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Abstract. Anticipatory Learning Classifier Systems (ALCS) are rule-
based machine learning algorithms that can simultaneously develop a
complete representation of their environment and a decision policy based
on this representation to solve their learning tasks. This paper intro-
duces BEACS (Behavioral Enhanced Anticipatory Classifier System) in
order to handle non-deterministic partially observable environments and
to allow users to better understand the environmental representations
issued by the system. BEACS is an ALCS that enhances and merges
Probability-Enhanced Predictions and Behavioral Sequences approaches
used in ALCS to handle such environments. The Probability-Enhanced
Predictions consist in enabling the anticipation of several states, while
the Behavioral Sequences permits the construction of sequences of ac-
tions. The capabilities of BEACS have been studied on a thorough bench-
mark of 23 mazes and the results show that BEACS can handle different
kinds of non-determinism in partially observable environments, while
describing completely and more accurately such environments. BEACS
thus provides explanatory insights about created decision polices and
environmental representations.

Keywords: Anticipatory Learning Classifier System, Machine Learn-
ing, Explainability, Non-determinism, Building Knowledge

1 Introduction

Explainability has now become an important concern for automated decision
making in domains such as healthcare, justice, employment or credit scoring,
among others. Deep Learning models are widely used in these domains, because
of their ability to extract relevant features from complex data. However, they are
not intrinsically explainable and require the use of post-hoc models to shed light
on their decisions. Models exist that are, by design, more explainable, but at
the cost of reduced performance in solving tasks: performance is thus balanced
with explainability. The approach developed in this paper aims at enhancing the
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performance of such models while enabling them to provide more explanatory
elements regarding their decisions.

We are interested in Reinforcement Learning (RL) models. Among intrinsi-
cally explainable RL models, Anticipatory Learning Classifier Systems (ALCS)
are rule-based machine learning algorithms that are based on the cognitive mech-
anism of Anticipatory Behavioral Control (ABC) [19]. ALCS build their pop-
ulation of rules (called classifiers) by comparing successive perceptions of their
environment in {conditions-actions-effects} tuples [11]: ALCS try to antic-
ipate the consequences of an action according to their environmental situations.
ALCS do not depend on a stochastic process to learn new tasks: ABC enables
them to learn new tasks immediately, from the anticipation they built, giving
insights to explain the use of the classifiers created by the system.

The work presented in this paper focuses on the ability of ALCS to deal with
non-deterministic environments used in reinforcement learning problems, while
making the classifiers of ALCS more explainable. Non-determinism can take
different forms [16]: perceptual sensors can have irrelevant random attributes,
be noisy or insufficient to determine the exact state of the environment (referred
to as the Perceptual Aliasing Issue); the results of actions can be uncertain;
rewards from the environment can be noisy. In particular, non-deterministic
properties of the perceptual sensors or regarding the results of actions bring
about aliased states, which are environmental states related to these forms of
non-determinism. These aliased states prevent ALCS from achieving their task,
if they cannot detect such states and build appropriate classifiers to deal with
them.

This paper introduces BEACS (Behavioral Enhanced Anticipatory Classifier
System) which aims to strengthen both the performance and the explainability
of ALCS in non-deterministic, partially observable environments. The objective
of BEACS is to build complete and accurate representations of its environment
(via its population of classifiers), regardless of the non-deterministic properties
of the environment, while being able to efficiently solve the task learned.

In section 2, the main principles of Anticipatory Learning Classifier Sys-
tems are presented along with the mechanisms allowing them to handle non-
determinism. After an analysis of these principles and mechanisms, BEACS is
introduced in section 3. Section 4 presents a study of the capabilities of BEACS
through a thorough benchmarking on the different mazes used as test-beds in
the literature. The results achieved by BEACS are discussed in section 5, before
concluding in section 6.

2 Related Works

2.1 Principles of ALCS

As illustrated in figure 1, ALCS classifiers are mainly made of a {C,A,E} tuple
(consisting of a condition component C, an action component A and an effect
component E), a mark that specifies states for which the classifier has failed to
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Fig. 1: Illustration of a classifier Cl of an ALCS in a maze environment, if the
provided observations are the eight squares adjacent to each position starting
from the North and clockwise. The hash is a wildcard that corresponds to all
possible items in the condition and indicates there are no changes in the effect.

anticipate, a measurement of the quality of anticipation q, and lastly, a prediction
of the expected reward r [18].

Assessment of anticipation quality, and prediction of the expected rewards of
classifiers are respectively done using the Anticipatory Learning Process (ALP)
and Reinforcement Learning (RL).

Hence, ALP is used to discover association patterns within the environment
by means of the {C,A,E} tuples. These tuples are built by comparing percep-
tions retrieved successively. ALCS classifiers are created or updated based on
the differences between these perceptions. RL is used to compute the expected
rewards in order to fit the classifiers to the task being learned, and provide more
adaptive capabilities to ALCS.

ALCS manage their population of classifiers by looping between perceiving
new sensory inputs, evolving their population of classifiers thanks to both learn-
ing paradigms, and interacting with the environment by performing an action
from the set of classifiers matching the current perception (for further details,
refer to [6]).

ACS2 [6] is an enhanced version of Stolzmann’s Anticipatory Classifier Sys-
tem (which was the first ALCS) [18]. It includes a genetic generalization mecha-
nism to remove specialized attributes in the condition components of classifiers
[2]. ACS2 also includes new action selection policies [3] to improve the evolution
of the most general and accurate classifiers. Different exploration strategies of
ACS2 were compared in [12] and an action planning mechanism was added to
this model [21] in order to speed up the learning process. [13] replaced the re-
inforcement component of ACS2 by a mechanism that maximizes the averaged
rewards, while [4] used a learning classifier system dedicated to approximating
the optimal state values of the transitions learned between states of the environ-
ment. In parallel, two other ALCS were developed: YACS implements different
heuristics from ACS2 to focus on the most relevant attributes in the condition
and effect components of classifiers, as these attributes could be uncorrelated
[9]; MACS implements a new attribute in the effect component of its classifiers
to enable the system to discover new patterns from its environment [8].
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Fig. 2: Illustration of a classifier Cl1 having a Behavioral Sequence to bridge
the aliased green state from a non-aliased blue state, as well as a classifier Cl2
enhanced by PEP to represent the environmental transitions from the PAI state,
according to the classifiers representation in figure 1.

2.2 ALCS and non-determinism

To allow ALCS to deal with non-deterministic environments, Behavioral Se-
quences (BSeq) [18] and Probability-Enhanced Predictions (PEP) [5] have been
proposed, as depicted by figure 2. BSeq and PEP have both been integrated to
ACS2 in [15] and [16]. They are triggered by classifiers that get both a correct
anticipation and an incorrect anticipation in a unique state (i.e. in an aliased
state).

BSeq enable the ALCS to bridge states that are related to the Perceptual
Aliasing Issue using sequences of actions. However, BSeq do not enable the ALCS
to build a complete and accurate representation of their environments as some
states are skipped, and BSeq cannot promote the best decision policies because
sub-optimal sequences of actions could be favored [17].

PEP were introduced in ALCS to deal with aliased states: PEP enable the
prediction of an ensemble of anticipations, enabling the model to build a com-
plete model of their environment. All items in the effect component of the
{C,A,E} tuple are replaced by PEP: they consist of an associative array in
which keys are symbols related to the expected perceptive attributes, and values
represent their probabilities to be anticipated by the classifier. The probabilities
p, corresponding to the encountered aliased state, are updated in all the PEP as
follows: p = p+ bp ∗ (1− p), where bp is an update rate, and all probabilities are
then normalized. Nevertheless, both the probabilities computed in PEP and the
sets of anticipated states they describe can be incoherent with the environmental
settings of the ALCS: nonexistent states can be described by PEP (due to the
combination of multiple associative arrays) and the computed probabilities are
sensitive to their update parameter and the retrieved perceptions [17].

BEACS (Behavioral Enhanced Anticipatory Classifier System) is hereby in-
troduced, with the goal of improving both the explainability of the system and
its performance in non-deterministic partially observable environments. BEACS
couples, for the first time, both Behavioral Sequences and PEP approaches to
handle learning tasks in such environments, while each of these approaches is
also improved. Because the Perceptual Aliasing Issue (PAI) is a type of aliasing
that PEP manage, this coupling is based on the detection of PAI [17]. BEACS
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Fig. 3: Illustration of PEPACS and BEACS classifiers enhanced by PEP and
EPE in Woods100 to represent the environmental transitions from the PAI state,
according to the representation depicted in the figure 1.

is therefore based on the state-of-the-art PEPACS that integrated PEP in ACS2
[16].

3 Behavioral Enhanced Anticipatory Classifier System

3.1 Enhancing PEP into EPE

PEP enhancements resulted in Enhanced Predictions through Experience (EPE).
Both PEP and EPE have the same goal of allowing classifiers to anticipate several
states, but they differ in the representations they employ. As depicted in figure 3,
EPE consists in an associative array whose keys are the perceptions anticipated
by the classifiers, and whose values are the number of occurrences when these
perceptions have been anticipated. As a result, because each anticipated state is
explicitly described and counted, EPE provides more detailed information than
an effect component with multiple PEP. Moreover, this method does not require
a dedicated learning rate to be set up, and the probabilities of each anticipated
perceptive item can be retrieved.

BEACS triggers the construction of EPE classifiers (i.e. that uses EPE) by
using the same aliased state detection mechanism as PEPACS. EPE classifiers
are constructed similarly to PEP enhanced classifiers in PEPACS, with two
exceptions: they are tagged with the aliased states that trigger their creation;
their effect component is merged from those of their two parents, and the number
of occurrences of each anticipation are summed. The number of occurrences of
a given classifier is only updated when this classifier anticipates several states,
otherwise a default value of 1 is set to the unique anticipation. Classifiers that
cannot subsume each other and correspond to the same aliased state (due to
their condition, mark, and aliased state tag) are used to avoid the generation of
useless EPE classifiers.

The anticipation of several states can lead to over-generalization, where en-
hanced classifiers can be used in non aliased states because of the genetic gen-
eralization pressure. To prevent this issue, PEPACS completely replaces the
enhanced effects of genetic generalization offspring with the anticipation of the
current perception, at the cost of a knowledge loss and a reduced learning speed,
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as the system may have to gradually rebuild the enhanced effect. BEACS does
not replace the enhanced effects. Instead, BEACS exploits the aliased state tag
to control the evolution of EPE classifiers if they have been over-generalized:
they are specialized from their aliased state tag instead of using the current
perception; they can directly learn new anticipations from their aliased state
tag only, by adding states they failed to anticipate to their EPE (the related
counters are set to 1).

Finally, the mutation operator used in the genetic generalization mechanism
was modified to consider the semantics of the wildcard used in ALCS: this wild-
card corresponds to all possible perceptive attribute in the condition, and indi-
cates the related attribute from the condition does not change in the effect (e.g.
figure 1). Hence, a perceptive attribute can be generalized via mutation, only if
the associated attribute of the effect does not predict both a change and an ab-
sence of change. This modification aims at preserving the coherence of BEACS
classifiers by preventing the creation of such contradictory classifiers.

3.2 Coupling EPE with Behavioral Sequences

Allowing ALCS to distinguish PAI states (states related to the Perceptual Alias-
ing Issue) from other aliased states detected by the system is the first step to-
wards coupling EPE and Behavioral Sequences. This differentiation is then used
to condition the creation of behavioral classifiers (classifiers with a Behavioral
Sequence). The Perceptual Aliasing Issue occurs in partially observable environ-
ments when the system cannot differentiate states that are truly distinct. The
goal is to focus on states reachable from a PAI (and different from it): these
reachable states should be more numerous than the number of actions that lead
to distinct states (when the same action lead to different states, only the most
anticipated state is considered). Both the set of reachable states and the number
of actions can be computed with the help of EPE classifiers.

To do so, the most experienced classifiers for each single action are retrieved
from the set of classifiers that matches the current perceptive input (with re-
spect to their marks and their aliased state tags), by computing the product
of their experience and their cubic quality (this power is used to widen differ-
ences between classifier qualities). If these most experienced classifiers exist for
all possible single actions and are experienced enough (according to a user de-
fined threshold), the set of reachable states and the number of actions that are
related to a perceptive change are computed using the {C,A,E} tuple of these
classifiers and the current perception.

While the detection of aliased states occurs at a classifier scale, the detection
of PAI states should occurs at the scale of a set of classifiers. To avoid unneeded
computational operations, BEACS does not attempt to detect the PAI states
as soon as an aliased state is detected by a classifier: the PAI states detection
occurs at the end of the anticipatory learning process. As BEACS also needs time
to fit its classifiers to its environment in order to discover transitions between
states, the occurrence of the detection of PAI states is similar to the way the
genetic generalization takes place (as described by [6]): it depends on θBSeq, a
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user parameter representing the delay between two such consecutive detections,
and an internal timestamp tBSeq (added to each classifier) measuring the current
delay. All states detected as PAI or no longer being PAI are registered in a list
managed by BEACS.

3.3 Enhancing the Behavioral Sequences

Once the use of Behavioral Sequences is triggered by the detection of PAI states,
behavioral classifiers are built thanks to the penultimate classifier selected by
BEACS in the state s(t− 1) and candidate classifiers in state s(t) that success-
fully anticipated state s(t+1). These candidate classifiers are temporarily stored
by BEACS, until all the classifier anticipations have been considered in the ALP.
Then, if state s(t) has been registered as a PAI state, the {C,A,E} tuples of the
behavioral classifiers are made of: the condition component of the penultimate
classifier, a fine-tuned effect component from the candidate classifiers and the
penultimate classifier, and both action components in a sequence, while other
internal parameters are set to default. The fine-tuned effect component is com-
puted by replacing each anticipated change of the penultimate classifier and the
candidate classifiers with the related perceptive attributes of state s(t+ 1), and
then by removing all effect attributes that match the condition component.

BEACS also stamps its behavioral classifiers with the PAI state that triggered
their construction. If a state previously detected as PAI is no longer related to
PAI, all behavioral classifiers related to this state are removed from the popula-
tion of classifiers. This enables BEACS to adaptively build and delete behavioral
classifiers as PAI states are detected, thus avoiding needless population growth.

As opposed to [14, 15], BEACS no longer discriminates behavioral classifiers
that lead to a loop between identical states: it is up to the reinforcement com-
ponent of BEACS to fit the use of these classifiers, instead of decreasing their
quality while their anticipations are correct. Thereby, the ALP used by BEACS
is the same for all classifiers and the mechanism that prevent such loops has
been removed.

BEACS genetic generalization mechanism was also extended to prevent the
use of behavioral sequences in states unrelated to the Perceptual Aliasing Issue.
To do so, behavioral classifiers are indirectly generalized through mutation by
comparing the condition components of the offspring: if one perceptive attribute
is generalized in one condition component and not in the other, the related
perceptive attribute in the other can be generalized. This indirect generalization
avoids building useless behavioral classifiers that would match states that do
not lead to PAI states. Because behavioral classifiers can contain EPE, their
mutation operator follows the modification introduced in section 3.1 to preserve
the meaning of the classifiers.

Finally, BEACS Reinforcement Learning component uses the concept of Dou-
ble Q-Learning [10] to adapt the rewards predicted by the classifiers to the length
of the action sequences in order to promote the usage of the shortest Behavioral
Sequences. Each classifier Cl uses two estimators (Cl.rA and Cl.rB) to compute
its reward prediction Cl.r, by using the immediate reward ρ, the discounted
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maximum payoffs predicted in the next time-step maxPA and maxPB , the dis-
count factor γ, the reinforcement learning rate β, the number of actions in the
Behavioral Sequence #act, the maximal length of Behavioral Sequences Bseq and
a configurable difference εr. Even if both estimators converged to the same value,
εr allows BEACS to be biased in favor of the shortest sequences. The prediction
reward of a classifier is scaled, so that the highest reward of one predictor is
given when the sequence is made of a unique action, while the difference be-
tween the two estimators is used to decrease the prediction reward according to
the length of the sequence of actions. Classifiers prediction rewards of an action
set are updated as described by the algorithm 1.

Algorithm 1 BEACS RL Component

1: function UpdatePredReward(Cl, maxPA, maxPB , ρ, γ, β, #act, Bseq, εr)
2: if random() < 0.5: then
3: Cl.rA ← Cl.rA + β(ρ+ γmaxPB − Cl.rA)
4: else
5: Cl.rB ← Cl.rB + β(ρ+ γmaxPA − Cl.rB)

6: maxr ← max(Cl.rA, Cl.rB)
7: minr ← min(Cl.rA, Cl.rB)

8: Cl.r ← maxr − (maxr−minr+εr) ∗(#act−1)
Bseq

BEACS was tested with a set of mazes, which are widely used as reinforce-
ment learning benchmark [1]: the obtained results are presented in the following
section.

4 Performance in maze environments

4.1 Experimental protocol

Using the maze benchmark from [15], the experimental protocol is set in order
to address the following questions:

– Can BEACS detect PAI states in order to efficiently build classifiers with
Behavioral Sequences?

– Does the coupling of Behavioral Sequences with EPE in BEACS enable the
system to build (a) complete representations of its environments, and (b)
efficient decision policies?

– To what extent are the probabilities derived from PEP and EPE consistent
with the non-deterministic properties of the environments?

– Can BEACS efficiently control the evolution of its populations of classifiers?

The benchmark is made up of 23 mazes of different complexities (due to the
occurrence of PAI states for instance). To make the learning and the solving
of the task more complex, the results of actions have a 25% chance of being
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uncertain, in which case the system performs a random action without knowing
which one.

The goal of BEACS in these mazes is to construct a complete and accurate
representation of its environment, by moving one grid-cell at a time, and in either
eight adjacent positions, while attempting to reach the exit as fast as possible. Its
perceptive capabilities are limited to the eight squares adjacent to each position.
Its starting position in the mazes is random (but distinct from the exit).

BEACS is compared with BACS [15] and PEPACS [16] (control experiments)
on the maze benchmark, as they are the state-of-the-art ALCS using Behavioral
Sequences and PEP, respectively. For each maze of the benchmark, 30 runs were
performed using each of these three ALCS. A run firstly consists of a succession
of 5000 trials, that are constrained explorations until the exit or the maximal
number of actions (100) are reached: ε is set to 0.8 for the ε-greedy policy used to
select actions; the learning rate of ALP and RL, β, is set to 0.05; the PEP learning
rate of PEPACS is set to 0.01; the maximal length of the Behavioral Sequences
of BACS and BEACS is set to 3; θBSeq of BEACS is set to 1000 to manage the
PAI states detection. Then, the ALCS are switched to pure exploitation (i.e.
no ALP) and have 500 trials to bootstrap an efficient decision policy (ε = 0.2,
β = 0.05) and 500 more trials to stabilize the rewards (ε = 0, β = 0.05), before
recording the number of actions required by the ALCS to reach the exit for 500
more trials (ε = 0, β = 0.05). Other ALCS-related parameters not described
here are initialized to the default values provided in [6].

4.2 Metrics

For each experiment, the following metrics were collected for the 3 ALCS: the
size of populations of classifiers along with the ratio of reliable classifiers within
the populations, the mean specificity of reliable classifiers, the average num-
ber of steps required to reach the exit, the knowledge ratio, and the average
EP-accumulated error (EP stands for Enhanced Predictions). The list of states
considered as PAI states by BEACS was also collected.

The knowledge ratio is the ratio of correct transitions learned by at least
one reliable classifier to all possible transitions. Only transitions that led to
environmental changes are included.

The average EP-accumulated error is a new required metric because knowl-
edge ratios only provide information about symbol occurrences in PEP, and not
about the environmental fitness of the computed PEP probabilities: for each pos-
sible transitions in the maze using a unique action, theoretical probabilities asso-
ciated with the reachable states are first computed given the non-deterministic
properties of the maze. The difference between each PEP item of the effect com-
ponent of the most experienced and reliable classifier (if one exist, otherwise the
most experienced as defined in section 3.2) and the corresponding theoretical
probabilities are then computed. These differences are finally accumulated and
averaged over the number of possible transitions, before being divided by the
length of the effect component to get the average error by EP. In the case of



10 A. Onym et al.

Fig. 4: Knowledge ratio achieved by BEACS, BACS and PEPACS. The higher
the knowledge ratios, the better the performance. The use of PEP or EPE re-
spectively permits PEPACS and BEACS to build complete representations of
their environments.

EPE, a normalization of the counters associated to a perceptual attribute of
interest can provide probabilities that are equivalent to those obtained by PEP.

All metrics were averaged over the 30 runs, for each environment. The ob-
tained averages were compared with p-values computed by Welch t-test with
(Welch-) Satterthwaite degrees of freedom (significance threshold 0.05) [7].

4.3 Performance

Can BEACS detect PAI states in order to efficiently build classifiers with Be-
havioral Sequences?
According to the environmental properties of the benchmark mazes, there were
1590 PAI states and 9810 non-PAI states throughout all experiments. BEACS
has correctly identified 1490 of the 1590 PAI states, missed remaining 100 PAI
states and incorrectly categorized 23 states as PAI. Thus, the balanced accuracy
of the PAI state detection of BEACS is approximately 99.15%.

Does the coupling of Behavioral Sequences with EPE in BEACS enable the sys-
tem to build (a) representations of its environments, and (b) efficient decision
policies?
Figure 4 illustrates the knowledge ratios achieved by BEACS, BACS and PEPACS:
BEACS and PEPACS were globally able to build complete representations of
their environments, although PEPACS performed better than BEACS in 7 mazes
(p � 0.05), equally well as BEACS in 15 mazes (at least p ≥ 0.06) and worse
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Fig. 5: Average steps to exit achieved by BEACS, BACS and PEPACS. The lower
the average number of steps, the better the performance. BEACS is globally more
efficient than BACS and PEPACS to reach the exit in non-deterministic mazes.

than BEACS in the remaining maze (p � 0.05). BEACS did not achieve full
knowledge of its environments in any of the experiments in two environments
(MazeE1 and MiyazakiA) where it reached, at most, 97.84% and 99.31% respec-
tively. PEPACS achieved full knowledge of its environments in every maze at
least once.
Figure 5 shows the average number of steps required by the three ALCS to reach
the exit. BEACS performed better than BACS in 20 mazes (p� 0.05), equally
well as BACS in the 3 remaining mazes (p ≥ 0.07). BEACS performed better
than PEPACS in 12 mazes (p � 0.05), equally well as PEPACS in 3 mazes
(p ≥ 0.24) and worse than PEPACS in the 8 remaining mazes (p� 0.05).

To what extent are the probabilities derived from PEP and EPE consistent with
the non-deterministic properties of the environments?
The average EP-accumulated errors for each maze and ALCS are depicted in
figure 6. BEACS has the lowest average EP-accumulated errors across all envi-
ronments (all p � 0.05). BACS obtains, for 21 of the 23 environments, lower
errors than PEPACS with p� 0.05 and larger errors than PEPACS for Cassan-
dra4x4 and MazeE1, with p� 0.05. Therefore, the probabilities computed from
the EPE of BEACS are the most consistent according to the non-deterministic
properties of the environments.

Can BEACS efficiently control the evolution of its populations of classifiers?
Figure 7 shows the size of the populations of classifiers created by BEACS, BACS
and PEPACS, as well as the ratios of reliable classifiers within these populations.
In 21 environments, BEACS populations are smaller than BACS populations (all
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Fig. 6: Average EP-accumulated errors given the non-deterministic mazes, high-
lighting the gaps of the probabilities computed by PEPACS with the environ-
mental settings. The lower the average EP-accumulated errors, the more accu-
rate the environmental representations. The representations built by BEACS are
more accurate than those of BACS and PEPACS.

p� 0.05) while in the remaining two mazes, BEACS populations are larger (all
p � 0.05). BEACS populations are smaller than PEPACS populations in 15
environments (all p� 0.05) and larger for the 8 remaining mazes (all p� 0.05).
BEACS has the highest ratios of reliable classifiers in 19 mazes (all p � 0.05)
and shares the highest ratios with PEPACS in Woods101.5 (p ≥ 0.13). PEPACS
has the highest ratios of reliable classifiers in the remaining environments (all
p� 0.05): MazeE1, MiyazakiA and Woods100.
Finally, the mean specificities of BEACS reliable classifiers are the highest in
19 mazes (all p � 0.05) and BEACS shares the highest mean specificities with
PEPACS in MazeF4 (p ≥ 0.21) and MazeF3 (p ≥ 0.53). PEPACS has the highest
mean specificities of reliable classifiers in Maze7 and Woods14 (all p� 0.05).

5 Discussion

Some states related to the Perceptual Aliasing Issue are impossible to detect due
to the aliasing detection mechanism.
BEACS is the first ALCS to successfully detect when an aliasing state is related
to the Perceptual Aliasing Issue. However, analyzing the 100 states that were not
detected as PAI states revealed a limit: 90 of these states were not even detected
as aliased. This is explained by the fact that truly distinct states in an envi-
ronment can yield the same perception as well as the exact same environmental
transitions to other PAI states. Because ALCS detects aliasing when several
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Fig. 7: Size of the populations of classifiers built by BEACS, BACS and PEPACS,
along with the ratios of reliable classifiers within these populations. Small clas-
sifiers populations are easier to manipulate to extract knowledge. The higher
these ratios, the more advanced the learning as the populations converge.

states are reachable for a state-action pair, such PAI states cannot currently be
detected by BEACS or any ALCS.

BEACS balances performance and explainability
Enhanced Predictions through Experience (EPE) and Behavioral Sequences (BSeq)
are used together to improve both performance and explainability of ALCS.
BEACS intends to generalize the results reported for both approaches in a range
of environments with varying characteristics and non-deterministic properties
that have never been tested in previous studies.

First of all, although the number of learning steps used in the experiments is
not set up according to the complexity of the benchmark mazes (this complexity
refers to, for instance, the size of the maze or its non-deterministic properties),
BEACS outperforms BACS and is globally more efficient than PEPACS (as
shown in figure 5). However, its performance suggest that its reinforcement com-
ponent could be further improved to promote the use of the shortest sequences
of actions, since BEACS used, at most, one extra step in the environments in
which PEPACS performs better than BEACS.

Then, even if BEACS performs slightly worse than PEPACS overall (up to
about 4% worse on average over all environments), it is able to create com-
plete representations of its environments (as seen in figure 4). The Behavioral
Sequences are responsible for the observed discrepancies between PEPACS and
BEACS. Indeed, their use implies that the system explores and fits these se-
quences to its environment at the expense of representation construction, which
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is thus slowed as Behavioral Sequences do not build reliable classifiers in PAI
states.

However, the probabilities derived from the set of anticipations in BEACS
classifiers are closer to the expected theoretical probabilities than those of PEPACS
and BACS (as illustrated in figure 6). The probabilities computed by PEPACS
are worse than those of BACS in 22 of 23 environments, even though PEPACS,
as opposed to BACS, includes the PEP-mechanism to build accurate represen-
tations. In other words, BACS unreliable classifiers in aliased states may better
describe the probability to anticipate next states than PEPACS reliable classi-
fiers. This highlights the sensibility of the probabilities computed by PEPACS
with regards to the experience of the system, when the system suffers from un-
certainty in its action rather than relying on the experience of the system to
make the probabilities converge, as BEACS does.

BEACS explainability assessment
BEACS computes its probabilities from EPE through experience, hence the
larger the number of learning steps, the more accurate the probabilities. BEACS
anticipations therefore provide new insights into classifier explainability by en-
suring the reliability of the environmental representations: BEACS classifiers can
reliably be chained to trace the possible causes of a particular event. However, as
environments get more complex due to non-deterministic properties or percep-
tive inputs related to high-dimensional search spaces, populations of classifiers
grow. The smaller the population of classifiers, the more BEACS is explainable.
Thus, further works should focus on mechanisms efficiently reducing the popula-
tions of classifiers, such as compaction [20], by exploiting the knowledge acquired
in BEACS population of classifiers.

Moreover, the representations used by BEACS to describe the classifier con-
ditions and effects are kept unspoiled. This was possible thanks to the new mu-
tation operator introduced in the genetic generalization mechanism, but at the
expanse of the building of less general classifiers. Refining these representations
to both highlight the changes in ALCS environments and build more general
classifiers is a direction for future research.

Comparing ALCS with other RL approaches
Comparing the capabilities of BEACS (and the other ALCS that can deal with
non-determinism) with other systems used for similar tasks in reinforcement
learning problems is also a direction for future research. However, it is difficult
to thoroughly compare ALCS with other Reinforcement Learning systems, as
the main objectives of these systems may differ from those of BEACS: for exam-
ple, systems based on accuracy-based classifier system [22] are mainly based on
stochastic processes to build their classifiers, thus impacting the explainability of
these systems. The same goes for many deep reinforcement learning approaches,
where statistical relationships may often be used to explain a decision and ac-
cessing the internal representations of the environments may be tricky.
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6 Conclusion

This paper introduced BEACS (Behavioral Enhanced Anticipatory Classifier
System) as an alternative machine learning model to solve reinforcement learn-
ing tasks, in an effort to increase both the performance and explainability of
Anticipatory Learning Classifier Systems. BEACS couples Behavioral Sequences
(BSeq) and Enhanced Predictions through Experience (EPE) to handle non-
deterministic, partially observable environments, which are common in the real
world. While Behavioral Sequences enable ALCS to bridge states which cannot
be distinguished by perception alone (known as the Perceptual Aliasing Issue) us-
ing sequences of actions, Enhanced Predictions through Experience allow ALCS
to build multiple anticipations in non-deterministic states (i.e. aliased states).

BEACS is the first ALCS integrating a mechanism to distinguish states re-
lated to the Perceptual Aliasing Issue from all other aliased states. This allows
the system to know when Behavioral Sequences should and should not be used,
as BSeq can be used to deal with PAI but not with other types of aliasing. The
construction of classifiers using Behavioral Sequences has been enhanced and now
provides a better control of these classifiers. The length of sequences of actions
is taken into account to fit these sequences more efficiently to the environment.
BEACS uses the EPE mechanism to build more accurate and explainable rep-
resentations of its environments. The EPE classifiers aim at describing precisely
each states encountered by the system, according to the environmental proper-
ties. Finally, by adaptively deleting, generalizing, and specializing its classifiers,
BEACS can better frame the expansion of its population.

The results of a thorough experimental protocol using maze environments
show that BEACS (1) builds complete and accurate internal representations
of its environment when faced with non-deterministic environmental properties
such as the Perceptual Aliasing Issue or uncertain results of action, (2) describes
more precisely the states anticipated by the classifiers along with their probabil-
ities to be anticipated, (3) builds efficient decision policies to solve the learning
tasks and (4) provides explanatory insights about created decision policies and
environmental representations to its user.

Future works should focus on the management of classifiers populations, to
ease the interpretation of these populations through compression, visualization
or generalization, as well as the assessment of different Reinforcement Learning
mechanisms that can be embedded within ALCS.
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