New Algorithms for Multivalued Component Trees Nicolas Passat¹, Romain Perrin², Jimmy Francky Randrianasoa^{2,3}, Camille Kurtz⁴, Benoît Naegel²

¹ Université de Reims Champagne Ardenne, CRESTIC, Reims, France ² Université de Strasbourg, CNRS, ICube, Strasbourg, France ³ EPITA Research Laboratory (LRE), Paris, France ⁴ Université Paris Cité, LIPADE, Paris, France

Motivation

The component tree (CT) [3] can model grey-level images for various image processing / analysis purposes (filtering, segmentation, registration, retrieval...). Its generalized version, the multivalued component tree (MCT) [1] can model images with hierarchically organized values. We provide new tools to handle MCTs:

- a new algorithm for the construction of MCTs;
- two strategies for building hierarchical orders on values, required to further build MCTs.

Multivalued Component Tree

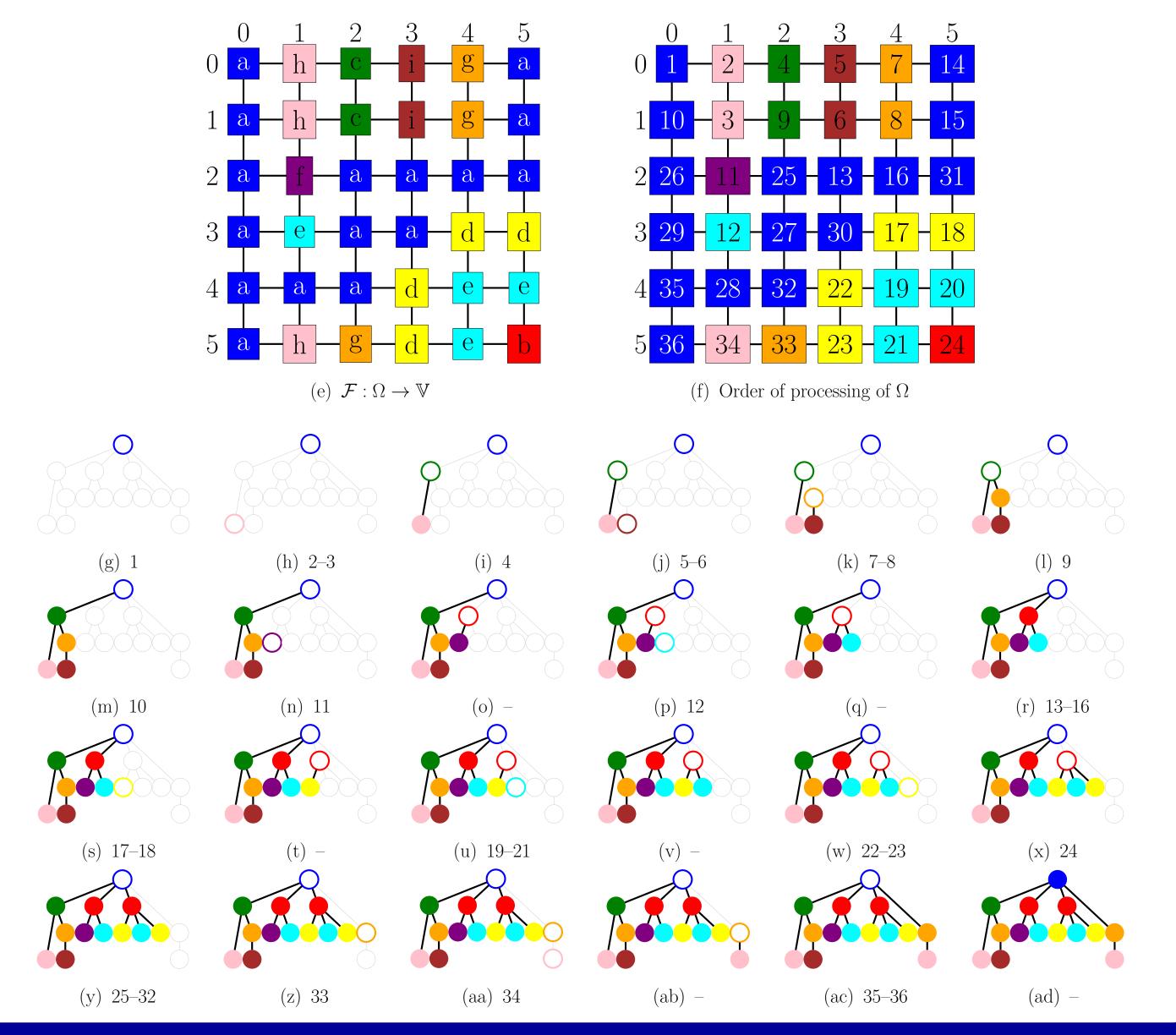
Let $\mathfrak{G} = (\Omega, \gamma)$ be a non-directed graph. Let $\mathcal{C}[X]$ be the set of the connected components of $X \subseteq \Omega$. Let \mathbb{V} be a finite set and \leq a hierarchical order on \mathbb{V} , i.e. an order (1) which admits a minimum (resp. a maximum) and (2) such that for any $v \in \mathbb{V}$, the subset of the elements lower (resp. greater) than v is totally ordered by \leq .

Let us consider an image $\mathcal{F}: \Omega \to \mathbb{V}$. The threshold set of \mathcal{F} at value $v \in \mathbb{V}$ is defined by $\Lambda_{v}(\mathcal{F}) = \mathbb{V}$ $\{\mathbf{x} \in \Omega \mid v \leq \mathcal{F}(\mathbf{x})\}$. We define the set of nodes of the MCT as

$$\Theta = \left[-\frac{1}{C} \left[\Lambda_{\rm v}(\mathcal{F}) \right] \right] \tag{1}$$

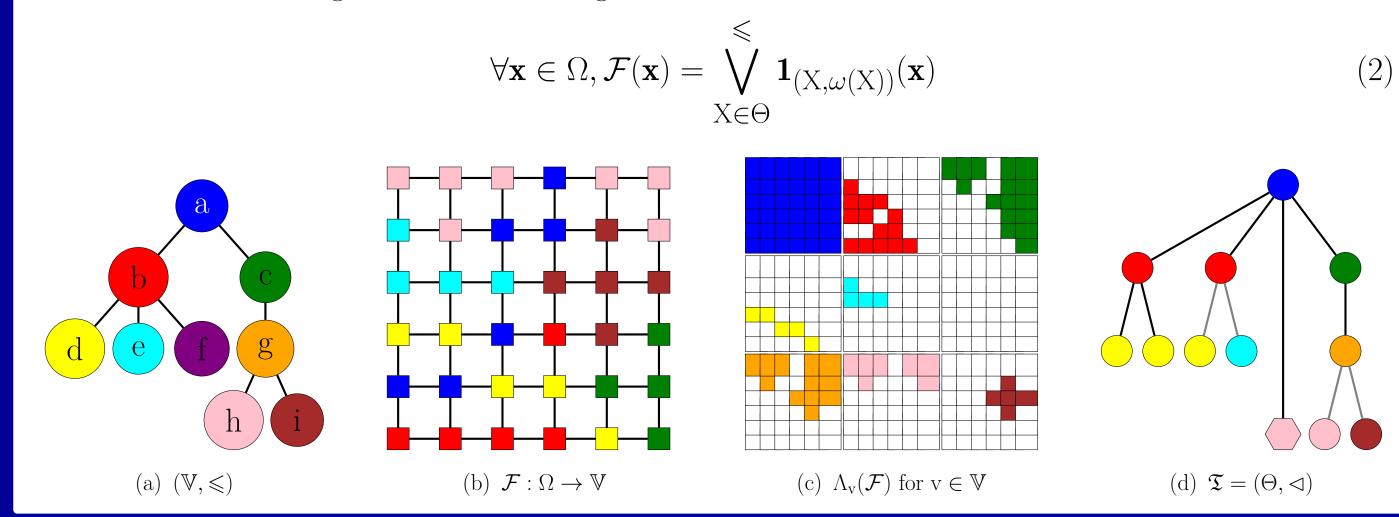
Running the Construction Algorithm

Construction of the MCT of an image $\mathcal{F}: \Omega \to \mathbb{V}$. At a current stage: a plain coloured node is fully built; a contour-colored node is under construction; a non-colored node has not been considered yet; a black edge is built; a light gray edge is not built.



$$\bigcup_{v \in \mathbb{V}} \mathbb{V}^{[1,1]}(\mathbf{v})$$

with $\mathbb{I}(X) = \{ v \in \mathbb{V} \mid X \in \mathcal{C}[\Lambda_v(\mathcal{F})] \}, \ \omega(X) = \bigvee^{\leq} \mathbb{I}(X) \text{ and } \tau(X) = |\mathbb{I}(X)| \text{ for any node } X \in \Theta.$ The inclusion relation \subseteq is a hierarchical order on Θ . Let \triangleleft be the reflexive-transitive reduction of \subseteq . The Hasse diagram $\mathfrak{T} = (\Theta, \triangleleft)$ of (Θ, \subseteq) is the multivalued component tree of the image \mathcal{F} . For any node $X \in \Theta$, we set $\rho(X) = X \setminus \bigcup_{Y \triangleleft X} Y = \{ \mathbf{x} \in \Omega \mid \mathcal{F}(\mathbf{x}) = \omega(X) \}.$ The MCT \mathfrak{T} is an image model of the image \mathcal{F} :



Building the Multivalued Component Tree

This construction algorithm derives from the CT construction of [3].

- **nodes**: stores the nodes of the multivalued component tree.
- **points**: stores the processed points of the image.
- **status**: stores the status of each point of the image.
- **nb_nodes** and **index**: store the number of nodes already fully built and the index of the node currently built at each value of \mathbb{V} .
- **progress**: indicates if there exists a node at value v, currently under construction or to be built,

Hierarchical order construction (1/2): (Pre)ordering the value set

Building the MCT requires a hierarchical order on \mathbb{V} .

First, we can build a hierarchical preorder $\leq_{\mathbb{V}}$ on \mathbb{V} . This can be done by building the CT of an "image" composed by the value set. It is only required that \mathbb{V} be endowed with:

- an adjacency $\frown_{\mathbb{V}}$, allowing to map a graph structure on \mathbb{V} ;
- a function $\delta_{\mathbb{V}} : \mathbb{V} \to \mathbb{N}$, allowing to associate to each element of \mathbb{V} a value within the totally ordered set (\mathbb{N}, \leq) .

The CT of $\delta_{\mathbb{V}}$ is a hierarchical preorder $\leq_{\mathbb{V}}$ on \mathbb{V} .

which is an ancestor of the node at value u currently being defined.

Algorithm 1: Build the multivalued component tree

```
Input: (\Omega, \frown), (\mathbb{V}, \leqslant), \mathcal{F} : \Omega \to \mathbb{V}
Output: \mathfrak{T} = (\Theta, \triangleleft)
Build nodes, points, status, nb_nodes, index, progress
v_{\min} := \bigwedge^{\leqslant} \mathbb{V}
Choose \mathbf{x}_{\min} \in \Omega such that \mathcal{F}(\mathbf{x}_{\min}) = v_{\min}
points[v_{min}].add(x_{min})
progress[v_{min}] := true
Flood(v_{min})
```

Function Flood

Input: $u \in V$: current level

Output: $w \in \mathbb{V}$: value of the parent node of the root of the built (partial) MCT at value u

```
while !(points[u].empty()) do
```

```
x := points[u].remove()
```

```
if index[u] > nb_nodes[u] then
```

```
nb_nodes[u] := index[u]
```

```
X := create_node()
```

```
nodes[u].insert(X)
```

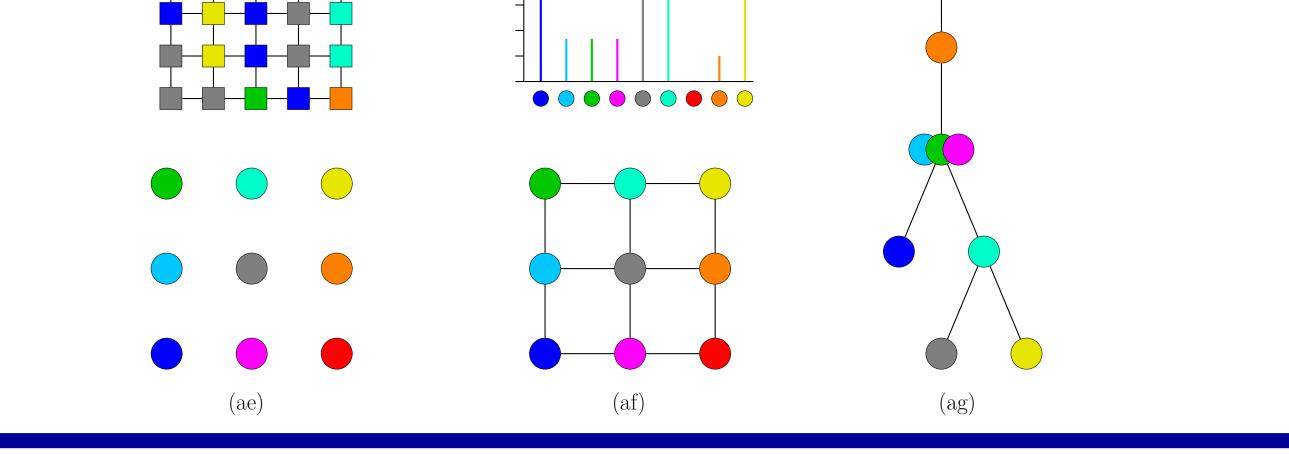
```
if \mathcal{F}(\mathbf{x}) \neq u then
```

```
\mathbf{w} := \mathcal{F}(\mathbf{x})
points[w].add(x)
progress[w] := true
```

```
while u < w do w := Flood(w)
```

else

```
status[x] := index[u]
nodes[u][index[u]].add_to_proper_part(x)
foreach \mathbf{y} \sim \mathbf{x} do
    \mathbf{w} := \mathcal{F}(\mathbf{y})
```

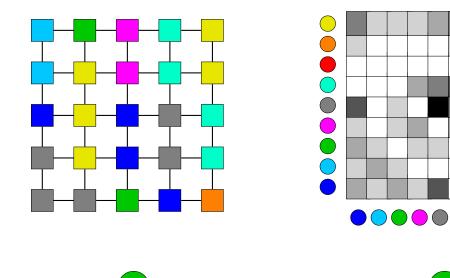


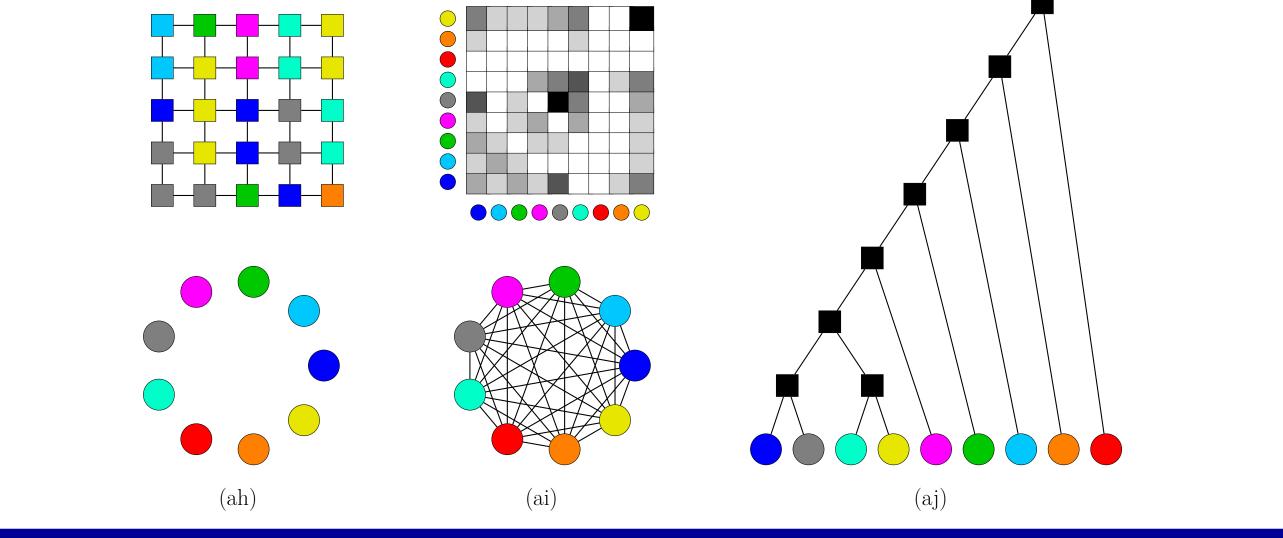
Hierarchical order construction (2/2): Ordering the enriched value set

Second, we can build hierarchical order $\leq_{\mathbb{W}}$ on $\mathbb{W} \supset \mathbb{V}$ so that the elements of \mathbb{V} are the maximal elements with respect to \leq_W .

This can be done by building the binary partition tree (BPT) [2] of an "image" composed by the value set $\leq_{\mathbb{V}}$. It is only required that \mathbb{V} be endowed with:

- an adjacency $\frown_{\mathbb{V}}$, allowing to map a graph structure on \mathbb{V} ;
- a priority function $\delta_{\gamma_{\mathbb{W}}} : \gamma_{\mathbb{V}} \to \mathbb{N}$, allowing to determine the couples of nodes to be merged in priority.





if status[y] = -1 then if $u \leq w$ then $\widehat{w} := w$ else $\widehat{\mathbf{w}} := \bigwedge^{\leqslant} \{\mathbf{u}, \mathbf{w}\}$ $points[\widehat{w}].add(y)$ status[y] := 0 $progress[\widehat{w}] := true$ while $u < \widehat{w}$ do $\widehat{w} := Flood(\widehat{w})$ if $u = v_{\min}$ then $W := \varepsilon$ else $\mathbf{w} := \bigvee^{\leqslant} \{ \mathbf{w'} \in \mathbb{V} \mid \mathbf{w'} < \mathbf{u} \}$ while *progress[w]* = false do $w := \bigvee^{\leq} \{w' \in \mathbb{V} \mid w' < w\}$ create_edge(nodes[u][index[u]],nodes[w][index[w]]) progress[u] = falseindex[u]++

// new edge in \triangleleft

// new node in Θ

References

- [1] C. Kurtz, B. Naegel, and N. Passat. Connected filtering based on multivalued component-trees. IEEE Transactions on Image Processing, 23:5152-5164, 2014.
- [2] P. Salembier and L. Garrido. Binary partition tree as an efficient representation for image processing, segmentation, and information retrieval. IEEE Transactions on Image Processing, 9:561–576, 2000.
- [3] P. Salembier, A. Oliveras, and L. Garrido. Anti-extensive connected operators for image and sequence processing. IEEE Transactions on Image Processing, 7:555–570, 1998.

Funding

This work was supported by the French Agence Nationale de la Recherche (grants ANR-20-THIA-0006, ANR-20-CE45-0011, ANR-22-CE45-0034 and ANR-23-CE45-0015)

