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Abstract. Brownian motion is a well-known, apparently chaotic mo-
tion affecting microscopic objects in fluid media. The mathematical and
physical basis of Brownian motion have been well studied but not of-
ten exploited. In this article we propose a particle tracking methodology
based on mathematical morphology, suitable for Brownian motion anal-
ysis, which can provide difficult physical measurements such as the local
temperature and viscosity. We illustrate our methodology on simulation
and real data, showing that interesting phenomena and good precision
can be achieved.
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1 Introduction

Brownian motion was first described by Robert Brown in 1828 [1]. He observed
the jittery motion of microscopic particles suspended in water, but could not
explain it at the time. Einstein, in one of his 1905 annus mirabilis articles [2]
was able to propose a consistent theory of Brownian motion based on random
walks. He explained that the observed motion was the result of random collisions
between water molecules and the observed particles. Due to the discrete nature of
these collisions, at any point in time the forces acting on a particle are constantly
changing, resulting in an unpredictable trajectory. Jean Perrin carefully designed
experiments that proved that the Einstein theory was correct, the first convincing
observational evidence of the existence of molecules [3]. The Einstein theory
together with the Perrin experiements allowed estimations of the size of atoms
and how many atoms there are in a mole (the Avogadro number). This earned
Jean Perrin the Nobel prize in physics in 1926.

Einstein had sought to estimate the distance a Brownian particle travels in
a given time. Because the number of collisions between molecules and particles
is enormous, classical mechanics could not be used. Instead Einstein called upon
the notion of random walks. Using the ensemble motion of a large number of
particles, Einstein was able to show that the density of particles obeys a diffusion
equation.



Random walks are an interesting and ubiquitous model for a number of
stochastic processes. Besides physics, they are useful in finance [4], ecology [5],
biology [6], chemistry [7], and of course imaging [8]. They form the basis of
stochastic optimisation, particularly MCMC methods [9,10]. In imaging, these
approaches led to Markov Random Fields methods [11].

Random walk also allow the construction of complex models [12], both un-
predictable at the short timescale and highly regular in the long run. Indeed,
many stochastic processes converge to the Brownian motion model, which is one
of the simplest yet most irregular stochastic evolution process.

Random walks have been very widely studied. In this article, we are not so
much interested in their phenomena per se, as we are in the image analysis of
Brownian motion. Indeed, we show that the image analysis of Brownian motion
can lead to useful physical measurements. As far as we know, Brownian motion
has been used to estimate temperature before [13] but not through automated
image analysis methods.

In the remainder of this article, we define the Brownian motion model and
its more precise links to random walks and diffusion phenomena in section 2. We
describe our sequence processing pipeline in 3. We then formalize the expected
results of physical Brownian motion via particle tracking in section 4. Finally
we show results on simulations and actual data.

2 Brownian motion, random walks and diffusion

What is now widely referred to as “Brownian motion” is no longer the physical
phenomenon that Robert Brown observed in 1828. Instead, it is a process model,
also called the Wiener process.

Definition 1. Let Wt be a random process with the following properties:

1. W0 = 0 a.s ;
2. W has independent increments, meaning if 0 ≤ s1 < t1 ≤ s2 < t2 then

Wt1 −Ws1 and Wt2 −Ws2 are independent random variables;
3. W has Gaussian increment, meaning Wt+u−Wt ∼ N (0, u), i.e. Wt+u−Wt

is Normally distributed with variance u;
4. W is continuous a.s.

This process is non-smooth at all scale (no matter how small t1− s1 is), and
so largely theoretical, but can be well approximated by random walks.

Definition 2. Let ξ1, ξ2, . . . be i.i.d random variables with mean 0 and variance
1, Let W r

t be the following random step function:

W r
n(t) = 1√

n

∑
1≤k≤bntc

ξk

This function is called a random walk. We now have the following theorem:



Theorem 1. As n→∞, W r
n(t) converges to the Wiener process Wt.

Proof. The proof is given in [14], but the idea is intuitive. Indeed, W r
n(0) = 0;

moreover, since the ξi are independent, W r
n(t) has independent increments; for

large n, W r
n(t) − W r

n(s) is close to N (0, t − s) by the central limit theorem
(CLT). The continuity argument is more difficult. Since W r

n is a step function,
it is continuous a.e, but this is of little utility in the limit. However as n→ +∞,
the jumps tend to zero even though jumps may be arbitrary large initially. This
guarantees the almost sure continuity.

In practical terms, this means that a sum of i.i.d Normal random variables
converges to the Brownian motion process, and so is easy to simulate. In fact,
because so many distributions converge to the Normal distribution by the CLT,
we can use simpler distributions for the steps. For instance, binary steps where
ξi ∈ {+1/− 1} with equal probabilities instead of Normal steps are fairly stan-
dard.

This process extends to any dimension by choosing vector steps with i.i.d.
components (binary or Normal). In the binary case, this corresponds to ran-
dom walks on an infinite regular grid. There are a number of interesting facts
regarding random walks and Brownian motion, in particular:

E[Wt] = 0 (1)
V [Wt] = t (2)

A proof in the discrete case is given below. Pólya showed [15] that random walks
return to the origin with probability 1 in 1-D and 2-D but not for dimensions
greater than 2.

2.1 Average and variance of the position

In the simplest case, we consider a random walker making steps of length l in
one dimension. This means that at each timestep si of duration τ , this random
walker can move one position to the right or left with equal probability.

si =
{
−l with probability 1/2
+l with probability 1/2 (3)

After N steps (at time Nτ), the position of the walker is

x(N) =
N∑
i=1

si. (4)

with going left or right equiprobable. Starting from 0, the average position is

E[x(N)] = 0 (5)



I.e. the average position is always at the origin. However the variance of the
position changes with time. We write

x2(N) =
(

N∑
i=1

si

)2

=
N∑
i=1

s2
i +

N∑
i=1

N∑
j=1,j 6=i

sisj (6)

However, the quantity sisj for a pair i, j, i 6= j is

sisj =
{
−l2 with probability 1/2
+l2 with probability 1/2 , (7)

so on average it will be zero. On the other hand s2
i will always be l2, therefore

E[x2(N)] = l2N. (8)

after N steps. Since the average of x is zero, this is also the variance. We see
that it increases linearly with time.

2.2 Relation to diffusion

We now see how random walks behave as the timestep τ tends to zero [16]. Let
P (i,N) denote the probability that a walker is at position i after N timesteps.
Due to the equal probability for a walker to move left or right, we have the
recursive equation:

P (i,N) = 1
2P (i+ 1, N − 1) + 1

2P (i− 1, N − 1) (9)

We write x = il and t = τN , since these probabilities are scale-independent we
find

P (x, τ) = 1
2P (x+ l, t− τ) + 1

2P (x− l, t− τ) (10)

Subtracting P (x, t− τ) and dividing by τ , we have

P (x, t)− P (x, t− τ)
τ

= l2

2τ
P (x+ l, t− τ) + P (x− l, t− τ)− 2P (x, t− τ)

l2
(11)

The left-hand side is a first order finite difference approximation of ∂P∂t and the
right-hand side is a first order approximation of ∂2P

∂x2 . As τ and l tend to zero
but l2/2τ remains constant, we have

∂P

∂t
= l2

2τ
∂2P

∂x2 , (12)

which is the well-known one-dimensional diffusion equation, a continuous pro-
cess. A similar derivation can be achieved in arbitrary dimension.



3 Processing of Brownian motion sequences

In this section, we describe our sequence processing pipeline. The data we wish to
process comes from a bespoke microfluidic device produced at ESIEE Paris [17].
The objective of this device is to allow the study of optical trapping at the micro
scale. Because of the small size of the device and of the particles, existing particle
tracking system do not work sufficiently well [18].

Pre-processing The sequences were recorded under a Leica inverted optical mi-
croscope, observing a capillary tube embedded in an optical trapping device. The
tube contains the particles and is surrounded by the microfluidic system itself.
Only the area containing the particles is of interest to us, so we first cropped
the sequences around the capillary and automatically corrected the luminosity
variations that occur during acquisition, by reference to the average image over
the entire sequence. We then removed the non-moving components (fluidics sys-
tem, capillary) by subtracting this average image. We named this pre-processed
sequence S0. A sample frame from this output is shown on Fig. 1.

(a) (b)

Fig. 1. A sample frame from the initial sequence, and the output of the pre-processing
for that frame.

Particle segmentation We simplified S0 using an area black top-hat on the h-
maxima on each frame of the sequence:

∀I ∈ S0, Ihm = ϕR(I − h, I)− I (13)
Ibta = Ihm − γα(Ihm) (14)



These are classical mathematical morphology operators [19]. ϕR is the closing
by reconstruction [20]; γα is the area opening of parameter α [21], and h is
the height parameter. These are efficiently implemented using the component
tree [22,23].

This pipeline retains the particles and erases the background. It depends on
few parameters. The area parameter α is twice the known area of the particles
and h was hand-tuned at 15. We then smoothed the result using a 2D+t median
filter on this sequence considered as a 3D image, of size 3×3×10. We thresholded
and denoised this sequence by erasing the very small remaining components via
a small 3× 3 opening. The result is named S3D

1 .

(a) (b) (c)

Fig. 2. In (a) the result of the black top-hat. In (b) the 2D+t traces. In (c), the
segmented particles.

Trajectory separation We used a morphological erosion from a Euclidean dis-
tance map on S3D

1 to filter out small components and separate some traces.
From this result, we estimated a discrete trajectory from the thresholded center
on each slice. We then dilated these detected centroids with a disk in order to
obtain a smooth and regular mask of the trajectories. We then computed the 3D
skeleton of this binary mask [24]. Because the particles float in a 3D medium,
they can appear to overlap and so their trajectory can merge. We detect crossing
points in our skeleton that would cause non-unique labels on each slice. We then
removed the triple points before labeling the trajectory.

Now that our trajectories are unique and identified, we dilated them with a
disk with a greater radius than that of the particles to obtain a labeled mask.



Because the particles are round, a more precise way to find their centroids
is to compute a weighted average of the coordinates of the pixels belonging to
the trajectory in the mask according to the grey-level intensities of the initial
sequence. We hence obtain sub-pixel accurate coordinates of the particles on
each frame associated with a unique label ensuring the unicity of the tracking.
We now study how to use these detected trajectories.

4 Particle tracking

We now wish to exploit the potential of Brownian motion for physical measure-
ments

In (12), the quantity l2/2τ is called the diffusion coefficient D.

D ≡ l2

2τ (15)

Einstein [2] has shown that in a purely viscous fluid, with no external force
influence

D ∝ T

η
, (16)

where T is the absolute temperature and η the viscosity. In general these physical
quantities are difficult to measure at the microscopic level. The study of diffusion
via Brownian motion analysis is a potentially powerful method.

For this we assume neutrally buoyant, non-interacting test particles floating
in a fluid and observed under a microscope. We assume that we are able to
measure the position of these particles with arbitrary spatial and time resolution.
This is not an outrageous demand, since Brownian motion is scale-independent,
as we have seen. It means that we can trade some spatial and time resolution
with each other.

4.1 Simulations

To assess the potential of Brownian motion to measure physical quantities, we
simulate a 2D field with temperature varying in space and time, but with con-
stant viscosity, where test particles are present.

Each particle is assumed to evolve independently of each other (no shocks or
other interaction) irrespective of the density. To simulate temperature change,
we vary the diffusion parameter D of equation (12) subject to arbitrary, but
controlled change. This changes the expected spatial step according to (15). To
measure the temperature, we allow ourselves to only use the parameters of the
Brownian motion of each particle.

4.2 Mean square displacement

Because a single spatial step of an arbitrary particle can only be expected to
resemble a random deviate from a Normal distribution of variance proportional



Fig. 3. . (a) A simulated random walk. (b) A simulation of a diffusive process by
random walk at time 0, 50, 150 and 300 The color of each particle represents the
estimation of the diffusion coefficient. (c) The dispersion of the diffusion coefficient
estimation at time 100 over all particles.

to l2, it cannot be used in isolation. Instead, we can estimate D by an averaging
process. For this we define the mean square displacement (MSD) as follows:

MSD(τ) = E[∆r2(τ)] = 1
m

m∑
t=1
|r(t+ τ)− r(t)|2, (17)

where r(t) is the measured position of the studied particle at time t, and τ the
timestep. Since MSD(τ) = l2/2n, from (15), we should expect MSD(τ)/2τ to
be constant and a reasonable approximation of D. To provide a stable estimate
of the diffusion coefficient from a particle, we must consider a varying τ . In the
discrete case, we can consider averaging the sequence MSD(nτ)/nτ .

D ≈ 1
2n

n∑
i=1

MSD(nτ)
nτ

. (18)

Averaging over several particles provides an even stabler estimation. On Fig 3, we
show the output of a simulation of diffusing particles starting from a single line
over time with a constant D. The color of each particle represents the estimate
of the diffusion coefficient given by the motion analysis of that particle. For this
estimation, we used m = 150 in (17) and n = 5 in (18). As seen in Fig. 3, the



estimation of this coefficient has a large variance but is still be usable. Indeed
the simulated D was 5.0 and the median estimated D was 5.05.

4.3 Time-dependent analysis

(a) t=0 (b) t=0 (c) t=100 (d) t=100 (e) t=200 (f) t=200

Fig. 4. Simulation of a cooling medium (a,c,e) sampled by the random walk analysis
of 200 particles (b,d,f). Color code indicates the temperature, proportional to the local
diffusion coefficient.

To test whether motion-derived estimates of the diffusion coefficient are suf-
ficiently precise, we simulate a time-dependent process illustrated on Fig. 4. In
this test, a hot rectangular area is allowed to cool over time by conduction in
a cooler medium. 200 particles are uniformly randomly placed and tracked over
time. The estimated MSD is computed and associated with each particle and
is color-coded with the same scheme. Since the problem is really only 1D+t, as
there is no variation along the horizontal x axis, we can project all the estimated
MSD onto the vertical y axis, as shown on Fig. 5(a). The MSD estimation is quite
sparse, so it is beneficial to interpolate it. To achieve this, we used 2D universal
kriging [25,26]. Our input data are all the traces points with their estimated
diffusion coefficients.

In this experiment, D is estimated over 150 causal trace steps, so to avoid
border effects, the last 150 steps are not estimated, shortening the sequence by
that amount. As we can see in Fig. 5(c), the estimation is now of reasonable
quality and appears bias-free.

5 Results on real data

Starting from our estimated traces from section 3, we first verify their random
walk qualities, then estimate the diffusion coefficient image in the same way as
in the simulation.



(a) (b)

(c)

Fig. 5. (a): 1D+t ground-truth representation of the diffusion coefficient in the cooling
medium of Fig 4.(b): Superposition of the trace estimation for the diffusion coefficient
D. (c) 2D Kriging estimation of the same diffusion coefficient. The color code is the
same in all three images.

On Fig. 6, we show the trace of one of the particle over time, and we estimate
the associated MSD from (17). We note the subpixel accuracy of the trace, and
the linear aspect of MSD(τ) with respect to τ . All sufficiently long trace (time
length > 150 step) were found to exhibit similar characteristics. From these we
estimate the MSD at every point of all the segmented traces, and interpolated
the data as above. This is illustrated on Fig. 7.

On this experiment, the particles were held in an optical trap before t = 0
and then released at that time. We expect the particles to diffuse and heat as
they move into the medium, i.e. we expect the traces to expand and become
redder in the false-color rendition of the result, which is what we are indeed
observing.

6 Conclusion

In this article we have shown that subpixel-accurate trace analysis of the Brow-
nian motion of microscopic particles is possible, even in challenging situations,
and that it can provide estimates of the local diffusion coefficient, which is pro-
portional to the temperature divided by the viscosity of the medium. We have
provided a full pipeline, validated on simulated data and tested on real data.
Future work will validate the physical measurements in more controlled acquisi-
tions where a stable temperature gradient can be established. Also, the current



(a) (b)

Fig. 6. (a) The trace of a real particle. Note the subpixel accuracy of the trace and
similarity to Fig. 3(a) ; (b) the MSD(τ) vs. τ associated with this trace, which is linear
as expected.

Fig. 7. (a) Real, segmented traces with associated estimated MSD as in Fig. 5. (b)
Interpolated MSD.

diffusion coefficient estimation includes an integrating step over a long period
(150 time steps in our study) for accuracy. This integration blurs the estimation
in time and in the direction of the particle travel. We plan to correct this effect
by considering it as an inverse problem.

References

1. Brown, R.: A brief account of microscopical observations made in the months of
june, july and august, 1827, on the particles contained in the pollen of plants; and
on the general existence of active molecules in organic and inorganic bodies. Phil.
Mag. 4 (1828) 161–173

2. Einstein, A.: Über die von der molekularkinetischen theorie der wärme geforderte
bewegung von in ruhenden flüssigkeiten suspendierten teilchen. Annalen der Physik
322(8) (1905) 549–560

3. Perrin, J.: Mouvement brownien et réalité moléculaire. Ann. Chim. Phys., 18(8)
(1909) 5–114



4. Bachelier, L.: Théorie de la spéculation. Annales Scientifiques de l’École Normale
Supérieure 3(17) (1900) 21–86

5. Skellam, J.G.: Random dispersal in theoretical populations. Biometrika 38(1/2)
(1951)

6. Colding, E., et al.: Random walk models in biology. Journal of the Royal Society
Interface (2008)

7. De Gennes, P.G.: Scaling Concepts in Polymer Physics. Cornell University Press,
Ithaca and London (1979)

8. Grady, L.: Random walks for image segmentation. IEEE T. Pattern Anal. Mach.
Intell. 28(11) (2006) 1768–1783

9. Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E.:
Equation of state calculations by fast computing machines. The journal of chemical
physics 21(6) (1953) 1087–1092

10. Hastings, W.: Monte carlo sampling methods using markov chains and their ap-
plications. Biometrika 57(1) (1970) 97–109

11. Geman, S., Geman, D.: Stochastic relaxation, gibbs distributions, and the bayesian
restoration of images. IEEE T. Pattern Anal. Mach. Intell. 6 (1984) 721–741

12. Bertsimas, D., Vempala, S.: Solving convex programs by random walks. Journal
of the ACM (JACM) 51(4) (2004) 540–556

13. Park, J., Choi, C., Kihm, K.: Temperature measurement for a nanoparticle suspen-
sion by detecting the brownian motion using optical serial sectioning microscopy
(ossm). Measurement Science and Technology 16(7) (2005) 1418

14. Donsker, M.: An invariance principle for certain probability limit theorems. Mem-
oirs of the American Mathematical Society 6 (1951)

15. Pólya, G.: Über eine aufgabe betreffend die irrfahrt im strassennetz. Math. Ann.
84 (1921) 149–160

16. Nordlund, K.: Basics of monte carlo simulations
17. Gaber, N., Malak, M., Marty, F., Angelescu, D.E., Richalot, E., Bourouina, T.:

Optical trapping and binding of particles in an optofluidic stable fabry–pérot res-
onator with single-sided injection. Lab on a chip 14(13) (2014) 2259–2265

18. Allan, D., et al.: Trackpy: Fast, flexible particle-tracking toolkit
19. Najman, L., Talbot, H., eds.: Mathematical Morphology: from theory to applica-

tions. ISTE-Wiley, London, UK (September 2010) ISBN 978-1848212152.
20. Vincent, L.: Morphological grayscale reconstruction in image analysis: Applications

and efficient algorithms. Image Processing, IEEE Transactions on 2(2) (1993) 176–
201

21. Vincent, L.: Grayscale area openings and closings, their efficient implementation
and applications. In: Proceedings of the conference on mathematical morphology
and its applications to signal processing, Barcelona, Spain (May 1993) 22–27

22. Meijster, A., Wilkinson, H.: A comparison of algorithms for connected set openings
and closings. IEEE T. Pattern Anal. Mach. Intell. 24(4) (April 2002) 484–494

23. Géraud, T., Talbot, H., Vandroogenbroeck, M.: Algorithms for mathematical mor-
phology. [19] chapter 12 323–354 ISBN 978-1848212152.

24. Bertrand, G., Couprie, M.: Transformations topologiques discretes. In Coeurjolly,
D., Montanvert, A., Chassery, J., eds.: Géométrie discrète et images numériques.
Hermès (2007) 187–209

25. Matheron, G.: The theory of regionalized variables and its applications. Volume 5.
École national supérieure des mines (1971)

26. Olea, R.A.: Optimal contour mapping using universal kriging. Journal of Geo-
physical Research 79(5) (1974) 695–702


	Morphological Analysis of Brownian Motion for Physical Measurements

