), suggesting that higher loads challenge the plat-
form’s response time.

In Scenario #3, latency increased significantly, particularly in QoS 1 and 2 (Fig-
ures 5(h) and 5(i)). QoS 0 showed less consistent behavior, with spikes observed
at 1400 milliseconds. This aligns with Hypothesis 2, which indicates that latency
increases with user load and the QoS level, confirming that while QoS ensures reli-
ability, it also introduces performance trade-offs.

10 Hermyson Cassiano, Kádna Camboim, David Beserra and Jean Araujo

0 30 60 120 150 18090
Time (minutes)

0.0

0.2

0.4

0.6

0.8

1.0

La
te

nc
y

(m
s)

(a) Latency QoS 0, 400 users

0 30 60 120 150 18090
Time (minutes)

0

1000

2000

3000

4000

5000

La
te

nc
y

(m
s)

(b) Latency QoS 1, 400 users

0 30 60 120 150 18090
Time (minutes)

0

250

500

750

1000

1250

1500

1750

La
te

nc
y

(m
s)

(c) Latency QoS 2, 400 users

0 30 60 120 150 18090
Time (minutes)

0.0

0.1

0.2

0.3

0.4

0.5

La
te

nc
y

(m
s)

(d) Latency QoS 0, 800 users

0 30 60 120 150 18090
Time (minutes)

0

500

1000

1500

2000

2500

3000

La
te

nc
y

(m
s)

(e) Latency QoS 1, 800 users

0 30 60 120 150 18090
Time (minutes)

0

1000

2000

3000

4000

5000

6000

La
te

nc
y

(m
s)

(f) Latency QoS 2, 800 users

0 30 60 120 150 18090
Time (minutes)

0

200

400

600

800

1000

1200

1400

La
te

nc
y

(m
s)

(g) Latency QoS 0, 1600
users

0 30 60 120 150 18090
Time (minutes)

500

1000

1500

2000

2500

3000

3500

4000

La
te

nc
y

(m
s)

(h) Latency QoS 1, 1600
users

0 30 60 120 150 18090
Time (minutes)

600

800

1000

1200

1400

1600

1800

La
te

nc
y

(m
s)

(i) Latency QoS 2, 1600
users

Fig. 5 Broker Latency Across Different Scenarios and QoS Levels

4.5 DoE Analysis

The Design of Experiments (DoE) analysis is a statistical approach to planning,
executing, and analyzing experiments to efficiently obtain relevant information. For
the DoE analysis, we used data from all variables analyzed in the experiment.

The first step taken was to generate the Pareto chart, as shown in Figure 6, which
identifies which factor shows a significant effect. We can be observed that the sce-
nario is the factor that has the greatest impact. The Pareto chart confirmed that the
Scenario, CPU usage and QoS significantly affect latency.

Based on this initial analysis, it becomes necessary to investigate the main effects.
Therefore, we identified that the Scenario, CPU, and QoS are the factors that have
a significant impact on average latency, with latency tending to increase as these
resources decrease, as shown in Figure 7.

Complementing the previous analyses, another analysis was conducted. The in-
teraction plot (Figure 8) highlighted interactions between CPU, memory, and QoS,
indicating that higher resource levels contribute to lower latency, supporting Hy-
pothesis 3. In the first column, representing the interactions between QoS and other
metrics. As the scenario increases, the average latency decreases, indicating the ab-

Performance Evaluation of IoT-Enabled Edge Computing Infrastructure 11

Fig. 6 Standardized effects Pareto Chart - Latency

,-....,::: 'l:rt111";-,1 I� P.'li'!!n'i n::11 Blníl,

3,5

3,D

2,5

2,D

1,5

-

\
- \
-�---- � -

\
-------�------ -----�--- -----/----- ------�---

.----------- \
.--- ---

\

- \
'-.

1,D . 1 . 1 1 1 1 1 . . 1 1

D 2 40D 8DO 1600 6515 1119808 º ·ºº 54,55 D 9393D

Fig. 7 Main Effects Chart

sence of interaction between the factors and metrics. In the third column, between
memory (Mem) and CPU, a possible interaction is suggested. This occurs because
the average latency appears to be lower when memory and CPU are at their highest
levels, while the average latency seems to be higher when memory and CPU are at
their lowest levels.

Fig. 8 Interaction Chart for Latency

12 Hermyson Cassiano, Kádna Camboim, David Beserra and Jean Araujo

5 Final Remarks

The main objective of this study was to perform a performance evaluation of an IoT
platform designed for the mobile health (mHealth) environment. To achieve this
goal, we simulated stress scenarios using a suitable platform for such simulations.
The intention was to ensure efficiency in response and scalability of the IoT platform
in delivering mHealth services.

Throughout the study, we observed the importance of evaluating the platform’s
performance under different workload conditions. The experiments provided valu-
able insights into how the platform behaves under different levels of demand, high-
lighting strengths and identifying possible areas for improvement. This finding un-
derscores the importance of appropriately choosing parameters, such as quality of
service (QoS) level, in implementing IoT systems for the healthcare sector. Pro-
cessing capacity and effective message management are important aspects to ensure
operational efficiency and system reliability, especially when considering a signifi-
cant number of simultaneous users.

This study has significantly contributed to advancing knowledge in the field of
IoT applied to mHealth using the MQTT protocol. The practical application of this
study can guide future developments and optimizations in similar systems, provid-
ing clear improvements in the quality of service (QoS) offered. Consequently, the
conclusions drawn from this study will contribute both to the selected IoT infrastruc-
ture and the adopted MQTT protocol, serving as viable options for offering mHealth
services.

Concluding the analysis of the IoT system performance in the mHealth environ-
ment using the MQTT protocol in various scenarios, significant conclusions can be
drawn that directly impact the efficiency and scalability of this system. Among the
scenarios studied, the use of QoS 1 with 400 users stands out, demonstrating the
best performance, with consistently low latency of less than 1000 milliseconds, i.e.,
below 1 second throughout the experiment.

Despite the achievements obtained, it is pertinent to note that this study is not
without limitations. The adoption of a single IoT infrastructure, along with the sim-
ulation of test scenarios in a controlled environment, is one of these limitations.
In this context, an important suggestion is to conduct tests in real environments,
considering various IoT infrastructures and varied usage scenarios.

References

1. Araujo, J., Silva, B., Oliveira, D., Maciel, P.: Dependability evaluation of a mhealth system
using a mobile cloud infrastructure. In: 2014 IEEE international conference on systems, man,
and cybernetics (SMC), pp. 1348–1353. IEEE (2014)

2. Ashton, K.: That ‘internet of things’ thing. RFID journal 22(7), 97–114 (2009)
3. Atzori, L., Iera, A., Morabito, G., et al.: The internet of things: A survey. Computer networks

54(15), 2787–2805 (2010)
4. Erinle, B.: Performance testing with JMeter 2.9. Packt Publishing Ltd (2013)

Performance Evaluation of IoT-Enabled Edge Computing Infrastructure 13

5. Ford, T.N., Gamess, E., Ogden, C.: Performance evaluation of different raspberry pi models
as mqttservers and clients. International Journal of Computer Networks and Communications
14(2) (2022)

6. Kumar, D., Gubbi, J., Yan, B., Palaniswami, M.: Motor recovery monitoring in post acute
stroke patients using wireless accelerometer and cross-correlation. IEEE Access pp. 6703–
6706 (2013)

7. Oliveira, G.M.B., Costa, D.C.M., Cavalcanti, R.J.B.V.M., Oliveira, J.P.P., Silva, D.R.C.,
Nogueira, M.B., Rodrigues, M.C.: Comparison between mqtt and websocket protocols for
iot applications using esp8266. In: 2018 Workshop on Metrology for Industry 4.0 and IoT, pp.
236–241 (2018). DOI 10.1109/METROI4.2018.8428348

8. Silva, D., Carvalho, L.I., Soares, J., Sofia, R.C.: A performance analysis of internet of things
networking protocols: Evaluating mqtt, coap, opc ua. Applied Sciences 11(11), 4879 (2021)

9. Stankovic, J.A.: Research directions for the internet of things. IEEE internet of things journal
1(1), 3–9 (2014)

10. Thangavel, D., Ma, X., Valera, A., Tan, H.X., Tan, C.K.Y.: Performance evaluation of mqtt and
coap via a common middleware. In: 2014 IEEE ninth international conference on intelligent
sensors, sensor networks and information processing (ISSNIP), pp. 1–6. IEEE (2014)

11. Villanueva-Miranda, I., Nazeran, H., Martinek, R., et al.: Cardiaqloud: A remote ecg moni-
toring system using cloud services for ehealth and mhealth applications. In: 2018 IEEE 20th
International Conference on e-Health Networking, Applications and Services (Healthcom),
pp. 1–6 (2018)

